金盆岭初中2018-2019学年初中七年级上学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金盆岭初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()
A. B. C. D.
2.(2分)(2015•福建)下列各数中,绝对值最大的数是()
A. 5
B. -3
C. 0
D. -2
3.(2分)(2015•河池)﹣3的绝对值是()
A. -3
B.
C.
D. 3
4.(2分)(2015•来宾)来宾市辖区面积约为13400平方千米,这一数字用科学记数法表示为()A. 1.34×102 B. 1.34×103 C. 1.34×104 D. 1.34×105
5.(2分)(2015•淄博)从1开始得到如下的一列数:
1,2,4,8,16,22,24,28,…
其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()
A. 21
B. 22
C. 23
D. 99
6.(2分)(2015•常州)﹣3的绝对值是()
A. 3
B. -3
C.
D. -
7.(2分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()
A. 2.78×106
B. 27.8×106
C. 2.78×105
D. 27.8×105
8.(2分)(2015•贵阳)计算:﹣3+4的结果等于()
A. 7
B. -7
C. 1
D. -1
9.(2分)(2015•无锡)﹣3的倒数是()
A. 3
B. ±3
C.
D. -
10.(2分)(2015•巴彦淖尔)﹣3的绝对值是()
A. ﹣3
B. 3
C. ﹣3﹣1
D. 3﹣1
二、填空题
11.(2分)(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是________ ,并运用这个公式求得图2中多边形的面积是________ .

12.(1分)(2015•资阳)太阳半径大约是696 000千米,用科学记数法表示为________ 米.
13.(1分)(2015•湘西州)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为________ .
14.(1分)(2015•湖州)计算:23×()2=________ .
15.(1分)(2015•呼伦贝尔)中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为 ________。

16.(1分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为________ .
三、解答题
17.(12分)已知,数轴上点A和点B所对应的数分别为,点P 为数轴上一动点,其对应的数为.
(1)填空:________ ,________ .
(2)若点P到点A、点B 的距离相等,求点P 对应的数.
(3)现在点A、点B分别以2 个单位长度/秒和0.5 个单位长度/秒的速度同时向右运动,点P以3 个单位长度/秒的速度同时从原点向左运动.当点A与点B之间的距离为2个单位长度时,求点P所对应的数是多少?
18.(10分)某同学做一道数学题,已知两个多项式A、B,B=3x2y-5xy+x+7,试求A+B,这位同学把A+B看成A-B,结果求出的答案为6x2y+12xy-2x-9
(1)请你替这位同学求出的正确答案;
(2)当x取任意数值,A-3B的值是一个定值,求y的值.
19.(12分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B
两点之间的距离AB=.
利用数轴,根据数形结合思想,回答下列问题:
(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和的两点之间的距离为________
(2)数轴上表示和1两点之间的距离为________,数轴上表示和两点之间的距离为________
(3)若表示一个实数,且,化简,
(4)的最小值为________,
的最小值为________.
(5)的最大值为________
20.(3分)数轴上点对应的数为,点对应的数为,点为数轴上一动点.
(1)AB的距离是________.
(2)①若点到点的距离比到点的距离大1,点对应的数为________.
(3)当点以每秒钟个单位长度从原点向右运动时,点以每秒钟个单位长度的速度从点向左
运动,点以每秒钟个单位长度的速度从点向右运动,问它们同时出发________秒钟时,(直
接写出答案即可).
21.(10分)当,,时,求下列代数式的值:
(1)
(2)
22.(20分)下列方程的变形是否正确?为什么?
(1)由3+x=5,得x=5+3.
(2)由7x=﹣4,得x= .
(3)由,得y=2.
(4)由3=x﹣2,得x=﹣2﹣3.
23.(12分)【新知理解】
如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,则AB=________;
(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)
(3)【解决问题】
如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
若点M、N是线段OC的圆周率点,求MN的长;
(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
24.(10分)已知,.
(1)求3A+6B;
(2)若3A+6B的值与无关,求的值.
25.(10分)元旦假期将至,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).(1)当x=400时,顾客到哪家超市购物优惠.
(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.
金盆岭初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)
一、选择题
1.【答案】A
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】39 400≈3.9×104.故选A.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39400有5位,所以可以确定n=5﹣1=4,由于结果保留2个有效数字,所以a=3.9.
2.【答案】A
【考点】绝对值,有理数大小比较
【解析】【解答】解:|5|=5,|﹣3|=3,|0|=0,|﹣2|=2,
∵5>3>2>0,
∴绝对值最大的数是5,
故选:A.
【分析】根据绝对值的概念,可得出距离原点越远,绝对值越大,可直接得出答案.
3.【答案】D
【考点】绝对值及有理数的绝对值
【解析】【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,
∴|﹣3|=3,
故选D.
【分析】根据绝对值的定义直接解答即可.
4.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:13400=1.34×104,
故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于13400有5位,所以可以确定n=5﹣1=4.
5.【答案】A
【考点】探索数与式的规律
【解析】【解答】解:由题意知:1,2,4,8,16,22,24,28,…
由此可知,每4个数一组,
后面依次为36,42,44,48,56,62,64,68,76,82,84,88,96,
故小于100的个数为:21个,
故选A.
【分析】根据数字的变化,找出规律,每4个数一组,每一组数的首数字为1,16,36,56,76,96,由此可得结果.
6.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】|﹣3|=﹣(﹣3)=3.
故选:A.
【分析】根据一个负数的绝对值等于它的相反数得出.
7.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将27.8万用科学记数法表示为2.78×105.
故选:C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
8.【答案】C
【考点】有理数的加法
【解析】【解答】﹣3+4=1.
故选:C.
【分析】利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.
9.【答案】D
【考点】倒数
【解析】【解答】﹣3的倒数是-,
故选D
【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
10.【答案】B
【考点】绝对值及有理数的绝对值
【解析】【解答】﹣3的绝对值是3,
故选B.
【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.
二、填空题
11.【答案】a;17.5
【考点】探索图形规律
【解析】【解答】解:如图1,
∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;
矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;
∴公式中表示多边形内部整点个数的字母是a;
图2中,a=15,b=7,故S=15+﹣1=17.5.
故答案为:a,17.5.
【分析】分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.
12.【答案】6.96×108
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:696 000千米=696 000 000米=6.96×108米.
【分析】先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
13.【答案】5.4×106
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将5400000用科学记数法表示为:5.4×106.
故答案为:5.4×106.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成
a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
14.【答案】2
【考点】有理数的乘法,有理数的乘方
【解析】【解答】解:23×()2=8×=2,
故答案为:2.
【分析】根据有理数的乘方,即可解答.
15.【答案】9.6×106
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将9600000用科学记数法表示为9.6×106.
故答案为9.6×106.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
16.【答案】3.65×108
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将365000000用科学记数法表示为3.65×108.
故答案为:3.65×108.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
三、解答题
17.【答案】(1)-1;3
(2)解:依题可得:
PA=|x+1|,PB=|3-x|,
∵点P到点A、点B的距离相等,
∴PA=PB,
即|x+1|=|3-x|,
解得:x=1,
∴点P对应的数为1.
(3)解:∵点A、点B 速度分别以2 个单位长度/秒、0.5 个单位长度/秒的速度同时向右运动,
∴A点对应的数为2t-1,
点B对应的数为3+0.5t,
①当点A在点B左边时,
∵AB=2,
∴(3+0.5t)-(2t-1)=2,
解得:t=,
∵点P以3 个单位长度/秒的速度同时从原点向左运动,
∴×3=4,
∴P点对应的数为:-4.
②当点A在点B右边时,
∵AB=2,
∴(2t-1)-(3+0.5t)=2,
解得:t=4,
∵点P以3 个单位长度/秒的速度同时从原点向左运动,
∴4×3=12,
∴P点对应的数为:-12.
【考点】数轴及有理数在数轴上的表示,一元一次方程的其他应用,两点间的距离
【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,
∴,
解得:.
故答案为:-2;3.
【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.
(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.
(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P点的速度得出点P对应的数. 18.【答案】(1)解:由题意可知:A=6x2y+12xy-2x-9+(3x2y-5xy+x+7)
=6x2y+12xy-2x-9+3x2y-5xy+x+7
=9x2y+7xy-x-2.
∴A+B=9x2y+7xy-x-2+(3x2y-5xy+x+7)
=9x2y+7xy-x-2+3x2y-5xy+x+7
=12 x2y+2xy+5.
(2)解:A-3B=9x2y+7xy-x-2-3(3x2y-5xy+x+7)
=9x2y+7xy-x-2-9x2y+15xy-3x-21
=22xy-4x-23
=(22y-4)x-23.
∵当x取任意数值,A-3B的值是一个定值,
∴22y-4=0.
解得:.
【考点】整式的加减运算
【解析】【分析】(1)先由A-B= 6x2y+12xy-2x-9 ,列式求出A的值,再求出A+B的值即可。

(2)根据A-3B。

列式计算,先化简求出结果为(22y-4)x-23.,再由当x取任意数值,A-3B的值是一个定值,可得出这个定值是-23,因此可得出22y-4=0,解方程求出y的值。

19.【答案】(1)4;3
(2);
(3)8
(4)7;6
(5)4
【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值,整式的加减运算
【解析】【解答】解:(1)数轴上表示2和6两点之间的距离,
数轴上表示1和的两点之间的距离;
(2 )数轴上表示和1两点之间的距离,
数轴上表示和两点之间的距离;
(3 )∵,
∴;
(4 )∵的几何意义为到-3与到4的距离和,
∴取最小值时,在-3与4之间,即最小值,
同理可得的最小值为6;
(5 )∵取最大值时,最小,
∴,,
∴最大值.
【分析】(1)(2)根据数轴上表示的任意两点间的距离等于这两个点所表示的数的差的绝对值即可得出答案;(3)根据x的取值范围,根据有理数的减法法则判断出绝对值符号里面运算结果的正负,再根据绝对值的意义去掉绝对值符号,再合并同类项即可;
(4)根据题意表示x与-3距离和x与4的距离的和,要求距离和的最小值,根据两点之间距离最短从而得出当x介于-3 与4之间的任意一个位置的时候,其和就是最短的,根据有理数的减法法则判断出绝对值符号里面运算结果的正负,再根据绝对值的意义去掉绝对值符号即可;同理算出
的最小值;
(5)取最大值时,最小,根据绝对值的非负性即可得出,,从而代入
即可算出答案。

20.【答案】(1)6
(2)1.5
②若点其对应的数为,数轴上是否存在点,使点到点,点的距离之和为8?若存在,请求出
的值;若不存在,请说明理由.
解:若点在点的左边,
若点在点的右边,
(3)2
【考点】数轴及有理数在数轴上的表示
【解析】【解答】解:(1)|AB|=|-2-4|=6;
(2 )①设点P表示的数为x,根据题意得,
|x+2|-|4-x|=1,
当x<-2时,方程无解;
当-2≤x<4时,原方程可化为,x+2-4+x=1,解得,x=1.5;
当x≥4时,方程无解.
(3 )设t分钟点P到点M,点N的距离相等,
根据题意得,2t+2+t=4-t +3t,
解得:t=2,
答:2分钟点P到点M,点N的距离相等.
【分析】(1)由数轴易求出;
(2)①由数轴易求出;②此题分两种情况当点P在B的右边时;当点P在B的左边时,分别列出方程求解即可;
(3)设t分钟点P到点M,点N的距离相等,根据题意列方程即可得到结论.
21.【答案】(1)解:当a=3,b=-1,c=-2时
原式=(-1)2-4×3×(-2)
=1+24
=25
(2)解:当a=3,b=-1,c=-2时
原式=32-2×3×(-1)+(-1)2
=9+6+1
=16
【考点】代数式求值,含乘方的有理数混合运算
【解析】【分析】(1)将a、b、c的值代入代数式,再计算可求解。

(2)将a、b、c的值代入代数式,再利用有理数的混合运算法则计算可求值。

22.【答案】(1)解:由3+x=5,得x=5+3,变形不正确,
∵方程左边减3,方程的右边加3,
∴变形不正确
(2)解:由7x=﹣4,得x= ,变形不正确,
∵左边除以7,右边乘,
∴变形不正确
(3)解:由,得y=2,变形不正确,
∵左边乘2,右边加2,
∴变形不正确
(4)解:由3=x﹣2,得x=﹣2﹣3,变形不正确,
∵左边加x减3,右边减x减3,
∴变形不正确.
【考点】等式的性质
【解析】【分析】(1)根据等式的性质,方程的两边需要加上或减去同一个数,等式才会成立,而此方程变形的时候左边减3,方程的右边加3,故变形不正确;
(2)根据等式的性质,方程的两边都需要乘以或除以(除数不能为0)同一个数,等式才会成立,而此方程
变形的时候左边除以7,右边乘,故变形不正确;
(3)根据等式的性质,方程的两边都需要乘以或除以(除数不能为0)或加上同一个数,等式才会成立,而此方程变形的时候左边乘以2,,右边加2,故变形不正确;
(4)根据等式的性质,方程的两边都需要加上同一个整式,等式才会成立,而此方程变形的时候左边加x 减3,右边减x减3,故变形不正确。

23.【答案】(1)3+3
(2)=
(3)解:∵d=1,
∴c=d=,
∴C点表示的数为:+1,
∵M、N都是线段OC的圆周率点,
设点M离O点近,且OM=x,则CM=x,
∵OC=OM+ MC,
∴+1=x+x,
解得:x=1,
∴OM=CN=1,
∴MN=OC-OM-CN=+1-1-1=-1.
(4)解:设点D表示的数为x,则OD=x,
①若CD=OD,如图1,
∵OC=OD+CD,
∴+1=x+x,
解得:x=1,
∴点D表示的数为1;
②若OD=CD,如图2,
∵OC=OD+CD,
∴+1=x+,
解得:x=,
∴点D表示的数为;
③若OC=CD,如图3,
∵CD=OD-OC=x--1,
∴+1=(x--1),
解得:x=++1,
∴点D表示的数为++1;
④若CD=OC,如图4,
∵CD=OD-OC=x--1,
∴x--1=(+1),
解得:x=2+2+1,
∴点D表示的数为2+2+1;
综上所述:点D表示的数为:1、、++1、2+2+1.
【考点】数轴及有理数在数轴上的表示,一元一次方程的其他应用,定义新运算
【解析】【解答】解:(1)∵AC=3,BC=AC,
∴BC=3
∴AB=AC+CB=3+3.
故答案为:3+3.
(2)∵点D、C都是线段AB的圆周率点且不重合,
∴BC=AC,AD=BD,
设AC=x,BD=y,则BC=x,AD=y,
∵AB=AC+CB=AD+DB,
∴x+x=y+y,
∴x=y,
∴AC=BD.
故答案为:=.
【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.
(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.
(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得. (4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.
24.【答案】(1)解:3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)
=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6
=15xy﹣6x﹣9
(2)解:原式=15xy﹣6x﹣9=(15y﹣6)x﹣9
要使原式的值与x无关,则15y﹣6=0,
解得:y=
【考点】整式的加减运算,一元一次方程的其他应用
【解析】【分析】(1)分别将A、B代入3A+6B,再利用去括号法则,去括号(括号前的数要与括号里的每一项相乘),再合并同类项。

将结果化成最简。

(2)由3A+6B的值与x无关,可将化简后的代数式转化为(15y﹣6)x﹣9,就可得出15y-6=0,解方程求出y的值。

25.【答案】(1)解:依题可得:
在甲超市购物所需费用为:300+(x-300)×0.8=0.8x+60(元),
在乙超市购物所需费用为:200+(x-200)×0.85=0.85x+30(元),
∵x=400,
∴在甲超市购物所需费用为:0.8x+60=0.8×400+60=380(元),
在乙超市购物所需费用为:0.85x+30=0.85×400+30=370(元),
∵370<380,
∴在乙超市购物更优惠.
(2)解:由(1)可得:
0.8x+60=0.85x+30,
解得:x=600.
答:当x=600时,顾客到这两家超市购物实际支付的钱数相同.
【考点】代数式求值,用字母表示数,一元一次方程的实际应用-方案选择问题
【解析】【分析】(1)根据题意分别列出在甲、乙超市购物所需费用的代数式,再将x=400代入、计算、比较大小,即可得出答案.
(2)将(1)中甲、乙超市费用的代数式相等,解之即可得出答案.。

相关文档
最新文档