人教版初中七年级数学上册第四章《几何图形初步》模拟测试题(包含答案解析)(27)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.(0分)[ID:68653]如图所示,OA是北偏东30°方向的一条射线,若∠AOB=90°,则OB 的方位角是()
A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°2.(0分)[ID:68644]将如图所示的直角三角形绕直线l旋转一周,得到的立体图形是()
A.B.C.D.
3.(0分)[ID:68634]如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是
A.美B.丽C.云D.南
4.(0分)[ID:68630]如图,工作流程线上A、B、C、D处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置()
A.线段BC的任意一点处
B.只能是A或D处
C.只能是线段BC的中点E处
D.线段AB或CD内的任意一点处
5.(0分)[ID:68628]如图,点O在直线AB上,射线OC,OD在直线AB的同侧,∠AOD=40°,∠BOC=50°,OM,ON分别平分∠BOC和∠AOD,则∠MON的度数为()
A .135°
B .140°
C .152°
D .45°
6.(0分)[ID :68627]一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )
A .35︒
B .40︒
C .45︒
D .55︒
7.(0分)[ID :68613]如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )
A .m ﹣n
B .m +n
C .2m ﹣n
D .2m +n
8.(0分)[ID :68607]如图,长度为12cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC :CB=1:2,则线段AC 的长度为( )
A .8cm
B .6cm
C .4cm
D .2cm
9.(0分)[ID :68600]下列说法正确的是( )
A .射线PA 和射线AP 是同一条射线
B .射线OA 的长度是3cm
C .直线,AB C
D 相交于点 P D .两点确定一条直线
10.(0分)[ID :68595]如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )
A .85°
B .105°
C .125°
D .160° 11.(0分)[ID :68589]已知∠AOB=40°,∠BOC=20°,则∠AOC 的度数为( ) A .60° B .20° C .40° D .20°或60° 12.(0分)[ID :68582]如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( ).
A .10
B .15
C .5
D .20 13.(0分)[ID :68578]已知线段AB=5,C 是直线AB 上一点,BC=2,则线段AC 长为( ) A .7 B .3 C .3或7 D .以上都不对 14.(0分)[ID :68572]下列图形中,不可以作为一个正方体的展开图的是( ) A . B . C . D . 15.(0分)[ID :68566]两个锐角的和是( )
A .锐角
B .直角
C .钝角
D .锐角或直角或钝角
二、填空题
16.(0分)[ID :68698]如图,共有_________条直线,_________条射线,_________条线段.
17.(0分)[ID :68710]看图填空.
(1)AC =AD -_______=AB +_______,
(2)BC +CD =_______=_______-AB ,
(3)AD =AC+___.
18.(0分)[ID :68708]如图所示,∠BOD =45°,那么不大于90°的角有___个,它们的度数之和是____.
19.(0分)[ID :68707]如图,点C 是线段AB 的中点,点D ,E 分别在线段AB 上,且AD DB =23,AE EB =2,则CD CE
的值为____.
20.(0分)[ID :68704](1)比较两条线段的长短,常用的方法有_________,_________. (2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 21.(0分)[ID :68690]如图,点D 在AOB ∠的内部,点E 在AOB ∠的外部,点F 在射线OA 上.试比较下列角的大小:
______AOB BOD ∠∠;______AOE AOB ∠∠;______BOD FOB ∠∠;
______AOB FOB ∠∠;______DOE BOD ∠∠.
22.(0分)[ID :68685]用一个平面分别截棱柱、圆锥,都能截出的一个图形是________. 23.(0分)[ID :68682]如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.
24.(0分)[ID :68667]魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180︒,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克. 25.(0分)[ID :68750]如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =__cm .
26.(0分)[ID :68743]已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是__和___.
27.(0分)[ID :68740]在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______.
三、解答题
28.(0分)[ID :68849]如图,已知线段AB 和CD 的公共部分1134
BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.
29.(0分)[ID :68805]如图,平面上有四个点A ,B ,C ,D .
(1)根据下列语句画图:
①射线BA;
②直线AD,BC相交于点E;
③延长DC至F(虚线),使CF=BC,连接EF(虚线).
(2)图中以E为顶点的角中,小于平角的角共有__________个.
AB BC CD=,点M 30.(0分)[ID:68796]如图,点B、C在线段AD上,且::2:3:4
MN=.
是线段AC的中点,点N是线段CD上的一点,且9
(1)若点N是线段CD的中点,求BD的长;
(2)若点N是线段CD的三等分点,求BD的长.
【参考答案】
2016-2017年度第*次考试试卷参考答案
**科目模拟测试
一、选择题
1.B
2.B
3.D
4.A
5.A
6.D
7.C
8.A
9.D
10.C
11.D
12.A
13.C
14.C
15.D
二、填空题
16.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条
17.CDBCBDADCD【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC(2)BC+CD=BD=AD-AB(3)AD=AC+CD故答案为:CD;BC;BD;AD
18.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出
19.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE 与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴
20.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大
21.>><=>【分析】根据图形即可比较角的大小【详解】解:如图(1)∠AOB>∠BOD;(2)∠AOE>∠A0B;(3)∠BOD<∠FOB;(4)∠A0B=∠FOB;(5)∠DOE>∠BOD故答案为(1
22.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故
23.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为
于点O所以∠AO
24.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)24
25.14【分析】线段AB被点CD分成2:4:7三部分于是设AC=2xCD=4xBD=7x由于MN 分别是ACDB的中点于是得到CM=AC=xDN=BD=x根据MN=17cm列方程即可得到结论【详解】解:线
26.4【分析】从图形进行分析结合正方体的基本性质得到底面的数字即可求得结果【详解】第一个正方体已知235第二个正方体已知245第三个正方体已知124且不同的面上写的数字各不相同可求得第一个正方体底面的数
27.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是
三、解答题
28.
29.
30.
2016-2017年度第*次考试试卷参考解析
【参考解析】
**科目模拟测试
一、选择题
1.B
解析:B
【分析】
先求出∠COB=60°,再根据具体位置确定答案.
【详解】
如图,
∵∠AOB=90°,∠AOC=30°,
∴∠COB=60°,
∴OB的方位角是北偏西60°,
故选:B.

【点睛】
此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.
2.B
解析:B
【分析】
根据题意作出图形,即可进行判断.
【详解】
将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,
故选B.
【点睛】
此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.
3.D
解析:D
【分析】
如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.
【详解】
如图,
根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.
故选D .
4.A
解析:A
【详解】
要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.
故选A .
5.A
解析:A
【分析】
根据题意各种角的关系直接可求出题目要求的角度.
【详解】
因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.
【点睛】
本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.
6.D
解析:D
【分析】
根据题意结合图形列出方程组,解方程组即可.
【详解】
解:由题意得,
1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩
==. 故选:D .
【点睛】
本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.
7.C
解析:C
【分析】
由已知条件可知,EC+FD=m-n ,又因为E 是AC 的中点,F 是BD 的中点,则
AE+FB=EC+FD ,故AB=AE+FB+EF 可求.
【详解】
解:由题意得,EC+FD=m-n
∵E 是AC 的中点,F 是BD 的中点,
∴AE+FB=EC+FD=EF-CD=m-n
又∵AB=AE+FB+EF
∴AB=m-n+m=2m-n
故选:C.
【点睛】
利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
8.A
解析:A
【分析】
先根据点M是AB中点求出AM=BM=6cm,再根据MC:CB=1:2求出MC即可得到答案.【详解】
∵点M是AB中点,
∴AM=BM=6cm,
∵MC:CB=1:2,
∴MC=2cm,
∴AC=AM+MC=6cm+2cm=8cm,
故选:A.
【点睛】
此题考查线段的中点性质,线段的和差计算,正确理解图形中线段之间的数量关系是解题的关键.
9.D
解析:D
【分析】
根据直线、射线、线段的性质对各选项分析判断后利用排除法.
【详解】
解:A、射线PA和射线AP不是同一条射线,故本选项错误;
B、射线是无限长的,故本选项错误;
C、直线AB、CD可能平行,没有交点,故本选项错误;
D、两点确定一条直线是正确的.
故选:D.
【点睛】
本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.
10.C
解析:C
【分析】
首先求得AB与正东方向的夹角的度数,即可求解.
【详解】
根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,
故选:C.
【点睛】
本题考查了方向角,正确理解方向角的定义是关键.
11.D
解析:D
【分析】
考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.
【详解】
解:如图
当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,
当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,
故选D.
【点睛】
本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 12.A
解析:A
【分析】
根据图形写出各角即可求解.
【详解】
图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.
故选A.
【点睛】
此题主要考查角的个数,解题的关键是依次写出各角.
13.C
解析:C
【分析】
由点C在直线AB上,分别讨论点C在点B左侧和右侧两种情况,根据线段的和差关系求出AC的长即可.
【详解】
∵点C在直线AB上,BC=2,AB=5,
∴当点C在点B左侧时,AC=AB-BC=3,
当点C在点B右侧时,AC=AB+BC=7,
∴AC的长为3或7,
故选C.
【点睛】
本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.14.C
解析:C
【解析】
【分析】
利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.
【详解】
A.可以作为一个正方体的展开图,
B.可以作为一个正方体的展开图,
C.不可以作为一个正方体的展开图,
D.可以作为一个正方体的展开图,
故选:C.
【点睛】
本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.
15.D
解析:D
【分析】
在0度到90度之间的叫锐角,可以用赋值法讨论.
【详解】
解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;
当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;
当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;
综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.
【点睛】
利用赋值法解题,可以使一些难以直接证明的问题简单易解.
二、填空题
16.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条
解析:6 3
【解析】
【分析】
根据线段、射线和直线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;直线无端点,无限长;进行解答即可.
【详解】
因为线段有两个端点,射线只有一个端点,
所以由图可以看出:图中有1条直线,3条线段,有6条射线.
故此题答案为:1,6,3.
【点睛】
此题主要考查直线、线段和射线的特点,此类型的题,在数时,应做到有顺序,做到不遗漏、不重复.
17.CDBCBDADCD【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC(2)BC+CD=BD=AD-AB(3)AD=AC+CD故答案为:CD;BC;BD;AD
解析:CD BC BD AD CD
【分析】
根据线段之间的和差关系进行解答即可得答案.
【详解】
(1)AC=AD-CD=AB+BC,
(2)BC+CD=BD=AD-AB,
(3)AD=AC+CD,
故答案为:CD;BC;BD;AD;CD
【点睛】
本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.
18.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出
解析:450°
【分析】
(1)∠AOE=90°,故图中所有的角都是不大于90°的角;
(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.
【详解】
不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,
∠COA,∠BOA共10个;
它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+
∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.
故答案为10;450°.
【点睛】
此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.
19.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点
∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴
解析:3 5
【分析】
由线段中点的定义可得AC=BC=1
2
AB,根据线段的和差关系及
AD
DB

2
3

AE
EB
=2,可得
出CD、CE与AB的关系,进而可得答案.【详解】
∵点C是线段AB的中点,
∴AC=BC=1
2
AB,
∵AD
DB =
2
3

AE
EB
=2,BD=AB-AD,AE=AB-BE,
∴AD=2
5AB,BE=
1
3
AB,
∵CD=AC-AD,CE=BC-BE,
∴CD=1
2AB-
2
5
AB=
1
10
AB,CE=
1
2
AB-
1
3
AB=
1
6
AB,
∴CD
CE =
1
10
1
6
AB
AB
=
3
5

故答案为3 5
【点睛】
本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.
20.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大
解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b
【分析】
(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;
(2)两条线段a和b的大小有三种情况.
【详解】
(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.
(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.
故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.
【点睛】
本题考查了比较线段的长短,是基础题型,是需要识记的知识.
21.>><=>【分析】根据图形即可比较角的大小【详解】解:如图(1)
∠AOB>∠BOD;(2)∠AOE>∠A0B;(3)∠BOD<∠FOB;(4)
∠A0B=∠FOB;(5)∠DOE>∠BOD故答案为(1
解析:>,>,<,= ,>
【分析】
根据图形,即可比较角的大小.
【详解】
解:如图(1)∠AOB>∠BOD;(2)∠AOE>∠A0B;(3)∠BOD<∠FOB;(4)
∠A0B=∠FOB;(5)∠DOE>∠BOD.
故答案为(1)>;(2)>;(3)<;(4)=;(5)>.
【点睛】
本题考查了角的大小比较,解决本题的关键是结合图形进行解答.
22.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故
解析:三角形
【分析】
分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.
【详解】
用一个平面去截棱柱可以得到三角形、长方形;
用一个平面去截圆锥可以得到圆、三角形等.
故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.
故答案为三角形.
【点睛】
此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键. 23.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO
解析:135°
【解析】
【分析】
先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知
∠COE=1
2
∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.【详解】
因为OC AB
⊥于点O,
所以∠AOC=∠BOC=90°,
因为OE为COB
∠的平分线,
所以∠COE=1
2
∠BOC=45°,
又因为∠AOE=∠COE+∠AOC,
所以∠AOE=90°+45°=135°.
故答案为:135°.
【点睛】
本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.
24.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=
18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)24
解析:13.5
【分析】
(1)算出秤上放1千克菜转过的角度为多少,乘以0.5即可;
(2)让243°除以1千克菜转过的角度即可.
【详解】
解:(1)180
10

=18°,0.5×18°=9°,
0.5千克的菜放在秤上,指针转过9°;
(2)243°÷18°=13.5(千克),
答:共有菜13.5千克.
故答案为9,13.5
【点睛】
本题考查了角度计算的应用,解决本题的关键是得到秤上放1千克菜转过的角度为多少.25.14【分析】线段AB被点CD分成2:4:7三部分于是设AC=2xCD=4xBD=7x 由于MN分别是ACDB的中点于是得到CM=AC=xDN=BD=x根据MN=17cm列方程即可得到结论【详解】解:线
解析:14
【分析】
线段AB被点C,D分成2:4:7三部分,于是设AC=2x,CD=4x,BD=7x,由于M,N分别
是AC,DB的中点,于是得到CM=1
2
AC=x,DN=
1
2
BD=
7
2
x,根据MN=17cm列方程,即可
得到结论.
【详解】 解:线段AB 被点C ,D 分成2:4:7三部分,
∴设2AC x =,4CD x =,7BD x =, M ,N 分别是AC ,DB 的中点,
12CM AC x ∴==,1722
DN BD x ==, 17MN cm =, 74172x x x ∴++
=, 2x ∴=,
14BD ∴=.
故答案为:14.
【点睛】
本题考查了两点间的距离,利用了线段的和差,利用中点性质转化线段之间的倍分关系是解题的关键.
26.4【分析】从图形进行分析结合正方体的基本性质得到底面的数字即可求得结果【详解】第一个正方体已知235第二个正方体已知245第三个正方体已知124且不同的面上写的数字各不相同可求得第一个正方体底面的数
解析:4
【分析】
从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.
【详解】
第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,
可求得第一个正方体底面的数字为3,5对应的底面数字为4.
故答案为3,4.
27.或【分析】分别讨论射线OBOC 在射线OA 同侧和异侧的情况问题可解
【详解】解:如图(1)当OBOC 在射线OA 同侧时如图(2)当OBOC 在射线OA 异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是
解析:60︒或90︒
【分析】
分别讨论射线OB 、OC 在射线OA 同侧和异侧的情况,问题可解
【详解】
解:如图(1)当OB 、OC 在射线OA 同侧时,
701560
BOC AOB AOC
∠=∠-∠=︒-︒=︒
如图(2)当OB、OC在射线OA异侧时,
701590
BOC AOB AOC
∠=∠+∠=︒+︒=︒
故答案为60︒或90︒
【点睛】
本题考查了角的加减运算,解答关键是应用分类讨论思想,找到不同情况分别求解.
三、解答题
28.
AB=12cm,CD=16cm
【分析】
先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是
EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.
【详解】
设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.
∵点E、点F分别为AB、CD的中点,
∴AE=1
2AB=1.5xcm,CF=
1
2
CD=2xcm.
∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,
∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】
本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.
29.
(1)见解析;(2)8
【分析】
(1)根据直线、射线、线段的特点画出图形即可;
(2)有公共端点的两条射线组成的图形叫做角,根据角的概念数出角的个数即可.
【详解】
解:(1)画图如下:
(2)(前面数过的不再重数)以EF为始边的角有4个,以EC为始边的角有1个,以EA为始边的角有1个,以EC的反向延长线为始边的有1个,以EA的反向延长线为始边的有1个,所以以E为顶点的角中,小于平角的角共有8个.
【点睛】
此题主要考查了角、直线、射线、线段,关键是掌握角的概念及直线、射线、线段的特点.
30.
(1)14;(2)378
23

378
31
.
【分析】
(1)设AB=2x,则BC=3x,CD=4x.根据线段中点的性质求出MC、CN,列出方程求出x,计算即可;
(2)分两种情况:①当N在CD的第一个三等分点时,根据MN=9,求出x的值,再根据BD=BC+CD求出结果即可;②当N在CD的第二个三等分点时,方法同①.
【详解】
设AB=2x,则BC=3x,CD=4x.
∴AC=AB+BC=5x,
∵点M是线段AC的中点,
∴MC=2.5x,
∵点N是线段CD的中点,
∴CN=2x,
∴MN=MC+CN=2.5x+2x=4.5x
∵MN=9,
∴4.5x=9,解得x=2,
∴BD=BC+CD=3x+4x=7x=14.
(2)情形1:当N 在CD 的第一个三等分点时,CN=43
x , ∴MN=MC+CN=
54239236x x x +== 解得,5423
x =, ∴BD=BC+CD=3x+4x=7x=
37823; 情形2:当当N 在CD 的第二个三等分点时,CN=
83x , ∴MN=MC+CN=
58319236x x x +== 解得,5431
x =, ∴BD=BC+CD=3x+4x=7x=
37831; 故BD 的长为
37823或37831
. 【点睛】 本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.。

相关文档
最新文档