成都市七年级数学下册期末测试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市七年级数学下册期末测试卷及答案
一、选择题
1.对于算式20203﹣2020,下列说法错误的是( ) A .能被2019整除
B .能被2020整除
C .能被2021整除
D .能被2022整除
2.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则
EFD ∠ 的度数为( )
A .80°
B .60°
C .40°
D .20°
3.下列图形可由平移得到的是( )
A .
B .
C .
D .
4.若一个多边形的每个内角都为108°,则它的边数为( ) A .5
B .8
C .6
D .10
5.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( ) A .4
49x y y x y x
-=+⎧⎨
-=+⎩
B .4
49x y y x y x -=+⎧⎨
-=-⎩
C .4
49x y y x y x
-=-⎧⎨
-=+⎩
D .4
49x y y x y x
-=-⎧⎨
-=-⎩
6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502
115900.9
x y x y +=+⎧⎨
+=⨯⎩
B .53502
115900.9x y x y +=+⎧⎨
+=÷⎩
C .53502
115900.9
x y x y +=-⎧⎨
+=⨯⎩
D .53502
115900.9
x y x y +=+⎧⎨
+=⨯⎩
7.已知,()()2
12x x x mx n +-=++,则m n +的值为( ) A .3-
B .1-
C .1
D .3
8.若关于x 的不等式组20
34x x a x
-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程
21
236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .6
9.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )
A .3
B .4
C .5
D .6
10.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )
A .115°
B .130°
C .135°
D .150°
二、填空题
11.分解因式:m 2﹣9=_____.
12.根据不等式有基本性质,将()23m x -<变形为3
2
x m >-,则m 的取值范围是__________.
13.如果9-mx +x 2是一个完全平方式,则m 的值为__________. 14.若29x kx -+是完全平方式,则k =_____. 15.计算:5-2=(____________)
16.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.
17.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.
18.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则
1234∠+∠+∠+∠=_______°.
19.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为_______. 20.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.
三、解答题
21.计算:(1)2
201
(2)
3()3
----÷- (2)22(21)(21)x x -+
22.装饰公司为小明家设计电视背景墙时需要A 、B 型板材若干块,A 型板材规格是a ⨯b ,B 型板材规格是b ⨯b .现只能购得规格是150⨯b 的标准板材.(单位:cm )
(1)若设a =60cm ,b =30cm .一张标准板材尽可能多的裁出A 型、B 型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.
裁法一 裁法二 裁法三 A 型板材块数 1 2 0 B 型板材块数
3
m
n
则上表中, m =___________, n =__________;
(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;
(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)
23.同一平面内的两条直线有相交和平行两种位置关系.
(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线
PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则
BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.
(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.
(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.
24.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高. (1)若∠B =35°,∠C =75°,求∠DAE 的度数;
(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).
25.计算: (1)2
01()
2016|5|2
----;
(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.
26.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .
(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .
(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.
27.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,
12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:
()1//AD BC ;
()2BC 平分DBE ∠.
28.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【详解】 解:20203﹣2020 =2020×(20202﹣1) =2020×(2020+1)×(2020﹣1) =2020×2021×2019,
故能被2020、2021、2019整除, 故选:D .
2.C
解析:C
连接FB ,根据三角形内角和和外角知识,进行角度计算即可. 【详解】 解:如图连接FB ,
∵AEF AFE ∠=∠,CFD CDF ∠=∠,
∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠ ∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠, 即AFE CFD EFD EBD ∠+∠=∠+∠, 又∵180AFE EFD DFC ∠+∠+∠=︒, ∴2180EFD EBD ∠+∠=︒, ∵100ABC ∠=︒, ∴180100=402
EFD ︒-︒
∠=︒, 故选:C . 【点睛】
此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.
3.A
解析:A 【详解】
解:观察可知A 选项中的图形可以通过平移得到, B 、C 选项中的图形需要通过旋转得到, D 选项中的图形可以通过翻折得到, 故选:A
4.A
解析:A 【解析】
已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.
5.D
解析:D
根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】
解:老师今年x 岁,小红今年y 岁,可得:449
x y y x
y
x
,
故选:D . 【点睛】
此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.
6.B
解析:B 【解析】 【分析】
设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】
设馒头每个x 元,包子每个y 元,根据题意可得:
53502
115900.9
x y x y +=+⎧⎨
+=÷⎩, 故选B . 【点睛】
本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.
7.A
解析:A 【解析】 【分析】
根据多项式的乘法法则即可化简求解. 【详解】
∵()()2
2
12222x x x x x x x +-=-+-=--
∴m=-1,n=-2, 故m n +=-3 故选A. 【点睛】
此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.
8.C
解析:C 【分析】
先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和. 【详解】
解:解不等式20
34x x a x -<⎧⎨+>-⎩
得:
4
4
a -<x <2, ∵不等式组恰好只有2个整数解, ∴-1≤
4
4
a -<0, ∴0≤a <4; 解方程21
236
x a a x +++=+得: x=
52a -, ∵方程的解为非负整数, ∴
52
a
-≥0, ∴a ≤5, 又∵0≤a <4, ∴a=1, 3, ∴1+3=4,
∴所有满足条件的整数a 的值之和为4. 故选:C . 【点睛】
本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.
9.B
解析:B 【解析】
分析:推出DF ∥CE ,推出∠FDB=∠ECB ,∠EDF=∠CED ,根据DE ∥AC 推出∠ACE=∠DEC ,根据角平分线得出∠ACE=∠ECB ,即可推出答案. 详解:∵CE ⊥AB ,DF ⊥AB , ∴DF ∥CE , ∴∠ECB =∠FDB , ∵CE 是∠ACB 的平分线, ∴∠ACE =∠ECB , ∴∠ACE =∠FDB , ∵AC ∥DE ,
∴∠ACE =∠DEC =∠FDB , ∵DF ∥CE ,
∴∠DEC =∠EDF =∠FDB ,
即与∠FDB 相等的角有∠ECB 、∠ACE 、∠CED 、∠EDF ,共4个, 故选B.
点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.
10.A
解析:A 【分析】
先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论. 【详解】
解:∵∠1+∠2=130°,
∴∠AMN +∠DNM =3601302
︒︒
-=115°.
∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°, ∴∠B +∠C =∠AMN +∠DNM =115°. 故选:A . 【点睛】
本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.
二、填空题
11.(m+3)(m ﹣3) 【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b )(a ﹣b ). 【详解】 解:m2﹣9 =m2﹣32
=(m+3)(m ﹣3). 故答案为
解析:(m +3)(m ﹣3) 【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a 2﹣b 2=(a +b )(a ﹣b ). 【详解】
解:m2﹣9
=m2﹣32
=(m+3)(m﹣3).
故答案为:(m+3)(m﹣3).
【点睛】
此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.
12.m<2
【分析】
根据不等式的性质即可求解.
【详解】
依题意得m-2<0
解得m<2
故答案为:m<2.
【点睛】
此题主要考查不等式的求解,解题的关键是熟知不等式的性质.
解析:m<2
【分析】
根据不等式的性质即可求解.
【详解】
依题意得m-2<0
解得m<2
故答案为:m<2.
【点睛】
此题主要考查不等式的求解,解题的关键是熟知不等式的性质.
13.±6
【分析】
如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.
【详解】
解:∵9-mx+x2是一个完全平方式,
∴方程9-mx
解析:±6
【分析】
如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.
【详解】
解:∵9-mx+x2是一个完全平方式,
∴方程9-mx+x 2=0对应的判别式△=0,
因此得到:m 2-36=0,
解得:m=±6,
故答案为:±6.
【点睛】
本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.
14.【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .
【详解】
解:∵是完全平方式,即
.
故答案为:.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式
解析:6±
【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .
【详解】
解:∵29x kx -+是完全平方式,即()2
293x kx x -+=± 236k ∴=±⨯=±.
故答案为:6±.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键
15.【分析】
直接根据负整数指数幂的运算法则求解即可.
【详解】
,
故答案为:.
【点睛】
本题考查了负整数指数幂的运算法则,比较简单. 解析:125
【分析】
直接根据负整数指数幂的运算法则求解即可.
【详解】
22115525
-==, 故答案为:
125. 【点睛】
本题考查了负整数指数幂的运算法则,比较简单.
16.6
【分析】
设这个多边形的边数是n ,重复计算的内角的度数是x ,根据多边形的内角和公式(n ﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解
【详解】
解:设这个多边
解析:6
【分析】
设这个多边形的边数是n ,重复计算的内角的度数是x ,根据多边形的内角和公式(n ﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解
【详解】
解:设这个多边形的边数是n ,重复计算的内角的度数是x ,
则(n ﹣2)•180°=840°﹣x ,
n =6…120°,
∴这个多边形的边数是6,
故答案为:6.
【点睛】
本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.
17.5
【分析】
根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.
【详解】
解:在样本数据中最大值为35,最小值为15,它们的差是,
已知组距为4,那么由于,故可以分成5组.
故答案为:
解析:5
【分析】
根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.
【详解】
解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,
已知组距为4,那么由于
2054
=,故可以分成5组. 故答案为:5.
【点睛】
本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可. 18.【详解】
解:由题意得,∠A 的外角=180°-∠A=60°,
又∵多边形的外角和为360°,
∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.
故答案为:300.
【点睛】
本题考查多边
解析:300
【详解】
解:由题意得,∠A 的外角=180°-∠A=60°,
又∵多边形的外角和为360°,
∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.
故答案为:300.
【点睛】
本题考查多边形外角性质,补角定义.
19.【分析】
根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.
【详解】
解:∵,
故答案为.
【点睛】
本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯
【分析】
根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.
【详解】
解:∵5384000=3.8410⨯,
故答案为53.8410⨯.
【点睛】
本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.
20.12
【分析】
对所求代数式运用平方差公式进行因式分解,然后整体代入求值.
【详解】
解:∵a+b=4,a ﹣b =1,
∴(a+1)2﹣(b ﹣1)2
=(a+1+b ﹣1)(a+1﹣b+1)
=(a+b
解析:12
【分析】
对所求代数式运用平方差公式进行因式分解,然后整体代入求值.
【详解】
解:∵a+b =4,a ﹣b =1,
∴(a+1)2﹣(b ﹣1)2
=(a+1+b ﹣1)(a+1﹣b+1)
=(a+b )(a ﹣b+2)
=4×(1+2)
=12.
故答案是:12.
【点睛】
本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.
三、解答题
21.(1)374-
.(2)16x 4−8x 2+1. 【分析】
(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914-
-÷,再计算即可得到结果;
(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.
【详解】
(1)2201(2)3()3----÷-= 1914--÷=374
-.
(2)原式=[(2x−1)(2x+1)]2=(4x2−1)2=16x4−8x2+1.
【点睛】
本题考查零指数幂、负整数指数幂、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.
22.(1)m=1,n=5;(2)(a+2b)2=a2+4ab+4b2;(3)2a2+5ab+3b2=(a+b)(2a+3b),详见解析
【分析】
(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;
(2)看图即可得出所求的式子;
(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.
【详解】
(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;
∴m=1,n=5.
故答案为:1,5;
(2)如下图:
发现的等式为:(a+2b)2=a2+4ab+4b2;
故答案为:(a+2b)2=a2+4ab+4b2.
(3)按题意画图如下:
∵构成的长方形面积等于所给图片的面积之和,
∴2a2+5ab+3b2=(a+b)(2a+3b).
【点睛】
本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.
23.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,
∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.
【分析】
(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出
∠BPD=∠B+∠D;
(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;
(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出
∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由
∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,
∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.
【详解】
解(1)∵AB∥CD∥PE,
∴∠B=∠BPE,∠D=∠DPE,
∵∠BPE=∠BPD+∠DPE,
∴∠BPD=∠B-∠D,
故答案为:∠BPD=∠B-∠D;
将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,
∠BPD=∠B+∠D,理由如下:
延长BP交DC于M,如图b所示:
∵AB∥CD,
∴∠B=∠BMD,
∵∠BPD=∠BMD+∠D,
∴∠BPD=∠B+∠D;
(2)∵A′B∥CD,
∴∠A′BQ=∠BQD,
同(1)得:∠BPD=∠A′BP+∠D,
∴∠BPD=∠ABP+∠D+∠BQD,
故答案为:∠BPD=∠ABP+∠D+∠BQD;
(3)过点E作EN∥BF,如图d所示:
则∠B=∠BEN,
同(1)得:∠FQE=∠F+∠QEN,
∴∠EQF=∠B+∠E+∠F,
∵∠AQF=100°,
∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,
∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;
∵∠AMP=∠FMQ,
∴126°-∠A=80°-∠F,
∴∠A-∠F=46°,
故答案为:80,46.
【点睛】
本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.
24.(1)20°;(2)11 22 n m
【分析】
(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.
【详解】
解:(1)∵∠B=35°,∠C=75°,
∴∠BAC=180°﹣35°﹣75°=70°,
∵AE平分∠BAC,
∴∠CAE=1
2
∠CAB=35°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠DAC=90°﹣75°=15°,
∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,
∴∠BAC=180°﹣m°﹣n°,
∵AE平分∠BAC,
∴∠CAE=1
2
∠CAB=90°﹣(
1
2
m)°﹣(
1
2
n)°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠DAC=90°﹣n°,
∴∠DAE=∠EAC﹣∠DAC=(1
2
n﹣
1
2
m)°,
故答案为:(12n ﹣12
m ). 【点睛】 本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
25.(1)﹣2;(2)7a 4+4a 6+a 2.
【分析】
(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案;
(2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.
【详解】
解:(1)201()
2016|5|2----
=4﹣1﹣5
=﹣2;
(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2
=9a 4﹣2a 4+4a 6+a 2
=7a 4+4a 6+a 2.
【点睛】
本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.
26.(1)见解析;(2)见解析;(3)见解析.
【分析】
(1)根据三角形高的定义求解可得;
(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;
(3)计算得出格点△ABC 的面积是3,得出格点△ABP 的面积为6,据此画出格点△ABP 即可.
【详解】
解:(1)如图所示,
(2)如图所示;
(3)S△ABC=1
323 2
⨯⨯=
S△ABP=2S△ABC=6
画格点△ABP如图所示,(答案不唯一).
【点睛】
本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.
27.(1)见解析;(2)见解析.
【解析】
【分析】
()1求出1BDC
∠=∠,根据平行线的判定得出//
AB CF,根据平行线的性质得出
C EBC
∠=∠,求出A EBC
∠=∠,根据平行线的判定得出即可;
()2根据角平分线定义求出FDA ADB
∠=∠,根据平行线的性质得出FDA C
∠=∠,ADB DBC
∠=∠,C EBC
∠=∠,求出EBC DBC
∠=∠即可.
【详解】
()12180
BDC
∠+∠=,12180
∠+∠=,
1BDC
∴∠=∠,
//
AB CF
∴,
C EBC
∴∠=∠,
A C
∠=∠,
A EBC
∴∠=∠,
//
AD BC
∴;
()2AD平分BDF
∠,
FDA ADB
∴∠=∠,
//
AD BC,
FDA C
∴∠=∠,ADB DBC
∠=∠,
C EBC
∠=∠,
EBC DBC
∴∠=∠,
BC
∴平分DBE
∠.
【点睛】
本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
28.2辆大货车与1辆小货车可以一次运货11吨
【分析】
设1辆大货车一次运货x吨,1辆小货车一次运货y吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x,y的
二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.
【详解】
设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨
由题意得:32175429x y x y +=⎧⎨+=⎩
解得:51x y =⎧⎨=⎩
则225111x y +=⨯+=
答:2辆大货车与1辆小货车可以一次运货11吨.
【点睛】
本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.。