高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)
一、带电粒子在磁场中的运动专项训练
1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).
(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;
(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);
(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .
【答案】(1)01
52
mv B ql = (2)2
058mv l Q kq = (3)0253mv B ql π= 2
20(23)9mv E ql
ππ-=
【解析】 【分析】 【详解】
(1)粒子从P 到A 的轨迹如图所示:
粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25
r l l α=
= 由洛伦兹力提供向心力可得2
011
v qv B m r =
解得:
0 1
5
2
mv B
ql
=
(2)粒子从P到A的轨迹如图所示:
粒子绕负点电荷Q做匀速圆周运动,设半径为r2
由几何关系得
2
5
2cos8
l
r l
α
==
由库仑力提供向心力得
2
2
22
v
Qq
k m
r r
=
解得:
2
5
8
mv l
Q
kq
=
(3)粒子从P到A的轨迹如图所示:
粒子在磁场中做匀速圆周运动,在电场中做类平抛运动
粒子在电场中的运动时间
00
sin3
5
l l
t
v v
α
==
根据题意得,粒子在磁场中运动时间也为t,则
2
T
t=

2
2m
T
qB
π
=
解得0
2
5
3
mv
B
ql
π
=
设粒子在磁场中做圆周运动的半径为r,则0v t r
π
=
解得:35l r π
=
粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t m
α-=
⋅ 解得:2
20(23)9mv E ql
ππ-=
2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为
03mv qB ,虚线MN 右侧电场强度为3mg
q
,重力加速度为g .求:
(1)MN 左侧区域内电场强度的大小和方向;
(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;
(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .
【答案】(1)
mg
q
,方向竖直向上;(2);(3013v .
【解析】 【详解】
(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mg
E q
左=
,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:20
0mv Bv q R
=,
所以轨道半径0
mv R qB
=
; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有0
33AO mv d R qB
=
=;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AO
d arcsin R
θ==︒
; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:

(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度
003
60y v v sin =︒=
,水平分速度001602x v v cos v =︒=;
质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间0
23y v v t g
g
=
=
; 所以质点在P 点的竖直分速度03
yP y v v ==, 水平分速度00031
7322
xP x v qE v v t v g v m g =+
=⋅=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度
22
013P yP xP v v v v =+=;
3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为
26qB L
m
;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A
发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.
(1)求碰撞后A 球的速度大小;
(2)若A 从ed 边离开磁场,求k 的最大值;
(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或1
3
k =;32m t qB π=
【解析】 【分析】 【详解】
(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m
= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222
kmv kmv mv =+ 解得:A 21k qBL v k m
=
⋅+
(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2
A A mv qv
B R
= 解得:21
k
R L k =
+ 由公式可得R 越大,k 值越大
如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =
(3)令z 点为ed 边的中点,分类讨论如下:
(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有
222()(1.5)2
L
R L R =+-
解得:56
L R = 由21k R L k =
+可得:5
7
k =
(II )由图可知A 球能从z 点离开磁场要满足2
L
R ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.
如图3和如图4,由几何关系有:2
2
23()(3)2
2
L R R L =+- 解得:58L R =或2
L R = 由21k R L k =
+可得:511k =或13
k = 球A 在电场中克服电场力做功的最大值为222
6m q B L W m
=
当511k =时,A 58qBL v m =,由于2222222
A 12521286q
B L q B L mv m m ⋅=>
当13k =时,A 2qBL v m =,由于2222222
A 1286q
B L q B L mv m m
⋅=<
综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =
或1
3
k =
A球在磁场中运动周期为
2m T
qB
π
=

1
3
k=时,如图4,A球在磁场中运动的最长时间
3
4
t T
=

3
2
m
t
qB
π
=
4.如图,区域I内有与水平方向成45°角的匀强电场1E,区域宽度为1d,区域Ⅱ内有正交的有界匀强磁场B和匀强电场2
E,区域宽度为
2
d,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m、电量大小为q的微粒在区域I左边界的P点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q点穿出,其速度方向改变了30,重力加速度为g,求:
(1)区域I和区域Ⅱ内匀强电场的电场强度12
E E
、的大小.
(2)区域Ⅱ内匀强磁场的磁感应强度B的大小.
(3)微粒从P运动到Q的时间有多长.
【答案】(1)
1
2mg
E=2
mg
E
q
=1
2
2
m gd12
1
6
2
6
d d
gd
gd
π
+
【解析】
【详解】
(1)微粒在区域I内水平向右做直线运动,则在竖直方向上有:1sin45
qE mg
︒=
求得:
1
2mg
E=
微粒在区域II内做匀速圆周运动,则重力和电场力平衡,有:2
mg qE
=
求得:2
mg
E
q
=
(2)粒子进入磁场区域时满足:2
11
1
cos45
2
qE d mv
︒=
2
v
qvB m
R
=
根据几何关系,分析可知:2
2
2
sin30
d
R d
==

整理得:1
2
2m gd B
=
(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:
2
11112
a t d = 1tan45mg ma ︒=
2302360R
t v
π︒=
⨯︒ 经整理得:112
121222612126gd d d d t t t gd g gd ππ+=+=
+⨯=
5.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;
(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.
【答案】(1)Bvd (2)Bb π
(3)3B 2d 2
b <U <221458
B d b
【解析】 【详解】
(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee
因为正电子的比荷是b ,有 E=
U d
联立解得:
u Bvd =
(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。

4
T t =
m t =2t
2
111
v ev B m R =
T =
122R m
v Be
=ππ 联立解得:t Bb
π
=
(3)临界态1:正电子恰好越过分界线ef ,需满足 轨迹半径R 1=3d
1ev B =m 2
11
v R
1
1U ev B e
d
=⑪ 联立解得:22
13U d B b =
临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1 有(R 2﹣
14
d )2+9d 2=22R 2Bev =m 22
2
v R
Be 2v =
2
U e d 联立解得:
2221458
B d b
U =
解得:U 的范围是:3B 2d 2
b <U <221458
B d b
6.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷
q
m
=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.
(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;
(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.
【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21
n
m s n -⨯+ (其中n =
0、1、2、3、4)第二种情况:v 0=53.20.8()10/21
n
m s n -⨯+ (其中n =0、1、2、3).
【解析】 【详解】
(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁
场,则
竖直方向2
1··
2Eq d
t m
= 得2md
t qE
=
代入数据解得t =1.0×10-
6s
水平位移x =v 0t 代入数据解得x =0.80m
因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出,
则运动时间t 0=0
L
v =0.5×10-6s ,
竖直位移2
01··
2Eq y t m
==0.0125m 所以粒子从P′点下方0.0125m 处射出.
(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2md
qE
粒子进入磁场时,垂直边界的速度 v 1=
qE m ·t =2qEd m
设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =
1
v sin α
在磁场中由qvB =m 2
v R
得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEd
v m =
代入解得 v 0=L·
2Eq
md
E B v 0=3.6×105m/s.
(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα)
把R =
mv qB 、v =1v sin α、12qEd v m
=代入解得 12(1cos )12tan sin 2
mEd mEd y B q B q αα
α-∆=
=
可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)
1max 212mv m qEd mEd
y qB qB m B q
∆=
==
Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.
若粒子速度较小,周期性运动的轨迹如下图所示:
粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =
R =mv qB 、v 1=vsinα、12qEd
v m
=代入解得 0221221L qE n E v n md n B
=
⋅++
v 0= 4.00.821n n -⎛⎫ ⎪+⎝⎭
×105m/s(其中n =0、1、2、3、4)
第二种情况:
L =n(2v 0t +2Rsinα)+v 0t +2Rsinα
把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m

02(1)21221L qE n E v n md n B
+=
⋅++
v 0= 3.20.821n n -⎛⎫
⎪+⎝⎭
×105
m/s(其中n =0、1、2、3).
7.如图,平面直角坐标系中,在,y >0及y <-3
2
L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-
3
2
L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,
一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向
沿x轴正方向,然后经过x轴上的点P2
(3
2
L,0
)进入磁场.在磁场中的运转半径R=
5
2
L (不计粒子重力),求:
(1)粒子到达P2点时的速度大小和方向;
(2)
E
B

(3)粒子第一次从磁场下边界穿出位置的横坐标;
(4)粒子从P1点出发后做周期性运动的周期.
【答案】(1)
5
3
v0,与x成53°角;(2)0
4
3
v
;(3)2L;(4)
()
40537
60
L
v
π
+

【解析】
【详解】
(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,
由运动学规律知
3
2
L=v0t1,
L=
2
y
v
t1
可得t1=
3
2
L
v,v y=
4
3
v0
故粒子在P2的速度为v22
0y
v v
+=
5
3
v0
设v与x成β角,则tanβ=
y
v
v
=
4
3
,即β=53°;
(2)粒子从P1到P2,根据动能定理知qEL=
1
2
mv2-
1
2
mv02可得
E =2089mv qL
粒子在磁场中做匀速圆周运动,根据qvB =m 2
v R
解得:B =mv qR =05352
m v q L ⨯⨯=023mv qL
解得:
43
v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-3
2
L 直线与Q ′点,可得: P 2O ′=
3253L cos =5
2
L =r
故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-
32
L 直线从M 点穿出磁场,由几何关系知M 的坐标x =
3
2
L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=0
32L
v
在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯=0
37120L
v π 从M 运动到N ,a =qE m =2
89v L
则t 3=v a =0
158L v
则一个周期的时间T =2(t 1+t 2+t 3)=
()0
4053760L
v π+.
8.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标
06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度
51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴
上方180°范围内的各个方向发射比荷为
81.010/q
C kg m
=⨯的带正电的粒子,已知粒子的发射速率6
0 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:
(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】
(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动
2
0v qv B m r
=
解得:0
5mv r cm qB
=
= (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.
(3)假设粒子没有射出电场就打到荧光屏上,有
000x v t =
2
012
h at =
qE a m
=
解得:18210h cm R cm =>=,
说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则
0x v t =
212
y at =
代入数据解得2x y =
设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,
000
tan 2y qE x v m v y
v v θ===,
所以()()
00tan 22H x x x y y θ=-=-,
由数学知识可知,当()
022x y y -=时,即 4.5y cm =时H 有最大值,
所以max 9H cm =
9.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度
qBd
m
从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.
(1) 求粒子在区域Ⅰ中运动的轨道半径: (2) 若粒子射入区域Ⅰ时的速度为2qBd
v m
= ,求粒子打在x 轴上的位置坐标,并求出此过程中带电粒子运动的时间;
(3) 若此粒子射入区域Ⅰ的速度qBd
v m
>
,求该粒子打在x 轴上位置坐标的最小值. 【答案】(1)R d =(2) (43OP d = 23m
t qB
π=(3)min 3x d =
【解析】 【分析】 【详解】
(1)带电粒子在磁场中运动,洛仑磁力提供向心力:20
01
v qv B m r =
把0qBd
v m
=
,代入上式,解得:R d =
(2) 当粒子射入区域Ⅰ时的速度为02v v =时,如图所示
在OA 段圆周运动的圆心在O 1,半径为12R d = 在AB 段圆周运动的圆心在O 2,半径为R d = 在BP 段圆周运动的圆心在O 3,半径为12R d =
可以证明ABPO 3为矩形,则图中30θ=,由几何知识可得:
132cos303OO d d ==
所以:323OO d d =-
所以粒子打在x 轴上的位置坐标()
133243OP O O OO d =+=- 粒子在OA 段运动的时间为:13023606m m
t qB qB
ππ==
粒子在AB 段运动的时间为2120236023m m
t q B qB
ππ=
=
粒子在BP 段运动的时间为313023606m m
t t qB qB
ππ==
=
在此过程中粒子的运动时间:12223m
t t t qB
π=+=
(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图
可得粒子打在x 轴上位置坐标:(
22
222x R R d R d =--化简得:222340R Rx x d -++=
把上式配方:2
22213033R x x d ⎛⎫--+= ⎪⎝
⎭ 化简为:2
22213033R x x d ⎛⎫-=-≥ ⎪⎝

则当2 3
R x
=时,位置坐标x取最小值:
min
3
x d
=
10.长为L的平行板电容器沿水平方向放置,其极板间的距离为d,电势差为U,有方向垂直纸面向里的磁感应强度大小为B的匀强磁场.荧光屏MN与电场方向平行,且到匀强电、磁场右侧边界的距离为x,电容器左侧中间有发射质量为m带+q的粒子源,如图甲所示.假设a、b、c三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O点;b粒子在电、磁场中向上偏转;c粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,
a、b、c粒子在原来位置上以各自的原速度水平射入电场,结果a粒子仍恰好打在荧光屏上的O点;b、c中有一个粒子也能打到荧光屏,且距O点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:
(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;
(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);
(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.
【答案】(1)
242222
22
2
a
k
L B d q m U
E
mB d
= (2)
1
()
2
x
y d
L
=+ (3)
1
1
2
2
4
==
5
Uq
y
W d
Uq
W y
d
【解析】
【详解】
据题意分析可作出abc三个粒子运动的示意图,如图所示.
(1) 从图中可见电、磁场分开后,a 粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O 点,运动轨迹如图中Ⅰ所示.
U
q Bqv d
=, Bd
U v =
, L LBd t v U
=
=, 222122a Uq L B qd
y t dm mU ==
, 21()2a a k U U qy E m d Bd
=- 242222
22
2a k L B d q m U E mB d
= (2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.
设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得
12=122
d
y L L x +,
1()2
x y d L =+
(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2
如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 2
2111·2Uq y t md =,11y Uq v t md =
122
221·2y Uq t m y t d
v +=,
2
2158qU y t md
=
, 124=5
y y , 1
1224==5
Uq
y W d Uq W y d
11.如图所示,三块挡板围成截面边长L =1.2m 的等边三角形区域,C 、P 、Q 分别是MN 、AM 和AN 中点处的小孔,三个小孔处于同一竖直面内,MN 水平,MN 上方是竖直向下的匀强电场,场强E =4×10-4N /C .三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 1;AMN 以外区域有垂直纸面向外, 磁感应强度大小为B 2=3B 1的匀强磁场.现将一比荷q/m =105C/kg 的帯正电的粒子,从O 点由静止释放,粒子从MN 小孔C 进入内部匀强磁场,经内部磁场偏转后直接垂直AN 经过Q 点进入外部磁场.已知粒子最终回到了O 点,OC 相距2m .设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:
(1) 磁感应强度B 1的大小;
(2) 粒子从O 点出发,到再次回到O 点经历的时间;
(3) 若仅改变B 2的大小,当B 2满足什么条件时,粒子可以垂直于MA 经孔P 回到O 点(若粒子经过A 点立即被吸收).
【答案】(1)51210
T 3
B -=⨯;(2)-22.8510s t =⨯;(3)52
42
10T 3k B -+=⨯' 【解析】 【详解】
(1) 粒子从O 到C 即为在电场中加速,则由动能定理得:212
Eqx mv = 解得v =400 m/s
带电粒子在磁场中运动轨迹如图所示.
由几何关系可知 10.6m 2
L
R =
= 由2
11
v qvB m R =
代入数据得 512
10T 3
B -=
⨯ (2)由题可知 B 2=3B 1=2×10-5 T
2
11
v qvB m R =
则 1
20.2m 3
R R =
= 由运动轨迹可知:进入电场阶段做匀加速运动,则112
x vt = 得到 t 1=0.01 s
粒子在磁场B 1中的周期为 11
2m
T qB π=
则在磁场B 1中的运动时间为 3211
310s 3
t T -==⨯ 在磁场B 2中的运动周期为 22
2m
T qB π= 在磁场B 2中的运动时间为
3-3321803001801110s 5.510s 3606
t T π
-︒+︒+︒=
=⨯=⨯︒
则粒子在复合场中总时间为:3-21231722010s 2.8510s 6
t t t t π-⎛
⎫=++=+
⨯=⨯ ⎪⎝

(3)设挡板外磁场变为'
2B ,粒子在磁场中的轨迹半径为r ,则有 2
'
2v qvB m r
=
根据已知条件分析知,粒子可以垂直于MA 经孔P 回到O 点,需满足条件
()212L
k r =+其中 k =0、1、2、3…… 解得52
42
10T 3
k B -+=⨯'
12.如图所示,在竖直平面内有一直角坐标系xOy ,在直角坐标系中y 轴和x =L 之间有沿y 轴正方向的匀强电场,电场强度大小为E ,在电场的右侧以点(3L,0)为圆心、L 为半径的圆形区域内有垂直于坐标平面向里的匀强磁场,磁感应强度大小为B ,在y 轴上A 点(0,L )处沿x 轴正方向射出一质量为m 、电荷量为q 的带负电的粒子,粒子经电场偏转后,沿半径方向射入磁场,并恰好竖直向下射出磁场,粒子的重力忽略不计,求:(结果可含根式)
(1)粒子的初速度大小; (2)匀强磁场的磁感应强度大小. 【答案】(1)52qEL
m (2)
2910229050mE
qL
- 【解析】 【详解】
(1)粒子射入电场中并在电场中发生偏转,由于能沿半径方向进入磁场,因此其处电场 后的轨迹如图所示,出电场后的速度方向的反向延长线交于在电场运动的水平位移的中点:
则由几何关系可知粒子在电场中的竖直位移y 满足
122L
y
L y L
=- 解得
15
y L =
竖直方向
212y a t
=
水中方向
0L t v =
在电场中根据牛顿第二定律
qE ma =
联立可以得到
0v =
(2)设粒子进磁场时的轨迹与磁场边界交点为C ,由于粒子出磁场时方向沿y 轴负方向,因此粒子在磁场中做圆周运动的圆心在2O 点,连接2O 和C 点,交x 轴与D 点,做2O F 垂直x 轴,垂直为F . 由几何关系
452L
CD L L
=
解得
2
5
CD L =
由于21O F O C L ==,故2O FD ∆与1O CD ∆全等,可以得到
21O D O D =

1O D ==
因此粒子在磁场中做圆周运动的半径为
225
R O D CD L +=+=
粒子出电场时速度沿y 轴负方向的分速度
225y qEL
v ay m ==
因此粒子进磁场时的速度为
22
02910y qEL
v v v m
=+=
粒子在磁场中做匀速圆周运动有
2
qvB m R
v =
解得
()
52929102290
5010229
mE mE
B qL qL
-=
=+ 点睛:本题考查了粒子在电场与磁场中的运动,分析清楚 粒子运动过程、作出粒子运动轨迹是解题的前提与关键,应用类平抛运动规律、牛顿第二定律即可解题.
13.如图所示,足够大的平行挡板A 1,A 2竖直放置,间距为6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面yN 为理想分界面.Ⅰ区的磁感应强度为B 0,方向垂直纸面向外,A 1,A 2上各有位置正对的小孔S 1,S 2,两孔与分界面yN 的距离为L .质量为m ,电量为+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到yN 上的P 点,再进入Ⅱ区.P 点与A 1板的距离是L 的k 倍.不计重力,碰到挡板的粒子不予考虑.
(1)若k =1,求匀强电场的电场强度E ;
(2)若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式和Ⅱ区的磁感应强度B 与k 的关系式. 【答案】(1) (2)

【解析】
试题分析:(1)粒子在电场中,由动能定理有qEd=mv 2-0 ①
粒子在Ⅰ区洛伦兹力提供向心力 qvB 0=②
当k=1时,由几何关系得 r=L ③ 由①②③解得E=

(2)由于2<k<3时,由题意可知粒子在Ⅱ区只能发生一次偏转,由几何关系可知
(r-L)2+(kL)2=r2⑤
解得r=⑥
由②⑥解得v=⑦
粒子在Ⅱ区洛伦兹力提供向心力 qvB=⑧
由对称性及几何关系可知⑨
解得r1=⑩
由⑧⑩解得B=
考点:带电粒子在电场中的运动、带电粒子在匀强磁场中的运动
14.右图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里,图中右边有一半径为R、圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出,已知弧所对应的圆心角为.不计重力,求:
(1)离子速度的大小;
(2)离子的质量.
【答案】(1)
(2)
【解析】
【分析】
【详解】
试题分析:带电粒子在磁场中的运动轨迹分析如图所示
(1)由题设知,离子在平行金属板之间做匀速直线运动,则

又②
由①②式得③
(2)在圆形磁场区域,离子做匀速圆周运动.则

由几何关系有⑤
解得
考点:带电粒子在磁场中的运动
点评:本题是速度选择器和带电粒子在匀强磁场中运动的组合问题,可以列出带电粒子在磁场中做圆周运动洛伦兹力做向心力的表达式求解,根据几何关系求半径是解题关键.
15.(17分)在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。

一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P 点(AP=d)射入磁场(不计重力影响)。

(1)如果粒子恰好从A点射出磁场,求入射粒子的速度。

(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线的夹角为φ(如图)。

求入射粒子的速度。

【答案】1)(2)
【解析】
试题分析:(1)由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。

设入射粒子的速度为v1,由洛仑兹力的表达式和牛顿第二定律得:

由①式解得:②
(2)设O’是粒子在磁场中圆弧轨道的圆心,连接O’Q,设O’Q=R’。

由几何关系得:∠OQO’=③
而OO’=R’-,=d-R
所以OO’= R’+R-d ④
由余弦定理得:⑤
由⑤式解得:⑥
设入射粒子的速度为v2,由⑦
由⑦式解得:⑧
考点:带电粒子在匀强磁场中的运动.。

相关文档
最新文档