2020届一轮复习人教B版 12.9 独立重复试验与二项分布 学案.doc
【B版】人教课标版高中数学选修2-3《独立重复试验与二项分布》教案2
2.2.3 独立重复试验与二项分布【教学目标】①理解n次独立重复试验的模型和二项分布,并能利用它们解决一些简单的实际问题;②认真体会模型化思想在解决问题中的作用,感受概率在生活中的应用,提高数学的应用意识。
【教学重点】理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
【教学难点】n次独立重复试验的模型及二项分布的判断。
一、课前预习1.n次独立重复试验:在_____的条件下,重复地做n次试验,各次试验的结果__________,则称它们为n次独立重复试验。
2.在n次独立重复试验中,事件A恰好发生k次的概率公式为___________。
3.二项分布:在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中事件A恰好发生k次的概率为______________,则X的分布列n,的二项分布,记作:_______________。
称为离散型随机变量X服从参数为p二、课上学习例1、在人寿保险事业中,很重视某一年龄段的投保人的死亡率假如每个投保人能活到65岁的概率为0.6.试问3个投保人中:(1)全部活到65岁的概率;(2)恰有2人活到65岁的概率;(3)恰有1人活到65岁的概率;(4)都活不到65岁的概率。
例2、设一射手平均每射击10次中靶4次,求在5次射击中:(1)恰击中1次的概率;(2)第二次击中的概率;(3)有且只有第二次击中目标;(4)恰击中2次的概率;(5)第二、三两次击中的概率;(6)至少击中一次的概率。
例3、一名学生每天骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31。
(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列;(2)求这名学生在途中至少遇到一次红灯的概率;(3)设Y 为这名学生首次停车前经过的路口数,求Y 的分布列。
三、课后练习1.抛掷一枚质地均匀的骰子100次,求正好出现30次6点的概率。
《独立重复试验与二项分布》导学案
《独立重复试验与二项分布》导学案(课前部分)编辑人:审核:高二数学组学习目标理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
重点理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
难点有关独立重复试验的模型及二项分布的概率计算。
知识链接1、什么是相互独立事件?2、二项式n ba)(+的展开式?3、概率加法公式是什么?什么时候用?4、概率乘法公式又是什么?什么时候用?学法指导仔细体会由特殊到一般的循序渐进、由浅入深的方式来探求新知。
学习探究一在研究随机现象时,经常要在相同的条件下重复做大量的试验来发现规律!而一般地,在相同条件下重复做的n次试验称为n次独立重复试验。
写出几个n次独立重复试验的例子,并说明独立重复实验的模型特点。
学习探究二上节课我们学习了如果事件A与事件B相互独立,就有()()()B P A PABP=请试着证明()()()()nnAPAPAPAAAP⋯=⋯2121,其中),2,1(niAi⋯=是第i次试验的结果。
我们教材56P的探究就是充分利用这个公式并且用循序渐进的方式推导出我们的二项分布的。
那也请你也编出一个或多个实例来体会由简单特殊的几种情况的依次求解,总结出具有普遍性规律的过程。
通过教材的典例以及你自己编的题目的分析,我们不难看出:一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,则:)(k X P == , 。
此时我们就称随机变量X 服从二项分布。
记作X ~),(p n BX ~),(p n B 中的k p n ,,分别表示什么?请把教材的典例以及你自己编的题目写成这个形式。
X ~)21,5(B ,)4(=X P = ;编写一道题来说明之。
为什么叫做二项分布?“二项”从何而来?二项分布与两点分布有联系吗?二项分布与超几何分布在抽样方式上有区别吗?每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功,后3次都成功的概率是多少?同为二项分布,这题和上面计算概率的方法区别在哪?请同学们总结出二项分布的特点:动手试试一1、某射手每次射击击中目标的概率是0.8,求这名射手在10次射击中, (1)恰有8次击中目标的概率; (2)至少有8次击中目标的概率;(3)要保证击中目标的概率大于0.99,至少应射击多少次。
2019-2020学年高考数学一轮复习-独立性与二项分布导学案
2019-2020学年高考数学一轮复习 独立性与二项分布导学案 一:学习目标1、了解两个事件相互独立的概念2、理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。
二:课前预习1.事件的相互独立性设A ,B 为两个事件,如果P (AB )=________,则称事件A 与事件B 相互独立.如果事件A 与事件B 相互独立,则A 与____,____与B ,A 与____也都相互独立.2.独立重复试验与二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率是p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=______________,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.n 次独立重复试验中事件A恰好发生k 次可看成是C k n 个互斥事件的和,其中每一个事件都可看成是k 个A事件与n -k 个A 事件同时发生,只是发生的次序不同,其发生的概率都是_____.因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k .3.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是_______。
4.每次试验的成功率为p (0<p <1),重复进行10次试验,其中前7次都未成功后3次都成功的概率为__________。
5.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为p ⎝ ⎛⎭⎪⎫p >12,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为59. (1)求p 的值;(2)设ξ表示比赛停止时比赛的局数,求随机变量ξ的分布列.三:课堂研讨【例1】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球2次,求共命中2次的概率.【例2】甲、乙两队参加世博会知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人答对正确与否相互之间没有影响.用ξ表示甲队的总得分. 备 注(1)求随机变量ξ的分布列;(2)设C表示事件“甲得2分,乙得1分”,求P(C).【例3】某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为110和p.(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.四:课后反思课堂检测——独立性与二项分布姓名:1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为___________2.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.3.某小学三年级的英语老师要求学生从星期一到星期四每天学习3个英语单词,每周星期五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同).(1)英语老师随机抽了4个单词进行检测,求至少有3个是后两天学习过的单词的概率;(2)某学生对后两天所学过的单词每个能默写对的概率为45,对前两天所学过的单词每个能默写对的概率为35;若老师从后三天所学单词中各抽取了一个进行检测,求该学生能默写对的单词数ξ的分布列.课外作业——独立性与二项分布 姓名:1.设随机变量X ~B(6,21),则P (X=3)= .2. 若每名学生测试达标的概率都是32(相互独立),测试后k 个人达标,经计算5人中恰有k 人同时达标的概率是24380,则k 的值为 . 3.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正确的结论的序号).4. 已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为31,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.(1)第一个小组做了三次试验,求至少两次试验成功的概率; (2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.5. 甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为54,乙投进的概率为21,求:(1)甲投进2球且乙投进1球的概率;(2)在甲第一次投篮未投进的条件下,甲最终获胜的概率.。
【B版】人教课标版高中数学选修2-3《独立重复试验与二项分布》导学案
2.2.3独立重复试验与二项分布【学习要求】1.理解n次独立重复试验的模型。
2.理解二项分布。
3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题。
【学法指导】独立重复试验是研究随机现象的重要途径,二项分布是来自于独立重复试验的一个概率模型,学习中要把握它们的联系,掌握二项分布的特点。
【知识要点】1.n次独立重复实验在条件下的n次试验称为n次独立重复试验。
2.二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A 发生的概率为p,,k=0,1,2,…,n。
此时称随机变量X服从二项分布,记作X~,并称p为。
【问题探究】探究点一n次独立重复试验的概率求法问题1投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p,连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?问题2问题1中若连续掷一枚图钉n次,恰好出现k次(k≤n)针尖向上的概率又是多少?它与二项式定理有何联系?问题3独立重复试验有哪些特点?例1某射手每次射击击中目标的概率是0.8,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率。
(结果保留两个有效数字)小结解决此类问题的关键是正确设出独立重复试验中的事件A,接着分析随机变量是否满足独立重复试验概型的条件,若是,利用公式P(ξ=k)=C k n p k(1-p)n-k计算便可。
跟踪训练1 已知一个射手每次击中目标的概率为p =35,求他在4次射击中下列事件发生的概率。
(1)命中一次;(2)恰在第三次命中目标;(3)命中两次;(4)刚好在第二次、第三次两次击中目标。
探究点二 二项分布的应用问题 二项分布和两点分布有何联系?例2 甲、乙两队参加世博会知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。
假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人答对正确与否相互之间没有影响。
独立重复试验与二项分布导学案
独立重复试验与二项分布导学案【学习目标】A 级目标:在了解条件概率和相互独立事件概念的前提下,理解n 次独立重复试验的模型及二 项分布,并能解决一些简单的实际问题;B 级目标:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算.【重点难点】重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题; 难点:二项分布模型的构建.【学习过程】一、 复习回顾 课题引入1、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立.2、相互独立事件同时发生的概率:()()()P AB P A P B =一般地,如果事件12,,,n A A A …相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A =…….思考:掷一枚图钉,针尖向上的概率为p ,则针尖向下的概率为1p -问题(1):第1次、第2次、第3次…第n 次针尖向上的概率是多少?问题(2):用(1,2,3,,)i A i n =… 表示第i 次掷得针尖朝上的事件,这n 次试验相互独立么?问题(3):若连续抛掷3次,3次中恰有1次针尖向上,有几种情况?问题(4):每种情况的概率分别是多少?问题(5):这3次中恰有1次针尖向上的概率是多少?问题(6):连续掷n 次,恰有k 次针尖向上的概率是多少?根据上述问题,你能得出那些结论?二、自主探究 得出结论概念归纳:1、独立重复试验的定义:一般地,由 次试验构成,且每次试验 完成,每次试验的结果仅有 状态,即A 与A ,每次试验中 。
我们将这样的试验称为 试验,也称为 试验.特点:(1)在同样条件下重复地进行的一种试验;(2)各次试验之间相互独立,互相之间没有影响;(3)每一次试验只有两种结果,即某事要么发生,要么不发生,并且任意一次试验中发生的概率都是一样的.2、独立重复试验的概率公式:在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中事件A 恰好发生k 次的概率()P X k == ,此时称随机变量X 服从 ,记作 ,并称p 为 . 思考:对比这个公式与表示二项式定理的公式,你能看出它们之间的联系吗?令1q p =-,得到随机变量X 的概率分布如下: X 01 … k … n Pn n q p C 00 111-n n q p C … k n k k n q p C - …0q p C n n n k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+-- 中的各项的值.三.合作交流,解决问题例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)【当堂检测】第一关1.初试锋芒 谁与争锋1.1(5,),(3)3X B p X = 已知随机变量求.2.种植某种树苗,成活率为0.9,现在种植这种树苗5棵,试求:(1)全部成活的概率为( );(2)全部死亡的概率为( );(3)至少成活4棵的概率( ).3.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 四.突破疑难例2:某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75n n P P =-=-.由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次.例3:某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量~(2,5%)B ξ,所以022(0)(15%)0.9025P C ξ==-=1112(1)(5%)(15%)0.095P C ξ==⨯-=222(2)(5%)0.0025P C ξ===因此,次品数ξ的概率分布是ξ0 1 2 P0.9025 0.095 0.0025【当堂检测】第二关2.闯关陷阵 唯我独尊1.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 2.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C3.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)4.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p -5.某机器正常工作的概率是 45,5天内有4天正常工作的概率是 。
(完整word版)独立重复试验与二项分布(教案)
独立重复试验与二项分布(教案)学习目标:能说出n 次独立重复试验的模型及二项分布,能解决一些实际问题。
学习重点:独立重复试验与二项分布.学习难点:独立重复试验与二项分布的综合问题。
一:课前自主学习1. 独立重复试验一般的,在 条件下重复做的n 次试验称为 。
2. 随机变量的二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()P X k == 。
此时称随机变量X 服从 ,记作 ,并称p为 .(这一环节通过导学案了解学生的掌握情况,完全交给学生)设计这一环节的目的是:让学生自己探究新知识,挖掘教材,从而更好的了解概念,以及知识之间的联系.二:课堂合作探究1.独立重复试验的特点2.二项分布与两点分布、超几何分布有什么区别和联系?3.二项分布的概率分布列(这一环节我是以提问的形式来了解学生的掌握情况.)设计这一环节的目的是:让学生对本节课所学的知识更深的理解,在和前面学过的加以区别和联系,从而达到完全掌握的目的。
三:典型例题分析题型1 n 次独立重复试验的意义例一 甲、乙两人一起玩抛掷骰子游戏,游戏规则如下:甲先抛掷,乙后抛掷,如此间隔抛掷,问:(1)甲共抛掷了n 次,可否看做n 次独立重复试验?乙共抛掷了m 次,可否看做m 次独立重复试验?(2)在游戏的全过程中共抛掷了m n +次,则这m n +次可否看做m n +次独立重复试验?方法归纳:变式训练1 判断下列试验是不是独立重复试验?(1)依次投掷四枚质地不同的硬币,3次正面朝上。
(2)某人射击,击中目标的概率是稳定的,他连续射击了十次,其中6次击中目标。
(3)口袋中装有5个白球、3个红球、2个黑球,依次从中抽取5个球,恰好抽到4个白球。
题型2 n 次独立重复试验的概率公式例二 某气象站天气预报的准确率为80%,求:(1)5次预报中恰有四次准确的概率;(2)5次预报中至少有四次准确的概率。
高二数学(选修-人教B版)-独立重复试验与二项分布-1教案
给出数学概念的规范定义和概率计算公式.
概念辨析.
应用数学概念和公式,解决问题.
通过生活实例,进一步理解 次独立重复试验的概念,熟悉概率计算公式,建立二项分布模型.
建立二项分布模型,规范数学语言.
0
1
···
···
···
···
由于表中的第二行恰好是二项式展开式
各项对应的值,所以称这样的离散型随机变量 服从参数为 , 的二项分布,记作 .
(五)模型应用,深化理解
例2. 100件产品中有3件不合格,每次取一件,有放回地取3次,求取得不合格品件数 的分布列.
解: 可能的取值为0,1,2,3.由于是有放回地每次取一件,连续取三次,所以这相当于做3次独立重复试验,一次抽取到不合格品的概率 .因此
3.一个公式——二项分布 中,
.
4.模型思想——随机现象无处不在,模型思想往往事半功倍;以及
5.探究精神——模型的建立和探索都需要进行不断地探究.
(1)通过简化问题——减少试验次数、先求发生固定次数(2次)的概率.
(2)设置问题链,层层铺垫,建立模型得到公式.
(3)在问题(3)中先给出错解,再通过枚举法和计数原理得出正解,让问题变得更加清晰;
,
,
,
.
分布列为
0
1
2
3
0.912673
0.084681
0.002619
0.000027
例3. 9粒种子分别种在甲、乙、丙3个坑,每个坑3粒,每粒种子发芽的概率为0.5.若一个坑至少有一粒发芽,则这个坑不需要补种;否则,则需要补种.
人教B版新教材高中数学选择性必修第二册教案设计-n次独立重复试验与二项分布
4.2.3二项分布与超几何分布第1课时n次独立重复试验与二项分布学习目标核心素养1.理解n次独立重复试验的模型.(重点)2.理解二项分布.(难点)3.能利用n次独立重复试验的模型及二项分布解决一些简单的实际问题.1.通过学习n次独立重复试验及二项分布,体会数学抽象的素养.2.借助二项分布解题,提高数学运算的素养.在学校组织的高二篮球比赛中,通过小组循环,甲、乙两班顺利进入最后的决赛.在每一场比赛中,甲班取胜的概率为0.6,乙班取胜的概率是0.4,比赛既可以采用三局两胜制,又可以采用五局三胜制.问题:如果你是甲班的一名同学,你认为采用哪种赛制对你班更有利?1.n次独立重复试验在相同条件下重复n次伯努利试验时,人们总是约定这n次试验是相互独立的,此时这n次伯努利试验也常称为n次独立重复试验.思考:独立重复试验必须具备哪些条件?[提示](1)每次试验的条件完全相同,相同事件的概率不变;(2)各次试验结果互不影响;(3)每次试验结果只有两种,这两种结果是对立的.2.二项分布一般地,如果一次伯努利试验中,出现“成功”的概率为p,记q=1-p,且n次独立重复试验中出现“成功”的次数为X,则X的取值范围是{0,1,…,k,…,n},而且P(X=k)=C k n p k q n-k,k=0,1,…,n,因此X 的分布列如下表所示.X1… k… nP C 0n p 0q nC 1n p 1qn -1 …C k n p k qn -k… C n n p n q 0)n =C 0n p 0q n+C 1n p 1q n -1+…+C k n p k qn -k +…+C n n p n q 0中对应项的值,因此称X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).1.思考辨析(正确的打“√”,错误的打“×”) (1)n 次独立重复试验的每次试验结果可以有多种. ( ) (2)两点分布是特殊的二项分布. ( ) (3)二项分布可以看作是有放回抽样.( ) (4)n 次独立重复试验中,每次试验的条件可以略有不同. ( )[答案] (1)× (2)√ (3)√ (4)× 2.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28C .0.88×0.22D .0.82×0.28A [∵X ~B (10,0.8),∴P (X =8)=C 810×0.88×0.22,故选A.]3.一枚硬币连掷三次,只有一次出现正面的概率为________.38 [抛掷一枚硬币出现正面的概率为12,由于每次试验的结果不受影响,故由n 次独立重复试验可知,所求概率为P =C 13⎝⎛⎭⎪⎫12⎝ ⎛⎭⎪⎫122=38.] 4.下列说法正确的是________.(填序号)①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6);②某福彩的中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,p );③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝ ⎛⎭⎪⎫n ,12. ①② [①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X 的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.]独立重复试验的概率【例1】 甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. [解] (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验.故P (A 1)=1-P (A 1)=1-⎝ ⎛⎭⎪⎫233=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×⎝⎛⎭⎪⎫232=49,P (B 2)=C 12×⎝ ⎛⎭⎪⎫341×⎝⎛⎭⎪⎫1-34=38. 由于甲、乙射击相互独立,故 P (A 2B 2)=49×38=16.1.(变结论)在本例(2)的条件下,求甲、乙均击中目标1次的概率. [解] 记“甲击中目标1次”为事件A 3,“乙击中目标1次”为事件B 3,则 P (A 3)=C 12×23×13=49,P (B 3)=38, 所以甲、乙均击中目标1次的概率为 P (A 3B 3)=49×38=16.2.(变结论)在本例(2)的条件下,求甲未击中、乙击中2次的概率. [解] 记“甲未击中目标”为事件A 4,“乙击中2次”为事件B 4,则P (A 4)=C 02⎝ ⎛⎭⎪⎫1-232=19,P (B 4)=C 22⎝ ⎛⎭⎪⎫342=916,所以甲未击中、乙击中2次的概率为P (A 4B 4)=19×916=116.独立重复试验概率求法的三个步骤二项分布设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列. [思路点拨] (1)首先判断ξ是否服从二项分布,再求分布列.(2)注意“首次遇到”“或到达”的含义,并明确η的取值,再求η取各值的概率.[解] (1)ξ~B ⎝ ⎛⎭⎪⎫5,13,ξ的分布列为P (ξ=k )=C k 5⎝⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5. 故ξ的分布列为ξ 012345P32243 80243 80243 40243 102431243(2)η的分布列为P (η=k )=P (前k 个是绿灯,第k +1个是红灯)=⎝ ⎛⎭⎪⎫23k ·13,k =0,1,2,3,4;P (η=5)=P (5个均为绿灯)=⎝ ⎛⎭⎪⎫235.故η的分布列为η 0 12345P13 29 427 881 16243322431.本例属于二项分布,当X 服从二项分布时,应弄清X ~B (n ,p )中的试验次数n 与成功概率p .2.解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验是独立重复地进行了n 次.[跟进训练]1.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做每道题的可能性均为12,且各人的选择相互之间没有影响.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的人数为ξ名,求ξ的分布列.[解] (1)设事件A 表示“甲选做14题”,事件B 表示“乙选做14题”,则甲、乙2名考生选做同一道题的事件为“A ∩B +A ∩B ”,且事件A ,B 相互独立.∴P (A ∩B +A ∩B )=P (A )P (B )+P (A )P (B ) =12×12+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-12=12.(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B ⎝ ⎛⎭⎪⎫4,12.∴P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k=C k 4⎝⎛⎭⎪⎫124(k =0,1,2,3,4). ∴随机变量ξ的分布列为ξ 0 1 2 3 4P116 14 38 14 116独立重复试验与二项分布的综合应用1.王明做5道单选题,每道题都随机选一个答案,那么他做对的道数服从二项分布吗?为什么?[提示] 服从二项分布.因为每道题都是随机选一个答案,结果只有两个:对与错,并且每道题做对的概率均相等,故做5道题可以看成“一道题”重复做了5次,做对的道数就是5次试验中“做对”这一事件发生的次数,故他做对的“道数”服从二项分布.2.王明做5道单选题,其中2道会做,其余3道均随机选一个答案,他做对的道数服从二项分布吗?如何判断一随机变量是否服从二项分布?[提示] 不服从二项分布.因为会做的两道题做对的概率与随机选取一个答案做对的概率不同,不符合二项分布的特点.判断一个随机变量是否服从二项分布关键是看它是不是n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.【例3】 甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.(1)求随机变量ξ的分布列;(2)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ).[思路点拨] (1)由于甲队中每人答对的概率相同,且正确与否没有影响,所以ξ服从二项分布,其中n =3,p =23.(2)AB 表示事件A ,B 同时发生,即甲、乙两队总得分之和为3且甲队总得分大于乙队总得分.[解] (1)由题意知,ξ的可能取值为0,1,2,3,且 p (ξ=0)=C 03⎝⎛⎭⎪⎫1-233=127, P (ξ=1)=C 1323⎝⎛⎭⎪⎫1-232=29, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23=49, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫233=827. 所以ξ的分布列为ξ 01 23P127 29 49 827(2)用C 表示“甲得2D 表示“甲得3分乙得0分”这一事件,所以AB =C ∪D ,且C ,D 互斥,又P (C )=C 23⎝⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23⎣⎢⎡ 23×13×12+13×23×⎦⎥⎤12+13×13×12=1034, P (D )=C 33⎝⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫13×13×12=435, 由互斥事件的概率公式得 P (AB )=P (C )+P (D ) =1034+435=3435=34243.对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是A +B 还是AB ,确定事件至少有一个发生,还是同时发生,分别运用相加或相乘事件公式;最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n 次独立重复试验的概率公式求解.[跟进训练]2.9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,求需要补种坑数的分布列.[解] 因为单个坑内的3粒种子都不发芽的概率为⎝ ⎛⎭⎪⎫123=18,所以单个坑不需要补种的概率为1-18=78.设需要补种的坑数为X ,则X 的可能取值为0,1,2,3,这是3次独立重复试验,P (X =0)=C 03×⎝ ⎛⎭⎪⎫180×⎝ ⎛⎭⎪⎫783=343512, P (X =1)=C 13×⎝ ⎛⎭⎪⎫181×⎝ ⎛⎭⎪⎫782=147512, P (X =2)=C 23×⎝ ⎛⎭⎪⎫182×⎝ ⎛⎭⎪⎫781=21512, P (X =3)=C 33×⎝⎛⎭⎪⎫183×⎝ ⎛⎭⎪⎫780=1512, 所以需要补种坑数的分布列为X 0123P343512 147512 2151215121.独立重复试验的基本特征 (1)每次试验都在同样条件下进行.(2)每次试验都只有两种结果:发生与不发生. (3)各次试验之间相互独立.(4)每次试验,某事件发生的概率都是一样的. 2.n 次独立重复试验的概率公式中各字母的含义1.某学生通过英语听力测试的概率为13,他连续测试3次,那么其中恰有1次获得通过的概率是( )A.49 B.29 C.427D.227A [记“恰有1次获得通过”为事件A , 则P (A )=C 13⎝ ⎛⎭⎪⎫13·⎝ ⎛⎭⎪⎫1-132=49.故选A.] 2.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)=( )A .C 23⎝⎛⎭⎪⎫142×34B .C 23⎝ ⎛⎭⎪⎫342×14C.⎝ ⎛⎭⎪⎫142×34D.⎝ ⎛⎭⎪⎫342×14 C [ξ=3表示第3次首次测到正品,而前两次都没有测到正品,故其概率是⎝ ⎛⎭⎪⎫142×34.]3.有4位同学参加某项选拔测试,每位同学能通过测试的概率都是12,假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为________.1516 [所有同学都不通过的概率为⎝ ⎛⎭⎪⎫1-124,故至少有一位同学通过的概率为1-⎝ ⎛⎭⎪⎫1-124=1516.] 4.设X ~B (4,p ),且P (X =2)=827,那么一次试验成功的概率p 等于________. 13或23 [P (X =2)=C 24p 2(1-p )2=827, 即p 2(1-p )2=⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫232,解得p =13或p =23.]5.(教材P79练习BT1改编)某气象站天气预报的准确率为80%,计算(结果保留两位小数):(1)“5次预报中恰有2次准确”的概率;(2)“5次预报中至少有2次准确”的概率.[解](1)记“预报1次准确”为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验.“恰有2次准确”的概率为P=C25×0.82×0.23=0.051 2≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P=C05×0.25+C15×0.8×0.24=0.006 72.所以所求概率为1-P=1-0.006 72≈0.99.所以“5次预报中至少有2次准确”的概率约为0.99.。
独立重复试验与二项分布教学设计
课题:独立重复试验与二项分布青州第六中学冯波教材:人民教育出版社B版课型:新授课一.教材分析1.教材内容“二项分布”是普通高中课程标准实验教科书选修2-3第二章《概率》的内容,《概率》是组合数学的最初步的知识,以“计数问题”为主要特征,是学生学习概率理论与统计数学的基础知识,也是学生学习高等数学的预备知识。
其中所蕴涵的数学思想方法独特灵活,是发展学生的抽象、概括能力、培养学生逻辑推理能力、凸现数学的应用价值的好素材。
“二项分布”研究的对象是次独立重复事件的试验,是瑞士数学家雅伯努利首先研究的,故又称伯努利概型,由于学生已经学习了独立事件,又有二项式定理作为基础,再学习“二项分布”相对而言认知起来要容易一点。
本节计划两课时,今天是第一课时:2.地位与作用“二项分布”是概率理论中的三大概率分布之一,同时也是自成体系的知识块,也是后继课程某些内容的一个铺垫。
运用“二项分布”可以解决一些比较典型的数学问题,通过本课的教学,进一步提高学生的归纳演绎能力,让学生感受数学来源于生活,最终也将服务于生活,充分展示数学的应用价值。
二.学情分析认知分析:学生的认知结构中已经有了独立事件, 二项式定理等有关知识,对于概率的类型和概率分布已经有了初步的认识。
能力分析:学生能够运用所学知识区分概率的类型、判断事件之间是否独立,会求一些简单的概率分布,但归纳演绎能力、探索提炼的能力有待于进一步提高。
三.教学目标与重点、难点教学目标:知识目标:(1)使学生参与并探讨“二项分布”的形成过程,掌握“二项分布”中的字母意义和数学本质(2)准确认知伯努利试验,能正确应用“二项分布”解决实际问题能力目标:培养学生分析、归纳、演绎能力,发现问题,探求问题的能力,逻辑推理能力,以及由特殊到一般,又由一般到特殊的数学思想。
感情目标:通过对“二项分布”的教学,丰富学生数学认知的水平,提高学生数学建模的能力;通过对“二项分布”的教学,使学生感受和体验公式的简洁美、和谐美。
人教版高二数学下册下册 课件《独立重复试验与二项分布》 教案
独立重复试验与二项分布一、教材的地位和作用本节内容是人教B版选修2-3第二章《概率》的第二节的第三小节。
通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:等可能事件概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列有关内容。
二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似的看成二项分布。
在自然现象和社会现象中,大量的随机变量都服从或近似的的服从二项分布,实际应用广泛,理论上也非常重要。
可以说本节内容是对前面所学知识的综合应用,是一种模型的构建。
是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。
会对今后数学及相关学科的学习产生深远的影响。
二、学情分析从知识层面看,在必修3学生已经学习了概率的基本知识,知道一些概率的性质以及两类概率模型。
通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:等可能事件概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列有关内容。
已经掌握了二点分布与超几何分布的相关知识。
从能力层面看,现阶段的学生具备了一定的分析、解决问题的能力,对于本节课的以问题为引领的教学有一定帮助。
本节课授课对象是化生地组合的学生,所选组合偏理,使得他们具有一定的理性思维,并且积极主动,生生交流、师生交流容易展开。
但他们自主探究的意识、合作创新的精神还有一定程度欠缺,需要老师引导和支持。
三、教学目标分析:掌握n次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,总结二项分布问题的解题步骤并能应用到相应的实际问题。
培养学生的自主学习能力、数学建模能力,具备从具体事例中归纳出数学概念并提炼出数学模型的能力。
能让学生充分体现知识的发现过程,并渗透从特殊到一般,由具体到抽象的数学思想方法。
通过主动探究、自主合作、相互交流,获得探究式学习的经验。
使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。
2020届一轮复习人教B版独立重复试验与二项分布(理)学案
独立重复试验与二项分布【学习目标】1.理解n 次独立重复试验模型及二项分布.2.能利用n 次独立重复试验及二项分布解决一些简单的实际问题. 【要点梳理】要点一、n 次独立重复试验每次试验只考虑两种可能结果A 与A ,并且事件A 发生的概率相同。
在相同的条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验。
要点诠释:在n 次独立重复试验中,一定要抓住四点: ①每次试验在同样的条件下进行;②每次试验只有两种结果A 与A ,即某事件要么发生,要么不发生; ③每次试验中,某事件发生的概率是相同的; ④各次试验之间相互独立。
总之,独立重复试验,是在同样的条件下重复的,各次之间相互独立地进行的一种试验,在这种试验中,每一次的试验结果只有两种,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的。
要点二、独立重复试验的概率公式 1.定义如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中,事件A 恰好发生k 次的概率为:()(1)k kn k n n P k C p p -=-(k=0,1,2,…,n ).令0k =得,在n 次独立重复试验中,事件A 没有发生的概率为........00(0)(1)(1)n n n n P C p p p =-=- 令k n =得,在n 次独立重复试验中,事件A 全部发生的概率为........0()(1)n n nn n P n C p p p =-=。
要点诠释:1. 在公式中,n 是独立重复试验的次数,p 是一次试验中某事件A 发生的概率,k 是在n 次独立重复试验中事件A 恰好发生的次数,只有弄清公式中n ,p ,k 的意义,才能正确地运用公式.2. 独立重复试验是相互独立事件的特例,就像对立事件是互斥事件的特例一样,只是有“恰好”字样的用独立重复试验的概率公式计算更方便.要点三、n 次独立重复试验常见实例:1.反复抛掷一枚均匀硬币2.已知产品率的抽样3.有放回的抽样4.射手射击目标命中率已知的若干次射击 要点诠释:抽样问题中的独立重复试验模型:①从产品中有放回地抽样是独立事件,可按独立重复试验来处理; ②从小数量的产品中无放回地抽样不是独立事件,只能用等可能事件计算;③从大批量的产品中无放回地抽样,每次得到某种事件的概率是不一样的,但由于差别太小,相当于是独立事件,所以一般情况下仍按独立重复试验来处理。
2020年高考数学一轮复习人教班理科数学课件第十章 第六节 独立重复试验与二项分布
互斥事件 一个试验中
独立事件 两个试验中
[拓展] 1.相互独立事件的概率 若 事 件 A1 , A2 , … , An 相 互 独 立 , 则 P(A1A2…An) = P(A1)P(A2)…P(An). 2.n 次独立重复试验中事件 A 恰好发生 k 次可看作 Ck n个互斥事件 的和, 其中每一个事件都可看作 k 个 A 事件与(n-k)个 A 事件同时发生, 只是发生的次序不同, 其发生的概率都是 pk(1-p)n k(其中 p 为在一次试
(3)若 A 与 B 相互独立,则 A 与 B , A 与 B, A 与 B 也都相互独立.
A与B相互独立 (4) .
知识点 3
二项分布
(1)独立重复试验是指在相同条件下可重复进行的, 各次之间相互独 立的一种试验. (2)一般地,在 n 次独立重复试验中,用 X 表示事件 A 发生的次数, 设每次试验中事件 A 发生的概率为 p,则事件 A 发生 k 次的概率为
-
验中事件 A 发生的概率).因此,n 次独立重复试验中事件 A 恰好发生 k
k n k 次的概率为 Ck . np (1-p)
-
四基精演练 1.思考辨析(在括号内打“√”或“×”) (1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × ) (3)对于任意两个事件,公式 P(AB)=P(A)P(B)都成立.( × ) (4)二项分布是一个概率分布,其公式相当于(a+b)n 二项展开式的 通项公式,其中 a=p,b=1-p.( × )
P(B|A)+P(C|A) ②如果 B 和 C 是互斥的两个事件,则 P(B∪C|A)=____________.
知识点 2
相互独立事件
(1)对于事件 A、 B, 若 A 的发生与 B 的发生互不影响, 则称事件 A、 相互独立 事件. B 是____________
高二数学(选修-人教B版)-独立重复试验与二项分布-3学习任务单
《独立重复试验与二项分布》学习任务单【学习目标】1.通过对多次投掷一枚均匀硬币问题的分析,体验重复试验的过程,得到n 次独立重复试验的概念和事件A在n次独立重复试验中恰好发生k次的概率计算公式;2.通过对生活实例问题的研究,建立二项分布概率模型.3.通过在不同实例中的应用,进一步理解二项分布模型,体会概率中的模型思想.4.在问题解决、模型建立和模型探究的过程中,培养数学学习中的探究精神.【课上任务】1.提出问题:将一枚均匀硬币随机投掷10次.(1)正面朝上出现多少次概率最大?(2)最大概率是多少?2.我们应该如何简化上述问题:3.投掷1次,正面朝上发生1次的概率是多少?4.投掷2次,正面朝上恰好发生2次的概率是多少?5.投掷3次,正面朝上恰好发生2次的概率是多少?6.投掷n次,正面朝上恰好发生2次的概率是多少?7.投掷n次,正面朝上恰好发生k次的概率是多少?8.你能抽象出n次独立重复试验的概念吗?9.你能得出n次独立重复试验中,事件A恰好发生k次的概率计算公式吗?10.什么是二项分布?二项分布与n次独立重复试验有何联系?11.你能理解二项分布模型吗?12.本节课你学到了哪些知识?收获了什么?【学习疑问】13.哪段文字没看明白?14.哪个环节没弄清楚?15.有什么困惑?16.本节课有几个环节,环节之间的联系和逻辑关系?【课后作业】17.某射手射击5次,每次命中的概率为0.6,求下列事件的概率:(1)5次中恰有3次中靶;(2)5次中至少有3次中靶.18.已知某疗法的治愈率是90%,在对10位病人采用这种疗法后,正好有9人被治愈的概率是多少?【课后作业参考答案】17. 解:某射手射击5次,射击结果相互没有影响,所以可以看作5次独立重复试验.每次击中的概率为0.6,设X 为5次射击中击中的次数,则)6.0,5(~B X .(1)3325(3)0.6(10.6)0.3456P X C ≥=-=; (2) (3)(3)(4)(5)P X P X P X P X ≥==+=+=441550550.34560.6(10.6)0.6(10.6)C C =+⋅⋅-+⋅⋅-0.34560.25920.0776=++0.68256=即5次中恰好击中3次的概率为0.3456;5次中至少击中3次的概率为0.6825.18. 解:已知某疗法的治愈率是90%,对10位病人采用这种疗法,相当于作10次独立重复试验,每次治愈的概率为109,设X 为10人中治愈的人数,则)109,10(~B X ,故 9991109999(9)()(1)101010P X C ==-= 即10人中恰好9人被治愈的概率为99109.。
2020届高三复习经典教案:n次独立重复试验与二项分布
第五节 n 次独立重复试验与二项分布[最新考纲] 1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单问题.1(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立.(2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ). ②如果事件A 与B 相互独立,那么A 与–B ,–A 与B ,–A 与–B 也相互独立.3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ).(2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p [基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)相互独立事件就是互斥事件. ( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ). ( ) (3)公式P (AB )=P (A )P (B )对任意两个事件都成立. ( )(4)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布. ( )[答案] (1)× (2)√ (3)× (4)√2.设随机变量X ~B ⎝⎛⎭⎫6,12,则P (X =3)等于( ) A.516 B.316 C.58 D.38A [∵X ~B ⎝⎛⎭⎫6,12,∴P (X =3)=C 36⎝⎛⎭⎫126=516.故选A.] 3.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14C [由P (AB )=P (A )P (B |A ),得38=12P (A ),∴P (A )=34.]4.某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为________.81125 [P =C 230.620.4+C 330.63=81125.]5.天气预报,在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为________.0.38 [设甲地降雨为事件A ,乙地降雨为事件B ,则两地恰有一地降雨为A –B +–A B ,∴P (A –B +–A B )=P (A –B )+P (–A B )=P (A )P (–B )+P (–A )P (B )=0.2×0.7+0.8×0.3=0.38.]1.从1,2,3,4,5中任取2B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12B [法一:P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P (AB )P (A )=11025=14.法二:事件A 包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.事件AB 发生的结果只有(2,4)一种情形,即n (AB )=1.故由古典概型概率P (B |A )=n (AB )n (A )=14.] 2.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A 和B 都不是第一个出场,B 不是最后一个出场”的前提下,学生C 第一个出场的概率为( )A.13B.15C.19D.320A [因为“A 和B 都不是第一个出场,B 不是最后一个出场”的安排方法中,另外3人中任何一个第一个出场的概率相等,故“C 第一个出场”的概率是13.]3.(2019·运城模拟)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.0.72 [设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽,又成活为幼苗).出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9,根据条件概率公式得P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,,这是求条件概率的通法A ),再求事件=【例1】 某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列.[解] (1)记“甲出线”为事件A ,“乙出线”为事件B ,“丙出线”为事件C ,“甲、乙、丙至少有一名出线”为事件D ,则P (D )=1-P (–A –B –C )=1-13×14×25=2930.(2)由题意可得,ξ的所有可能取值为0,1,2,3,则P (ξ=0)=P (–A –B –C )=13×14×25=130;P (ξ=1)=P (–A –B –C )+P (–A –B –C )+P (–A –B –C )=23×14×25+13×34×25+13×14×35=1360;P (ξ=2)=P (AB –C )+P (A –B C )+P (–A BC )=23×34×25+23×14×35+13×34×35=920; P (ξ=3)=P (ABC )=23×34×35=310.设某人有5发子弹,他向某一目标射击时,每发子弹命中目标的概率为23.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完.(1)求他前两发子弹只命中一发的概率; (2)求他所耗用的子弹数X 的分布列.[解] 记“第k 发子弹命中目标”为事件A k (k =1,2,3,4,5),则A 1,A 2,A 3,A 4,A 5相互独立,且P (A k )=23,P (–A k )=13.(1)法一:他前两发子弹只命中一发的概率为P (A 1–A 2)+P (–A 1A 2)=P (A 1)P (–A 2)+P (–A 1)P (A 2)=23×13+13×23=49. 法二:由独立重复试验的概率计算公式知,他前两发子弹只命中一发的概率为P =C 12×23×13=49.(2)X 的所有可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (–A 1 –A 2)=23×23+13×13=59,P (X =3)=P (A 1–A 2 –A 3)+P (–A 1A 2A 3)=23×⎝⎛⎭⎫132+13×⎝⎛⎭⎫232=29, P (X =4)=P (A 1–A 2A 3A 4)+P (–A 1A 2–A 3 –A 4)=⎝⎛⎭⎫233×13+⎝⎛⎭⎫133×23=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.综上,X 的分布列为【例2】 (2019·2株.假定银杏移栽的成活率为34,垂柳移栽的成活率为23,且各株大树是否成活互不影响.(1)求两种大树各成活1株的概率;(2)设ξ为两种大树成活的株数之和,求随机变量ξ的分布列. [解] (1)记“银杏大树成活1株”为事件A ,“垂柳大树成活1株”为事件B ,则“两种大树各成活1株”为事件A B.由题可知P (A )=C 12·34·14=38,P (B )=C 12·23·13=49,由于事件A 与B 相互独立,所以P (AB )=P (A )·P (B )=16.(2)由题意知ξ的所有可能取值为0,1,2,3,4. P (ξ=0)=⎝⎛⎭⎫142·⎝⎛⎭⎫132=1144;P (ξ=1)=C 12·34·14·⎝⎛⎭⎫132+C 12·23·13·⎝⎛⎭⎫142=572;P (ξ=2)=16+⎝⎛⎭⎫342·⎝⎛⎭⎫132+⎝⎛⎭⎫142·⎝⎛⎭⎫232=37144; P (ξ=3)=C 12·34·14·⎝⎛⎭⎫232+C 12·23·13·⎝⎛⎭⎫342=512;P (ξ=4)=⎝⎛⎭⎫342·⎝⎛⎭⎫232=14.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图如图.(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X 为质量超过505克的产品数量,求X 的分布列;(3)从该流水线上任取2件产品,设Y 为质量超过505克的产品数量,求Y 的分布列.[解] (1)质量超过505克的产品的频率为5×0.05+5×0.01=0.3,所以质量超过505克的产品数量为40×0.3=12(件).(2)重量超过505的产品数量为12件,则重量未超过505克的产品数量为28件,X 的取值为0,1,2, X 服从超几何分布.P (X =0)=C 228C 240=63130, P (X =1)=C 112C 128C 240=2865, P (X =2)=C 212C 240=11130, ∴X 的分布列为 X 0 1 2P 63130 2865 11130(3)根据样本估计总体的思想,取一件产品,该产品的质量超过505克的概率为1240=310.从流水线上任取2件产品互不影响,该问题可看成2次独立重复试验,质量超过505克的件数Y的可能取值为0,1,2,且Y ~B ⎝⎛⎭⎫2,310, P (X =k )=C k 2⎝⎛⎭⎫1-3102-k ⎝⎛⎭⎫310k ,所以P (Y =0)=C 02·⎝⎛⎭⎫7102=49100,P (Y =1)=C 12·310·710=2150,P (Y =2)=C 22·⎝⎛⎭⎫3102=9100. ∴Y 的分布列为 Y 0 1 2P 49100 2150 91001.(2015·全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312A [3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.]2.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45A [已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.]课后限时集训(五十七)(建议用时:60分钟)A 组 基础达标一、选择题1.甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛没有平局,在每一场比赛中,甲胜乙的概率为23,甲胜丙的概率为14,乙胜丙的概率为15.则甲获第一名且丙获第二名的概率为( )A.1112B.16C.130D.215D [设“甲胜乙”“甲胜丙”“乙胜丙”分别为事件A ,B ,C ,事件“甲获第一名且丙获第二名”为A ∩B ∩–C ,所以P (甲获第一名且丙获第二名)=P (A ∩B ∩–C )=P (A )P (B )P (–C )=23×14×45=215.]2.甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,有下列说法:①目标恰好被命中一次的概率为12+13;②目标恰好被命中两次的概率为12×13;③目标被命中的概率为12×23+12×13;④目标被命中的概率为1-12×23,以上说法正确的是( )A .②③B .①②③C .②④D .①③C [对于说法①,目标恰好被命中一次的概率为12×23+12×13=12,所以①错误,结合选项可知,排除B 、D ;对于说法③,目标被命中的概率为12×23+12×13+12×13,所以③错误,排除A.故选C.] 3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.16B [设事件A :甲实习生加工的零件为一等品;事件B :乙实习生加工的零件为一等品,则P (A )=23,P (B )=34,所以这两个零件中恰有一个一等品的概率为P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B )=23×⎝⎛⎭⎫1-34+⎝⎛⎭⎫1-23×34=512.]4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A.110B.15C.25D.12C [设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )=P (AB )P (A )=25,故选C.] 5.(2018·绵阳诊断)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为( )A.89B.7381C.881D.19C [因为该射手每次射击击中目标的概率是23,所以每次射击不中的概率为13,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3–A 4–A 5)+P (–A 1A 2A 3A 4–A 5)+P (–A 1–A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881.] 二、填空题6.投掷一枚图钉,设钉尖向上的概率为P ,连续掷一枚图钉3次,若出现2次钉尖向上的概率小于3次钉尖向上的概率,则P 的取值范围为________.⎝⎛⎭⎫34,1 [设P (B k )(k =0,1,2,3)表示“连续投掷一枚图钉3次,出现k 次钉尖向上”的概率,由题意,得P (B 2)<P (B 3),即C 23P 2(1-P )<C 33P 3,∴3P 2(1-P )<P 3.∵0<P <1,∴34<P <1.]7.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲的及格率为45,乙的及格率为25,丙的及格率为23,则三人中至少有一人及格的概率为________.2425 [设“甲及格”为事件A ,“乙及格”为事件B ,“丙及格”为事件C ,则P (A )=45,P (B )=25,P (C )=23,∴P (–A )=15,P (–B )=35,P (–C )=13,则P (–A –B –C )=P (–A )P (–B )P (–C )=15×35×13=125,∴三人中至少有一人及格的概率P =1-P (–A –B –C )=2425.]8.将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,则P (A |B )=________.14[依题意,随机试验共有9个不同的基本结果. 由于随机投掷,且小正方形的面积大小相等,所以事件B 包含4个基本结果,事件AB 包含1个基本结果.所以P (B )=49,P (AB )=19.所以P (A |B )=P (AB )P (B )=1949=14.] 三、解答题9.(2019·洛阳模拟)某中学篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试.“立定投篮”与“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才有机会进行“三步上篮”测试,为了节约时间,每项只需且必须投中一次即为合格.小明同学“立定投篮”的命中率为12,“三步上篮”的命中率为34,假设小明不放弃任何一次投篮机会且每次投篮是否命中互不影响.(1)求小明同学一次测试合格的概率;(2)设测试过程中小明投篮的次数为ξ,求ξ的分布列.[解] (1)设小明第i 次“立定投篮”命中为事件A i ,第i 次“三步上篮”命中为事件B i (i =1,2),依题意有P (A i )=12,P (B i )=34(i =1,2),“小明同学一次测试合格”为事件C .(1)P (–C )=P (–A 1 –A 2)+P (–A 1A 2 –B 1 –B 2)+P (A 1–B 1 –B 2)=P (–A 1)P (–A 2)+P (–A 1)P (A 2)P (–B 1)P (–B 2)+P (A 1)·P (–B 1)P (–B 2)=⎝⎛⎭⎫122+⎝⎛⎭⎫1-12×12×⎝⎛⎭⎫1-342+12×⎝⎛⎭⎫1-342=1964. ∴P (C )=1-1964=4564. (2)依题意知ξ=2,3,4,P (ξ=2)=P (A 1B 1)+P (–A 1 –A 2)=P (A 1)P (B 1)+P (–A 1)P (–A 2)=58,P (ξ=3)=P (A 1–B 1B 2)+P (–A 1A 2B 1)+P (A 1–B 1 –B 2)=P (A 1)P (–B 1)P (B 2)+P (–A 1)P (A 2)P (B 1)+P (A 1)P (–B 1)P (–B 2)=516,P (ξ=4)=P (–A 1A 2–B 1)=P (–A 1)P (A 2)P (–B 1)=116.故投篮的次数ξ的分布列为:10.从某企业生产的某种产品中抽取示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标位于区间[45,75)内的产品件数为X ,求X 的分布列.[解] (1)设这些产品质量指标值落在区间[75,85]内的频率为x ,则在区间[55,65),[65,75)内的频率分别为4x 和2x .依题意得(0.004+0.012+0.019+0.03)×10+4x +2x +x =1,解得x =0.05.所以这些产品质量指标值落在区间[75,85]内的频率为0.05.(2)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X ~B (n ,p ),其中n =3.由(1)得,这些产品质量指标值落在区间[45,75)内的频率为0.3+0.2+0.1=0.6,将频率视为概率为p =0.6.因为X 的所有可能取值为0,1,2,3,且P (X =0)=C 03×0.60×0.43=0.064,P (X =1)=C 13×0.61×0.42=0.288,P (X =2)=C 23×0.62×0.41=0.432,P (X =3)=C 33×0.63×0.40=0.216.所以X 的分布列为1.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为( )A.14B.12C.34D.45C [记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B.若小球落入B 袋中,则小球必须一直向左落下或一直向右落下,故P (B )=⎝⎛⎭⎫123+⎝⎛⎭⎫123=14,从而P (A )=1-P (B )=1-14=34.] 2.经检测,有一批产品的合格率为34,现从这批产品中任取5件,记其中合格产品的件数为ξ,则P (ξ=k )取得最大值时,k 的值为( )A .5B .4C .3D .2B [根据题意得,P (ξ=k )=C k 5⎝⎛⎭⎫34k ⎝⎛⎭⎫1-345-k ,k =0,1,2,3,4,5,则P (ξ=0)=C 05⎝⎛⎭⎫340×⎝⎛⎭⎫145=145,P (ξ=1)=C 15⎝⎛⎭⎫341×⎝⎛⎭⎫144=1545,P (ξ=2)=C 25⎝⎛⎭⎫342×⎝⎛⎭⎫143=9045,P (ξ=3)=C 35⎝⎛⎭⎫343×⎝⎛⎭⎫142=27045,P (ξ=4)=C 45⎝⎛⎭⎫344×⎝⎛⎭⎫141=40545,P (ξ=5)=C 55⎝⎛⎭⎫345×⎝⎛⎭⎫140=24345,故当k =4时,P (ξ=k )最大.] 3.甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别用A 1,A 2和A 3表示由甲罐取出的球是红球、白球和黑球的事件.再从乙罐中随机取出一球,用B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3为两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.②④ [P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)=12×511+15×411+310×411=922,故①⑤错误;从甲罐中取出1红球放入乙罐后,则乙罐中有5个红球,从中任取1个为红球的概率为511,即P (B |A 1)=511,故②正确;由于P (B )≠P (B |A 1),故B 与A 1不独立,因此③错误;由题意知,④正确.]4.(2019·石家庄模拟)某厂有4台大型机器,在一个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为13.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维护的概率不少于90%?(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的分布列.[解] (1)1台机器是否出现故障可看作1次试验,在1次试验中,机器出现故障设为事件A ,则事件A 的概率为13.该厂有4台机器,就相当于4次独立重复试验,可设出现故障的机器台数为X ,则X ~B ⎝⎛⎭⎫4,13,∴P (X =0)=C 04·⎝⎛⎭⎫234=1681, P (X =1)=C 14·13·⎝⎛⎭⎫233=3281, P (X =2)=C 24·⎝⎛⎭⎫132·⎝⎛⎭⎫232=2481, P (X =3)=C 34·⎝⎛⎭⎫133·23=881, P (X =4)=C 44·⎝⎛⎭⎫134=181. ∴X,即X =0,∵81<90%≤81,∴该厂至少需要3名工人,才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%.(2)设该厂每月可获利Y 万元,则Y 的所有可能取值为18,13,8,P (Y =18)=P (X =0)+P(X =1)+P (X =2)=7281,P (Y =13)=P (X =3)=881,P (Y =8)=P (X =4)=181,∴Y第五节 n 次独立重复试验与二项分布[考纲传真] 1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单问题.1(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立. (2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ).②如果事件A 与B 相互独立,那么A 与–B ,–A 与B ,–A 与–B 也相互独立. 3.独立重复试验与二项分布 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). (2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p [基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)相互独立事件就是互斥事件. ( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ). ( ) (3)公式P (AB )=P (A )P (B )对任意两个事件都成立. ( )(4)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布. ( )2.设随机变量X ~B ⎝⎛⎭⎫6,12,则P (X =3)等于( )A.516B.316C.58 D.383.已知P (B |A )=12,P (AB )=38,则P (A )等于( ) A.316 B.1316C.34D.144.某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为________.5.天气预报,在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为________.1.从1,2,3,4,5中任取2B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.122.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A 和B 都不是第一个出场,B 不是最后一个出场”的前提下,学生C 第一个出场的概率为( )A.13B.15C.19D.3203.(2019·运城模拟)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. ,这是求条件概率的通法A ),再求事件=【例1】 某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列.设某人有5发子弹,他向某一目标射击时,每发子弹命中目标的概率为23.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完.(1)求他前两发子弹只命中一发的概率; (2)求他所耗用的子弹数X 的分布列.【例2】 (2019·2株.假定银杏移栽的成活率为34,垂柳移栽的成活率为23,且各株大树是否成活互不影响.(1)求两种大树各成活1株的概率;(2)设ξ为两种大树成活的株数之和,求随机变量ξ的分布列.品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图如图.(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.1.(·全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432C.0.36 D.0.3122.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45课后限时集训(五十七) (建议用时:60分钟) A 组 基础达标一、选择题1.甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛没有平局,在每一场比赛中,甲胜乙的概率为23,甲胜丙的概率为14,乙胜丙的概率为15.则甲获第一名且丙获第二名的概率为( )A.1112B.16C.130D.2152.甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,有下列说法:①目标恰好被命中一次的概率为12+13;②目标恰好被命中两次的概率为12×13;③目标被命中的概率为12×23+12×13;④目标被命中的概率为1-12×23,以上说法正确的是( )A .②③B .①②③C .②④D .①③3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.164.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A.110B.15C.25D.125.(2018·绵阳诊断)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为( )A.89B.7381C.881D.19二、填空题6.投掷一枚图钉,设钉尖向上的概率为P ,连续掷一枚图钉3次,若出现2次钉尖向上的概率小于3次钉尖向上的概率,则P 的取值范围为________.7.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲的及格率为45,乙的及格率为25,丙的及格率为23,则三人中至少有一人及格的概率为________.8.将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,则P (A |B )=________.三、解答题 9.(2019·洛阳模拟)某中学篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试.“立定投篮”与“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才有机会进行“三步上篮”测试,为了节约时间,每项只需且必须投中一次即为合格.小明同学“立定投篮”的命中率为12,“三步上篮”的命中率为34,假设小明不放弃任何一次投篮机会且每次投篮是否命中互不影响.(1)求小明同学一次测试合格的概率;(2)设测试过程中小明投篮的次数为ξ,求ξ的分布列.10.从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标位于区间[45,75)内的产品件数为X ,求X 的分布列.B 组 能力提升1.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为( )A.14B.12C.34D.452.经检测,有一批产品的合格率为34,现从这批产品中任取5件,记其中合格产品的件数为ξ,则P (ξ=k )取得最大值时,k 的值为( )A .5B .4C .3D .23.甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别用A 1,A 2和A 3表示由甲罐取出的球是红球、白球和黑球的事件.再从乙罐中随机取出一球,用B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3为两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.4.(2019·石家庄模拟)某厂有4台大型机器,在一个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为13.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维护的概率不少于90%?(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的分布列.。
2020届一轮复习人教B版 12.9 独立重复试验与二项分布 学案
12.9 独立重复试验与二项分布典例精析题型一 相互独立事件同时发生的概率【例1】甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.【解析】(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件. 由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧===,92)(,121)(,41)(AC P C B P B A P 即⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-∙∙∙③.92)()(②,121)](1[)(①,41)](1[)(C P A P C P B P B P A P由①③解得P(C)=23,将P(C)=23分别代入③②可得P(A)=13,P(B)=14,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件, 则P(D)=1-P(D )=1-[1-P(A)][1-P(B)][1-P(C)]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.【点拨】相互独立事件是发生的概率互不影响的两个或多个事件.两个相互独立事件同时发生的概率满足P (AB)=P(A)P(B),对于求与“至少”、“至多”有关事件的概率,通常转化为求其对立事件的概率.【变式训练1】甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.(1)求乙至多击中目标2次的概率; (2)求甲恰好比乙多击中目标2次的概率.【解析】(1)乙至多击中目标2次的概率为1-C33(23)3=1927.(2)设甲恰比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B1,甲恰击中目标3次且乙恰击中目标1次为事件B2,则A =B1+B2,B1、B2为互斥事件.P(A)=P(B1)+P(B2)=38×127+18×29=124.所以,甲恰好比乙多击中目标2次的概率为124.题型二 独立重复试验【例2】(2018天津质检)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率. 【解析】(1)设X 为射手在5次射击中击中目标的次数,则X ~B(5,23).在5次射击中,恰有2次击中目标的概率P (X =2)=C25×(23)2×(1-23)3=40243.(2)设“第i 次射击击中目标”为事件Ai(i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P(A)=P(A1A2A34A 5A )+P(1A A2A3A45A )+P(1A 2A A3A4A5)=(23)3×(13)2+13×(23)3×13+(13)2×(23)3=881. 【点拨】独立重复试验是同一试验的n 次重复,每次试验成功的概率都相同,恰有k 次试验成功的概率为Pn(k)=Ck n pk(1-p)n -k. 【变式训练2】袋子A 中装有若干个均匀的红球和白球,从中摸出一个红球的概率是13.从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (1)求恰好摸5次停止的概率;(2)记5次之内(含5次)摸到红球的次数为ξ,求P(ξ≥2). 【解析】(1)P =C24×(13)2×(23)2×13=881.(2)P(ξ=2)=C25×(13)2×(1-13)3=80243,P(ξ=3)=C35×(13)3×(1-13)2=40243,则P(ξ≥2)=P(ξ=2)+P(ξ=3)=4081.题型三 二项分布【例3】 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率为13.(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列;(2)设Y 为这名学生在首次遇到红灯前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率. 【解析】(1)依题意知X ~B(6,13),P(X =k)=Ck 6(13)k(23)6-k ,k =0,1,2,3,4,5,6.所以X 的分布列为(2)依题意知Y 可取0,1,2,3,4,5,6, P(Y =0)=13,P(Y =1)=13×23=29,P(Y =2)=13×(23)2=427,P(Y =3)=13×(23)3=881,P(Y =4)=13×(23)4=16243,P(Y =5)=13×(23)5=32729,P(Y =6)=(23)6=64729,所以Y 的分布列为P(X≥1)=1-P(X =0)=1-(23)6=665729.【点拨】解决离散型随机变量的分布列问题时,要依据相关概念识别离散型随机变量服从什么分布,如第(1)问中X 服从二项分布,而第(2)问中并不服从二项分布.【变式训练3】某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用ξ表示这5位乘客在第20层下电梯的人数.求随机变量ξ的分布列. 【解析】方法一:ξ的所有可能值为0,1,2,3,4,5.P(ξ=0)=2535=32243,P(ξ=1)=541532C ∙=80243,P(ξ=2)=532532C ∙=80243,P(ξ=3)=523532C ∙=40243,P(ξ=4)=54532C ∙=10243,P(ξ=5)=135=1243.方法二:考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验. 故ξ~B(5,13),即有P(ξ=k)=Ck 5(13)k(23)5-k ,k =0,1,2,3,4,5.由此计算ξ的分布列如方法一. 总结提高独立重复试验是同一试验的n 次重复,每次试验结果的概率不受其他次结果的概率的影响,每次试验有两个可能结果:成功和失败.n 次试验中A 恰好出现了k 次的概率为Ck n pk(1-p)n -k ,这k 次是n 次中的任意k 次,若是指定的k 次,则概率为pk(1-p)n-k.。
独立重复试验与二项分布学案
学案5 独立重复试验与二项分布【学习目标】1、理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
2、承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值【学习重难点】独立重复试验的概念形成及二项分布的发现与应用、概率模型的识别与应用前面我们学习了互斥事件、条件概率、相互独立事件的意义,这些都是我们在具体求概率时需要考虑的一些模型,吻合模型用公式去求概率简便。
那么求概率还有什么模型呢?分析下面的试验,它们有什么共同特点?(1)投掷一个骰子投掷5次;(2)某人射击1次,击中目标的概率是0.8,他射击10次;(3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛);(4)一个盒子中装有5个球(3个红球和2个黑球),有放回地依次从中抽取5个球;(5)生产一种零件,出现次品的概率是0.04,生产这种零件4件。
基本概念1、n次独立重复试验:独立重复试验的特点:1)每次试验只有两种结果,要么发生,要么不发生;2)任何一次试验中,A事件发生的概率相同,即相互独立,互不影响试验的结果。
探究投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?2、运用n次独立重复试验模型解题例1:某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中(1)恰有8次击中目标的概率(2)至少有8次击中目标的概率.(结果保留两个有效数字)练习 已知一个射手每次击中目标的概率为53=P ,求他在三次射击中下列事件发生的概率。
(1)命中一次;(2)恰在第三次命中目标;(3)命中两次;(4)刚好在第二、第三两次击中目标。
例2 在图书室中只存放技术书和数学书,任一读者借技术书的概率为0.2,而借数学书的概率为0.8,设每人只借一本,有5名读者依次借书,求至多有2人借数学书的概率。
变式练习甲投篮的命中率为0.8,乙投篮的命中率为0.7,每人各投篮3次,每人恰好都投中2次的概率是多少?例3 实力相等的甲乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛)。
【B版】人教课标版高中数学选修2-3《独立重复试验与二项分布》教案1
2.2.3 独立重复实验与二项分布教学目标:知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。
教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
教学过程:一、复习引入:1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件。
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()P A。
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。
4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A≤≤,必然事件和不可能事件看作随机事件的两个极端情形。
5.基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件。
6.等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件。
7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n =。
8.等可能性事件的概率公式及一般求解方法。
9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的。
10.互斥事件:不可能同时发生的两个事件。
()()()P A B P A P B +=+。
一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.9 独立重复试验与二项分布
典例精析
题型一 相互独立事件同时发生的概率
【例1】甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为1
4,乙机床加工的零件是一等品而丙机床加工的零
件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为2
9.
(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
【解析】(1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件. 由题设条件有
⎪⎪⎪⎩⎪⎪⎪⎨⎧===,92)(,121)(,41)(AC P C B P B A P 即⎪⎪
⎪⎩⎪
⎪
⎪⎨⎧
==-=-∙∙∙③.92)()(②
,121)](1[)(①,41)](1[)(C P A P C P B P B P A P
由①③解得P(C)=23,将P(C)=23分别代入③②可得P(A)=13,P(B)=1
4,即甲、乙、丙三台
机床各自加工的零件是一等品的概率分别是13,14,2
3
.
(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件, 则P(D)=1-P(D )=1-[1-P(A)][1-P(B)][1-P(C)]=1-23×34×13=5
6.
故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为5
6
.
【点拨】相互独立事件是发生的概率互不影响的两个或多个事件.两个相互独立事件同时发生的概率满足P (AB)=P(A)P(B),对于求与“至少”、“至多”有关事件的概率,通常转化为求其对立事件的概率.
【变式训练1】甲、乙两人各进行3次射击,甲每次击中目标的概率为1
2,乙每次击中目标
的概率为2
3
.
(1)求乙至多击中目标2次的概率; (2)求甲恰好比乙多击中目标2次的概率.
【解析】(1)乙至多击中目标2次的概率为1-C33(23)3=19
27
.
(2)设甲恰比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B1,
甲恰击中目标3次且乙恰击中目标1次为事件B2,则A =B1+B2,B1、B2为互斥事件.
P(A)=P(B1)+P(B2)=38×127+18×29=1
24.
所以,甲恰好比乙多击中目标2次的概率为1
24.
题型二 独立重复试验
【例2】(2018天津质检)某射手每次射击击中目标的概率是2
3,且各次射击的结果互不影响.
(1)假设这名射手射击5次,求恰有2次击中目标的概率;
(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率. 【解析】(1)设X 为射手在5次射击中击中目标的次数,则X ~B(5,2
3).在5次射击中,恰有
2次击中目标的概率P (X =2)=C25×(23)2×(1-23)3=40
243
.
(2)设“第i 次射击击中目标”为事件Ai(i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目
标,另外2次未击中目标”为事件A ,则
P(A)=P(A1A2A34A 5A )+P(1A A2A3A45A )+P(1A 2A A3A4A5)=(23)3×(13)2+13×(23)3×1
3+
(13)2×(23)3=8
81
. 【点拨】独立重复试验是同一试验的n 次重复,每次试验成功的概率都相同,恰有k 次试验成功的概率为Pn(k)=Ck n pk(1-p)n -k. 【变式训练2】袋子A 中装有若干个均匀的红球和白球,从中摸出一个红球的概率是1
3.从A
中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (1)求恰好摸5次停止的概率;
(2)记5次之内(含5次)摸到红球的次数为ξ,求P(ξ≥2). 【解析】(1)P =C24×(13)2×(23)2×13=8
81.
(2)P(ξ=2)=C25×(13)2×(1-13)3=80
243,
P(ξ=3)=C35×(13)3×(1-13)2=40
243,
则P(ξ≥2)=P(ξ=2)+P(ξ=3)=40
81
.
题型三 二项分布
【例3】 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率为1
3
.
(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列;
(2)设Y 为这名学生在首次遇到红灯前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率. 【解析】(1)依题意知X ~B(6,1
3
),
P(X =k)=Ck 6(13)k(2
3)6-k ,k =0,1,2,3,4,5,6.
所以X 的分布列为
(2)依题意知Y 可取0,1,2,3,4,5,6, P(Y =0)=1
3,
P(Y =1)=13×23=2
9,
P(Y =2)=13×(23)2=4
27,
P(Y =3)=13×(23)3=8
81,
P(Y =4)=13×(23)4=16
243,
P(Y =5)=13×(23)5=32
729,
P(Y =6)=(23)6=64
729,
所以Y 的分布列为
P(X ≥1)=1-P(X =0)=1-(23)6=665
729
.
【点拨】解决离散型随机变量的分布列问题时,要依据相关概念识别离散型随机变量服从什
么分布,如第(1)问中X 服从二项分布,而第(2)问中并不服从二项分布.
【变式训练3】某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为1
3,用ξ表示这5位乘客
在第20层下电梯的人数.求随机变量ξ的分布列. 【解析】方法一:ξ的所有可能值为0,1,2,3,4,5.
P(ξ=0)=2535=32243,P(ξ=1)=5
4
1532
C ∙=80243
,
P(ξ=2)=532532C ∙=80243,P(ξ=3)=5
23532
C ∙=40243,
P(ξ=4)=5
4
532
C ∙=10243,P(ξ=5)=135=1243
.
方法二:考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验. 故ξ~B(5,1
3
),即有
P(ξ=k)=Ck 5(13)k(2
3
)5-k ,k =0,1,2,3,4,5.
由此计算ξ的分布列如方法一. 总结提高
独立重复试验是同一试验的n 次重复,每次试验结果的概率不受其他次结果的概率的影响,每次试验有两个可能结果:成功和失败.n 次试验中A 恰好出现了k 次的概率为Ck n pk(1-p)n -k ,这k 次是n 次中的任意k 次,若是指定的k 次,则概率为pk(1-p)n-k.。