人教【数学】数学平行四边形的专项培优 易错 难题练习题(含答案)附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.
(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;
②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.
(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.
(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=1
2
,求BE2+DG2的值.
【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.
【解析】
分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;
②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;
(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;
(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.
详解:(1)①BG⊥DE,BG=DE;
②∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG ≌△DCE ,
∴BG=DE ,∠CBG=∠CDE ,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG ⊥DE .
(2)∵AB=a ,BC=b ,CE=ka ,CG=kb , ∴BC CG b DC CE a
==, 又∵∠BCG=∠DCE ,
∴△BCG ∽△DCE ,
∴∠CBG=∠CDE , 又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG ⊥DE .
(3)连接BE 、DG .
根据题意,得AB=3,BC=2,CE=1.5,CG=1,
∵BG ⊥DE ,∠BCD=∠ECG=90°
∴BE 2+DG 2=BO 2+OE 2+DO 2+OG 2=BC 2+CD 2+CE 2+CG 2=9+4+2.25+1=16.25.
点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.
2.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;
(2)当∠B =70°时,求∠AEC 的度数;
(3)当△ACE 为直角三角形时,求边BC 的长.
【答案】(1)()22303y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为
2或1172+. 【解析】 试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.
(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,
∠AET =∠B =70°.
又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.
(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.
②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-,
则()22303y x x x =-++<<
(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,
∴∠AET =∠B =70°.
又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°.
(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2.
②当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-,
则2241174AD CA x x AC CB x -±=⇒=⇒=-(舍负) 易知∠ACE <90°,所以边BC 的长为
1172+. 综上所述:边BC 的长为2或117+.
点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.
3.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E ,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。

(I )若点P 落在矩形OBCD 的边OB 上,
①如图①,当点E 与点O 重合时,求点F 的坐标;
②如图②,当点E 在OB 上,点F 在DC 上时,EF 与DP 交于点G ,若7OP =,求点F 的坐标:
(Ⅱ)若点P 落在矩形OBCD 的内部,且点E ,F 分别在边OD ,边DC 上,当OP 取最小值时,求点P 的坐标(直接写出结果即可)。

【答案】(I )①点F 的坐标为(6,6);②点F 的坐标为85,614⎛⎫
⎪⎝⎭;(II )86,55P ⎛⎫ ⎪⎝⎭
【解析】
【分析】 (I )①根据折叠的性质可得45DOF POF ∴∠=∠=,再由矩形的性质,即可求出F 的坐标;
②由折叠的性质及矩形的特点,易得DGF PGE ∆≅∆,得到DF PE =,再加上平行,可以得到四边形DEPF 是平行四边形,在由对角线垂直,得出 DEPF 是菱形,设菱形的边长为x ,在Rt ODE ∆中,由勾股定理建立方程即可求解;
(Ⅱ)当O,P ,F 点共线时OP 的长度最短.
【详解】
解:(I )①∵折痕为EF,点P 为点D 的对应点
DOF POF ∴∆≅∆
45DOF POF ∴∠=∠=
∵四边形OBCD 是矩形,
90ODF ︒∴∠=
45DFO DOF ︒∴∠=∠=
6DF DO ∴==
点F 的坐标为(6,6)
②∵折痕为EF ,点P 为点D 的对应点.
,DG PG EF PD ∴=⊥
∵四边形OBCD 是矩形,
//DC OB ∴,
FDG EPG ∴∠=∠;
DGF PGE ∠=∠
DGF PGE ∴∆≅∆
DF PE ∴=
//DF PE
∴四边形DEPF 是平行四边形.
EF PD ⊥,
DEPF ∴是菱形.
设菱形的边长为x ,则DE EP x ==
7OP =,
7OE x ∴=-,
在Rt ODE ∆中,由勾股定理得222OD QB DE +=
2226(7)x x ∴+-= 解得8514
x = 8514
DF ∴= ∴点F 的坐标为85,614⎛⎫
⎪⎝⎭ (Ⅱ)86,55P ⎛⎫ ⎪⎝⎭
【点睛】
此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题.
4.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .
(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.
【答案】(1)见解析;(2)S平行四边形ADBC=
3
2

【解析】【分析】
(1)在Rt△ABC中,E为AB的中点,则CE=1
2
AB,BE=
1
2
AB,得到∠BCE=∠EBC=60°.由
△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE
=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.
(2)在Rt△ABC中,求出BC,AC即可解决问题;
【详解】
解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,
∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=1
2AB,BE=
1
2
AB,
∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,
∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又
∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S平行四边形
BCFD=3×3393,S△ACF=1
2
×3×33
3
2
,S平行四边形ADBC=
3
2

【点睛】
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
5.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.
(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为3,当
∠DOE=15°时,求线段EF的长;
(2)如图2,若Rt △PFE 的顶点P 在线段OB 上移动(不与点O 、B 重合),当BD=3BP 时,证明:PE=2PF .
【答案】(1)①证明见解析,②
22;(2)证明见解析.
【解析】
【分析】
(1)①根据正方形的性质和旋转的性质即可证得:△AOF ≌△DOE 根据全等三角形的性质证明;
②作OG ⊥AB 于G ,根据余弦的概念求出OF 的长,根据勾股定理求值即可;
(2)首先过点P 作HP ⊥BD 交AB 于点H ,根据相似三角形的判定和性质求出PE 与PF 的数量关系.
【详解】
(1)①证明:∵四边形ABCD 是正方形,
∴OA=OD ,∠OAF=∠ODE=45°,∠AOD=90°,
∴∠AOE+∠DOE=90°,
∵∠EPF=90°,
∴∠AOF+∠AOE=90°,
∴∠DOE=∠AOF ,
在△AOF 和△DOE 中,
OAF ODE OA OD
AOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩
, ∴△AOF ≌△DOE ,
∴AF=DE ;
②解:过点O 作OG ⊥AB 于G ,
∵正方形的边长为3
∴OG=12BC=3, ∵∠DOE=15°,△AOF ≌△DOE ,
∴∠AOF=15°,
∴∠FOG=45°-15°=30°,
∴OF=OG cos DOG
∠=2, ∴EF=22=22OF OE +;
(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,
则△HPB 为等腰直角三角形,∠HPD=90°,
∴HP=BP ,
∵BD=3BP ,
∴PD=2BP ,
∴PD=2HP ,
又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,
∴∠HPF=∠DPE ,
又∵∠BHP=∠EDP=45°,
∴△PHF ∽△PDE ,

12
PF PH PE PD ==, ∴PE=2PF .
【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.
6.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:
(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;
(2)如图②,当α=60°时,求点B′的坐标;
(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).
【答案】(1)(662,6)-;(2)(333,333)-+;(3)323323AP -+.
【解析】
【分析】
(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626-,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;
(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;
(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12
OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】
解:(1)∵A (﹣6,0)、C (0,6),O (0,0),
∴四边形OABC 是边长为6的正方形,
当α=45°时,
如图①,延长OA′经过点B ,
∵OB =62,OA′=OA =6,∠OBC =45°,
∴A′B =626-,
∴BD =(626-)×21262=-,
∴CD =6﹣(1262-)=626-,
∴BC 与A′B′的交点D 的坐标为(662-,6);
(2)如图②,过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,
∵∠OC′B′=90°,
∴∠OC′M =90°﹣∠B′C′N =∠C′B′N ,
∵OC′=B′C′,∠OMC′=∠C′NB′=90°,
∴△OMC′≌△C′NB′(AAS ),
当α=60°时,
∵∠A′OC′=90°,OC′=6,
∴∠C′OM =30°,
∴C′N =OM =33,B′N =C′M =3,
∴点B′的坐标为()333,333-+;
(3)如图③,连接OB ,AC 相交于点K ,
则K 是OB 的中点,
∵P 为线段BC′的中点,
∴PK =1
2OC′=3,
∴P 在以K 为圆心,3为半径的圆上运动,
∵AK =32,
∴AP 最大值为323+,AP 的最小值为323-,
∴AP 长的取值范围为323323AP -+.
【点睛】
本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.
7.如图,抛物线交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;
(2)当点D恰好落在抛物线上时,求n的值;
(3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,
n=___________.(直接写出答案)
【答案】(1), A(3,0);(2)
【解析】
试题解析:(1)把点B的坐标代入抛物线的解析式中,即可求出a的值,令y=0即可求出点A的坐标.
(2)求出点D的坐标即可求解;
(3)运用△AEB的面积为7,列式计算即可得解.
试题解析:(1)当时,
由,得(舍去),(1分)
∴A(3,0)
(2)过D作DG⊥轴于G,BH⊥轴于H.
∵CD∥AB,CD=AB
∴,
∴,

(3)
8.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.
求证:AE=AF.
【答案】见解析
【解析】
【分析】
根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,
∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得
AF=AE.
【详解】
∵AF⊥AE,
∴∠BAF+∠BAE=90°,
又∵∠DAE+∠BAE=90°,
∴∠BAF=∠DAE,
∵四边形ABCD是正方形,
∴AB=AD,∠ABF=∠ADE=90°,
在△ABF和△ADE中,

∴△ABF≌△ADE(ASA),
∴AF=AE.
【点睛】
本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.
9.如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),
∠APE=90°,且点E在BC边上,AE交BD于点F.
(1)求证:①△PAB≌△PCB;②PE=PC;
(2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;
(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.
【答案】(1)见解析;
(2);
(3)x=﹣1;四边形PAFC是菱形.
【解析】
试题分析:(1)根据四边形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根据
PB=PB,即可证出△PAB≌△PCB,
②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,从而证出PE=PC;(2)根据PA=PC,PE=PC,得出PA=PE,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求
出;
(3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB 得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案.
试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.
∵PB=PB,∴△PAB≌△PCB (SAS).
②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,
又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.
(2)在点P的运动过程中,的值不改变.
由△PAB≌△PCB可知,PA=PC.
∵PE=PC,
∴PA=PE,
又∵∠APE=90°,
∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.
(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)
=67.5°.
在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.
∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,
∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,
∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形.
考点:四边形综合题.
10.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;
(3)当∠1=∠2时,求直线PE的解析式;
(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.
【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.
【解析】
试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出
△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据
∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据
∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而
∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.
(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.
试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.
(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;
∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,
∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,
∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,
又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,
∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,
∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣
1),
∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则

解得:,∴直线PE的解析式为y=x﹣3.
(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),
∴点M坐标为(0,﹣3).
②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,
∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,
∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).综上,可得点M坐标为(0,﹣3)或(2,3).
考点:几何变换综合题.。

相关文档
最新文档