梁山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梁山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 以的焦点为顶点,顶点为焦点的椭圆方程为(

A .
B .
C .
D .
2. 设复数(是虚数单位),则复数( )1i z =-i 2
2z z +=A.
B.
C. D. 1i -1i +2i +2i
-【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.3. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )
A .(0,+∞)
B .(0,2)
C .(1,+∞)
D .(0,1)
4. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )
A .(﹣∞,﹣2)∪(0,2)
B .(﹣∞,﹣2)∪(2,+∞)
C .(﹣2,0)∪(2,+∞)
D .(﹣2,0)∪(0,
2)
5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )
A .(1,+∞)
B .(﹣∞,﹣1)
C .
D .
6. 执行如图所示的程序框图,输出的结果是( )
A .15
B .21
C .24
D .357. 命题:“∀x ∈R ,x 2﹣x+2<0”的否定是( )
A .∀x ∈R ,x 2﹣x+2≥0
B .∃x ∈R ,x 2﹣x+2≥0
C .∃x ∈R ,x 2﹣x+2<0
D .∀x ∈R ,x 2﹣x+2<0
8. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为
负的是( )
A .①
B .②
C .③
D .④
9. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )
A .
B .
C .
D .
10.设a 是函数
x 的零点,若x 0>a ,则f (x 0)的值满足(

A .f (x 0)=0
B .f (x 0)<0
C .f (x 0)>0
D .f (x 0)的符号不确定
11.设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( )
A .﹣3<a <﹣1
B .﹣3≤a ≤﹣1
C .a ≤﹣3或a ≥﹣1
D .a <﹣3或a >﹣1
12.已知向量=(1,2),=(x ,﹣4),若∥,则x=( )
A . 4
B . ﹣4
C . 2
D . ﹣2
二、填空题
13.已知函数的一条对称轴方程为,则函数的最大值为2
1()sin cos sin 2f x a x x x =-+
6
x π
=()f x
( )
A .1
B .±1
C
D .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
14.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 . 
15.【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经
()3
2f x x x =-()f x ()()
1,1f 过圆的圆心,则实数的值为__________.
()2
2:2C x y a +-=a 16.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .
(1)求证:直线PQ 的斜率为-2t ;
(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .
18.设x ,y 满足约束条件
,则目标函数z=2x ﹣3y 的最小值是 .
三、解答题
19.(本小题满分12分)
已知圆与圆:关于直线对称,且点在圆上.
M N 2
2
2
35(35(r y x =++-x y =3
5,31(-D M (1)判断圆与圆的位置关系;
M N
(2)设为圆上任意一点,,,三点不共线,为的平分线,且交
P M 35,1(-A )3
5,1(B B A P 、、PG APB ∠于. 求证:与的面积之比为定值.
AB G PBG ∆APG ∆20.(本小题满分12分)已知函数.
2
()x
f x e ax bx =--(1)当时,讨论函数在区间上零点的个数;0,0a b >=()f x (0,)+∞(2)证明:当,时,.
1b a ==1[,1]2
x ∈()1f x <21.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.
22.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点.(Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:B 1F ∥平面A 1BE ;
(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.
23.已知函数,.(Ⅰ)求函数的最大值;
(Ⅱ)若,求函数的单调递增区间.
24.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
(1)若a=,求A∩B.
(2)若A∩B=∅,求实数a的取值范围.
梁山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】D
【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).
∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).
∴椭圆方程为.
故选D.
【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.
2.【答案】A
【解析】
3.【答案】D
【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆
∴故0<k<1
故选D.
【点评】本题主要考查了椭圆的定义,属基础题.
4.【答案】A
【解析】解:设g(x)=,则g(x)的导数为:
g′(x)=,
∵当x>0时总有xf′(x)﹣f(x)<0成立,
即当x>0时,g′(x)<0,
∴当x>0时,函数g(x)为减函数,
又∵g(﹣x)====g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是增函数,
又∵g(﹣2)==0=g(2),
∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,
x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,
∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).
故选:A.
5.【答案】C
【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,
即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立
若m+1=0,显然不成立
若m+1≠0,则
解得a.
故选C.
【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.
6.【答案】C
【解析】【知识点】算法和程序框图
【试题解析】否,
否,否,是,
则输出S=24.
故答案为:C
7.【答案】B
【解析】解:因为全称命题的否定是特称命题,所以命题:“∀x∈R,x2﹣x+2<0”的否定是∃x∈R,x2﹣x+2≥0.故选:B.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
8.【答案】B
【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,
④∵sin>0,cosπ=﹣1,tan<0,
∴>0,
其中符号为负的是②,
故选:B.
【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.
9.【答案】A
【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,
取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,
故取出的3个数可作为三角形的三边边长的概率P=.
故选:A.
【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.
10.【答案】C
【解析】解:作出y=2x和y=log x的函数图象,如图:
由图象可知当x0>a时,2>log x0,
∴f(x0)=2﹣log x0>0.
故选:C.
11.【答案】A
【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,
∴,解得:﹣3<a<﹣1.
故选:A.
12.【答案】D
【解析】:解:∵∥,
∴﹣4﹣2x=0,解得x=﹣2.
故选:D.
二、填空题
13.【答案】A
【解析】
14.【答案】 .
【解析】解:∵F是抛物线y2=4x的焦点,
∴F(1,0),准线方程x=﹣1,
设M(x1,y1),N(x2,y2),
∴|MF|+|NF|=x1+1+x2+1=6,
解得x1+x2=4,
∴△MNF的重心的横坐标为,
∴△MNF的重心到准线距离为.
故答案为:.
【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
15.【答案】2
-【解析】结合函数的解析式可得:,()3
11211f =-⨯=-对函数求导可得:,故切线的斜率为,()2'32f x x =-()2
'13121k f ==⨯-=则切线方程为:,即,
()111y x +=⨯-2y x =-圆:的圆心为,则:.
C ()222x y a +-=()0,a 022a =-=-16.【答案】
【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).①
将①与拋物线x 2=2py 联立得,
x 2-2pkx +4p 2t (k -t )=0,
解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).
由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2),
∴k PQ ==-2t ,2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )即直线PQ 的斜率为-2t .
(2)由y =得y ′=,x 22p x p
∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k ==2t .
2pt p
其切线方程为y -2pt 2=2t (x -2pt ),又C 的准线与y 轴的交点T 的坐标为(0,
-).p 2
∴--2pt 2=2t (-2pt ).p 2
解得t =±,即t 的值为±.121217.【答案】 ③ .
【解析】解:由 y=f'(x )的图象可知,
x ∈(﹣3,﹣),f'(x )<0,函数为减函数;
所以,①在区间(﹣2,1)内f (x )是增函数;不正确;
②在区间(1,3)内f (x )是减函数;不正确;
x=2时,y=f'(x )=0,且在x=2的两侧导数值先正后负,
③在x=2时,f (x )取得极大值;
而,x=3附近,导函数值为正,
所以,④在x=3时,f (x )取得极小值.不正确.
故答案为③.
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
18.【答案】 ﹣6 .
【解析】解:由约束条件,得可行域如图,
使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4),
∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6.
故答案为:﹣6.
三、解答题
19.【答案】(1)圆与圆相离;(2)定值为2.
【解析】
试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,,然后根据圆心距与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和BP DM r =MN 的距离相等,所以两个三角形的面积比值,根据点P 在圆M 上,代入两点间距离公式求和PA
PB S S APG PBG =∆∆PB ,最后得到其比值.PA 试题解析:(1) ∵圆的圆心关于直线的对称点为,
N 35,35(-N x y =)35
,35(-M ∴,9
16)34
(||222=-==MD r
∴圆的方程为.M 9
16)35()35(22=
-++y x ∵,∴圆与圆相离.3823210)310()310(||22=>=+=r MN M N
考点:1.圆与圆的位置关系;2.点与圆的位置关系.1
20.【答案】(1)当时,有个公共点,当时,有个公共点,当时,有个公共2(0,)4e a ∈24e a =2
(,)4
e a ∈+∞点;(2)证明见解析.
【解析】
试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得,构造函数,利用求出2x e a x =2()x
e h x x
=()'h x 单调性可知在的最小值,根据原函数的单调性可讨论得零点个数;(2)构造函数()h x (0,)+∞2
(2)4
e h =,利用导数可判断的单调性和极值情况,可证明.1
2()1x h x e x x =---()h x ()1f x <试题解析:
当时,有0个公共点;2
(0,4
e a ∈当,有1个公共点;2
4
e a =当有2个公共点.2
(,)4
e a ∈+∞(2)证明:设,则,
2()1x h x e x x =---'()21x h x e x =--令,则,'()()21x m x h x e x ==--'()2x
m x e =-因为,所以,当时,;在上是减函数,1(,1]2x ∈1[,ln 2)2
x ∈'
()0m x <()m x 1[,ln 2)2
当时,,在上是增函数,(ln 2,1)x ∈'()0m x >()m x (ln 2,1)
考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.
【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 21.【答案】
【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),
∵最大角是最小角的2倍,∴C=2A,
由正弦定理得,则,
∴,得cosA=,
由余弦定理得,cosA==,
∴=,
化简得,n=4,
∴a=4、b=5、c=6,cosA=,
又0<A<π,∴sinA==,
∴△ABC的面积S===.
【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.
22.【答案】
【解析】(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正方体,
∴B1C1⊥平面ABB1A1;
∵A1B⊂平面ABB1A1,
∴B1C1⊥A1B.
又∵A1B⊥AB1,B1C1∩AB1=B1,
∴A1B⊥平面ADC1B1,
∵A1B⊂平面A1BE,
∴平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:连接EF,EF∥,且EF=,
设AB1∩A1B=O,
则B1O∥C1D,且,
∴EF∥B1O,且EF=B1O,
∴四边形B1OEF为平行四边形.
∴B1F∥OE.
又∵B1F⊄平面A1BE,OE⊂平面A1BE,
∴B1F∥平面A1BE,
(Ⅲ)解:====. 
23.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合
【试题解析】(Ⅰ)由已知
当,即,时,
(Ⅱ)当时,递增
即,令,且注意到
函数的递增区间为
24.【答案】
【解析】解:(1)当a=时,A={x|},B={x|0<x<1}
∴A∩B={x|0<x<1}
(2)若A∩B=∅
当A=∅时,有a﹣1≥2a+1
∴a≤﹣2
当A≠∅时,有
∴﹣2<a≤或a≥2
综上可得,或a≥2
【点评】本题主要考查了集合交集的求解,解题时要注意由A∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.。

相关文档
最新文档