北师大版八年级上册数学43一次函数的图象2导学案
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计 (新版北师大版)
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教学设计(新版北师大版)一. 教材分析《八年级数学上册4.3一次函数的图象》这一节,主要介绍了一次函数的图象和性质。
其中,正比例函数是特殊的一次函数,它的图象是一条通过原点的直线。
本节内容是学生学习一次函数的基础,对于学生理解和掌握一次函数的图象和性质,以及后续学习其他类型的函数具有重要意义。
二. 学情分析八年级的学生已经学习了代数基础知识,对于函数的概念有一定的理解。
但是,对于函数的图象和性质,特别是正比例函数的图象和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作,观察和分析正比例函数的图象和性质,从而加深对一次函数的理解。
三. 教学目标1.理解正比例函数的图象是一条通过原点的直线。
2.掌握正比例函数的性质,即当x增大或减小时,y的值也按比例增大或减小。
3.能够通过观察图象,分析正比例函数的性质。
四. 教学重难点1.重难点:正比例函数的图象和性质。
2.难点:如何引导学生通过观察图象,分析正比例函数的性质。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察和操作,发现正比例函数的图象和性质。
同时,结合小组合作学习,让学生在讨论中加深对一次函数的理解。
六. 教学准备1.准备正比例函数的图象和性质的相关教学材料。
2.准备计算机和投影仪,用于展示图象和讲解。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出正比例函数的概念,并提出问题:“正比例函数的图象是什么样的?”2.呈现(10分钟)利用计算机和投影仪,展示正比例函数的图象,并引导学生观察和分析。
3.操练(10分钟)让学生分组进行实际操作,通过改变x的值,观察y的变化,从而深入理解正比例函数的性质。
4.巩固(5分钟)通过一些练习题,让学生巩固对正比例函数图象和性质的理解。
5.拓展(5分钟)引导学生思考:除了正比例函数,还有其他类型的函数图象和性质是什么?6.小结(5分钟)对本节课的内容进行小结,强调正比例函数的图象是一条通过原点的直线,性质是当x增大或减小时,y的值也按比例增大或减小。
北师大版数学八年级上册《4.4一次函数的应用》教案
北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。
教材中给出了丰富的实例,为学生提供了充足的学习材料。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。
但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。
因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。
三. 教学目标1.了解一次函数在实际生活中的应用。
2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
3.培养学生的动手操作能力和解决实际问题的能力。
四. 教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。
六. 教学准备1.准备与一次函数应用相关的实例。
2.准备教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
让学生思考如何用数学模型来表示这个问题。
2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。
让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。
通过这个环节,巩固学生对一次函数模型的理解和应用。
北师大版八年级数学上册:4.3《一次函数的图象》教案
北师大版八年级数学上册:4.3《一次函数的图象》教案一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容。
本节主要让学生了解一次函数的图象特点,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数之间的关系。
通过本节的学习,为学生后续学习二次函数、指数函数等函数图象打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了函数的概念、一次函数的定义和性质。
但学生对函数图象的认识不足,对如何绘制一次函数图象以及分析图象与系数之间的关系还不够清晰。
因此,在教学过程中,需要引导学生通过实践操作,加深对一次函数图象的理解。
三. 教学目标1.让学生了解一次函数图象的特点,学会绘制一次函数图象。
2.引导学生分析一次函数图象与系数之间的关系。
3.培养学生的动手操作能力和观察分析能力。
四. 教学重难点1.一次函数图象的绘制方法。
2.分析一次函数图象与系数之间的关系。
五. 教学方法采用讲解法、示范法、实践操作法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数图象的特点和绘制方法。
六. 教学准备1.准备多媒体教学设备,如投影仪、计算机等。
2.准备一次函数图象的示例图片和相关素材。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)利用投影仪展示一次函数图象的示例图片,引导学生观察并总结一次函数图象的特点。
教师简要讲解一次函数图象的绘制方法,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和示范,详细介绍一次函数图象的绘制方法。
引导学生动手操作,尝试绘制一次函数图象。
在绘制过程中,注意引导学生观察图象与系数之间的关系。
3.操练(10分钟)学生分组进行实践操作,绘制不同系数的一次函数图象。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师挑选几组学生的作品,进行分析讨论。
引导学生总结一次函数图象与系数之间的关系。
同时,让学生回答课后练习题,巩固所学知识。
5.拓展(10分钟)教师提出一些拓展问题,如:如何判断一次函数图象与坐标轴的交点?如何求解一次函数图象上的点?引导学生进行思考和讨论。
《 一次函数的图象》示范公开课教学设计【北师大版八年级数学上册】第2课时
第四章一次函数4.3 一次函数的图象第2课时教学设计一、教学目标1.经历一次函数图象的画图过程,初步了解画函数图象的一般步骤;经历一次函数图象变化情况的探索过程,发展数形结合的意识和能力.2.能熟练画出一次函数的图象;掌握一次函数及其图象的简单性质.二、教学重点及难点重点:用“两点法”画出一次函数图象是研究一次函数的性质的基础.难点:直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响.三、教学用具多媒体课件.四、相关资源《正比例函数y=-2x+1的图象的画法》动画或图片,《两点法画图象》的动画,《一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象的画法》动画或图片.五、教学过程【复习导入】师:1.什么叫函数?在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2.函数的表示方法有哪几种?(1)解析法(2)列表法(3)图象法3.同学们,上节课我们学习了正比例函数的图象,请画出正比例函数y=-2x的图象。
【探究新知】1.师:正比例函数y=-2x的图象是过原点的一条直线,那你们知道一次函数y=-2x+1 的图象是什么形状吗?那就让我们一起做一做,看一看,如何作出一次函数?要回答这个问题,必须弄清楚以下几点:(1)函数的图象是由无数个点构成的.(2)这些点在坐标系中是一对一对的有序实数.(3)此解析式实际上是一个二元一次方程,它的一对一对的x、y值可看作是图象上的点的坐标.(4)要找出它的某个点,实际上就是求出这个二元一次方程的一组解.(5)把x的值作为横坐标,y的值作为纵坐标.(6)把函数作图问题转化为求方程的解的问题.例画出一次函数y =-2x +1的图象。
解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出对应的点。
连线:把这些点依次连接起来,得到y=-2x+1的图象,它是一条直线。
北师大版八年级数学 上册导学案设计:4.4一次函数的应用(2)(无答案)
八年级数学 4.4一次函数的应用(2)【学习目标】1、能通过函数图像获取信息,发展形象思维;2、能利用函数图像解决简单的实际问题,发展学生的数学应用能力。
【探究图象】由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V (万米3)与干旱持续时间t (天)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?题后反思:【自学指导一】自学课本P91例2,3min 并回答相应问题。
【巩固提高】当得知周边地区的干旱情况后,小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(1)活动开始当天,全校有多少户家庭参加了该活动?(2)全校师生共有多少户?该活动持续了几天?(3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户?(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式【自学指导二】1、如图是某一次函数图像,根据图像填空:(1)当0y =时,______x =;(2)直线对应的函数表达式是________________.2、议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)小结:一般地,当一次函数y=kx+b 的函数值为0时,相应的自变量的值就是方程kx+b=0的解。
从图像上看,一次函数y=kx+b 的图像与x 轴交点的横坐标就是方程kx+b=0的解。
【巩固提高】1、全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.达标检测A 组1、如图,从成都向重庆打长途电话,设通话时间x(分钟),需付电话费y(元),通话3分钟以内话费3.6元,由图象找出通话5分钟需付话费为________元。
《一次函数的图象》第2课时示范课教学设计【数学八年级上册北师大】
第四章一次函数3 一次函数的图象第2课时一、教学目标1.经历一次函数图象的作图过程,了解一次函数图象是一条直线,并能用两点法熟练画图.2.掌握一次函数及其图象的简单性质,并能灵活运用解答有关问题.3.会求一次函数图象与坐标轴的交点.4.经历正比例函数和一次函数图象变化情况的探索过程,发展数形结合的意识和能力.二、教学重难点重点:能熟练画出一次函数的图象.难点:引导学生用数形结合法探究得出一次函数的图象特征与性质,以及一次函数与正比例函数的图象之间的关系。
三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计问题3:正比例函数的画图步骤是什么?预设答案:问题4:最快捷、最正确地画出正比例函数的图象时,通常在直角坐标系中选取哪两个点?预设答案:原点(0,0)和点(1,k).教师活动:正比例函数是特殊的一次函数,正比例函数的图象是一条直线,一次函数y=kx+b 的图象是什么样子的呢?也是一条直线吗?从表达式上看,正比例函数与一次函数有什么不同?如果体现在图象上又会有怎样的关系呢?通过本节课的学习,同学们就会明白了,下面就让我们一起来学习本节课的内容.【探究】画出一次函数y=-2x+1的图象.解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+1的图象,它是一条直线.教师活动:在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系式y=-2x+1.教师活动:通过两个点(-0.5,2),(1.5,-2)得出结论:它们都满足关系y=-3x.正比例函数的表达式与图象是一一对应的.【议一议】一次函数y=kx+b的图象有什么特点?一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.【归纳】由于两点确定一条直线,画一次函数图象时我们只需描点(0,b)和点(b,0)或(1,k+b),k连线即可.【做一做】在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.1.列表描点、连线:【议一议】问题一:上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?预设答案:k>0时,直线左低右高,y的值随x值的增大而增大,图象上的点呈上升趋势;k<0时,直线左高右低,y的值随x值的增大而减小,图象上的点呈下降趋势.问题二:直线y=-x与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x变为直线y=-x+3吗?预设答案:直线y=-x与y=-x+3平行.教师活动:k相同,图平行.直线y=-x向上平移3个单位长度就可得直线y=-x+3.追问:直线y=kx+b与y=kx有怎样的位置关系呢?预设答案:一次函数y=kx+b(k≠0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移|b|个单位长度得到:1.当b>0时,向上平移;2. 当b<0时,向下平移.问题三:直线y=2x+3与直线y=-x+3有什么共同点?一般地,你能从函数y=kx+b的图象上直接看出b的数值吗?预设答案:直线y=2x+3与直线y=-x+3都与y 轴交于一点(0,3).函数y=kx+b的图象与y轴交点的纵坐标即为b 的数值.追问:k,b对直线y=kx+b有怎样的影响呢?【做一做】已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y3>y1>y2D.y1>y2>y3解析:因为直线y=-3x+b中k=-3<0,所以y的值随x值的增大而减小;又因为-2<-1<1,所以y1>y2>y3.故选D.x的增大而增大,所以k>0,又因为b=2>0,所以它的图象经过第一、二、三象限,不经过第四象限.3.直线y=2x向下平移2个单位得到的直线是( )A.y=2(x+2)B.y=2(x-2)C.y=2x-2D.y=2x+2预设答案:C4.一次函数y=kx+k的图象大致是()【解析】因为y=kx+k=k(x+1),所以当x=-1时,y=0,所以直线y=kx+k必过点(-1,0),结合选项可知选A.5.x从0开始逐渐增大时,函数y=2x+6和y=5x-2哪一个的值先到达10?哪一个的值先到达20?这说明了什么?解:x从0开始逐渐增大时,函数y=2x+6的值先到达10,y=5x-2的值先到达20;这说明了当k>0时,一次项系数大的一次函数比一次项系数小的一次函数增长的更快.。
八年级数学上册_一次函数的图象(第二课时)教案__北师大版
一次函数的图象教学设计(第二课时)一、教学设计思想本节课是一次函数图象的第2课时,主要研究正比例函数,我们将正比例函数作为一次函数的特例进行研究,过去是先研究正比例函数,再研究一次函数,体现了“特殊到一般”的研究方法,而本教材却体现“一般到特殊”研究的方法,给出了正比例函数的概念。
教学时教师关注学生的思维特征,只要学生说的有道理,就给与鼓励性评价,培养学生用于探索的精神。
二、教学目标知识与技能1.会作正比例函数的图象.2.能说出正比例函数y=kx的图象的特点.3.提高利用函数图像解决问题的能力.过程与方法通过作正比例函数图象,并分析其特点,进一步培养数形结合的意识和能力.情感态度与价值观1.通过议一议,培养探索精神和合作交流意识.2.能积极与同伴合作交流,并能进行探索活动,发展实践能力与创新精神.三、教学重点1.正比例函数的图象的特点.2.一次函数的图象的特点.3.y=-x与y=-x+6的位置关系.四、教学难点正比例函数,一次函数图象的特点的探索过程.五、教学方法启发式教学法.六、教具准备投影片四张:第一张:练习(记作§6.3.2 A);第二张:练习(记作§6.3.2 B);第三张:练习(记作§6.3.2 C);第四张:练习(记作§6.3.2 D ).七、教学过程Ⅰ.导入新课[师]上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线.经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可.还明确了一次函数的代数表达式与图象之间的对应关系.本节课我们进一步来研究一次函数图象的其他性质.Ⅱ.讲授新课一、[师]首先我们来研究一次函数的特例——正比例函数的有关性质.请大家在同一坐标系内作出正比例函数y =21x ,y =x ,y =3x ,y =-2x 的图象. [生]解:如图[师]大家在画正比例函数的图象时,描了几个点?[生]我描了五个点.[生]我描了两个,因为正比例函数是一次函数,一次函数的图象是直线,两点就能确定一条直线,所以我找了两点.[生]我找了一点,因为正比例函数y =kx 中,当x =0时,y =0,所以只要找一个点,再过这一点和(0,0)点就能画出正比例函数的图象.[师]刚才大家的回答都有道理,有找五个点的,有找两个点的,也有找一个点的,可能还有找四个或三个点的情况,下面大家思考一下,最少可描几个点?[生]描一个点.[生]不对,因为正比例函数的图象是直线而由两个点才能确定一条直线,所以他说描一个点就能画出直线是错的.[师]描一个点的同学实际上是描了两个点,一个点是原点,另一个是他所说的点,虽然他表达的不太合理,但是可以看出,这位同学进行了很好的观察,观察上图可以看出,每一个正比例函数的图象都过(0,0)点,所以只要再找一点就可以了.由此可以得出正比例函数y =kx 的图象是经过原点(0,0)的一条直线.[师]再观察上图,直线y =21x ,y =x ,y =3x 中,哪一个与x 轴正方向所成的锐角最大?哪一个与x 轴正方向所成的锐角最小? [生]y =3x 与x 轴正方向所成的锐角最大,y =21x 与x 轴正方向所成的锐角最小. [师]从正比例函数y =21x ,y =x ,y =3x 中的k 有何共同点? [生]都是大于0的数.[师]由k 的大小和直线与x 轴正方向所成的锐角的大小情况来看,它们之间是否有共同点?[生]k =3时,y =3x 与x 轴正方向所成的锐角最大,当x =21时,y =21x 与x 轴正方向所成的锐角最小,所以可以看出,当k >0时,k 的值越大,y =kx 与x 轴正方向所成的锐角越大.[师]从上面还可以看出,当k >0时,y 随x 的增大而怎样变化?当k <0时,y 随x 的增大而怎样变化?[生]当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.[师]现在,我们一起来回忆一下,对正比例函数都讨论了哪些性质?正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点.(2)作正比例函数y =kx 的图象时,除原点外,还需找一点,一般找(1,k )点.(3)在正比例函数y =kx 图象中,当k >0时,k 的值越大,函数图象与x 轴正方向所成的锐角越大.(4)在正比例函数y =kx 图象中,当k >0时,y 的值随x 值的增大而增大;当k <0时,y 的值随x 值的增大而减小.二、做一做在同一直角坐标系内作出一次函数y =2x +6,y =-x ,y =-x +6,y =5x 的图象.[生]图象如下:。
4.3.2 一次函数的图象与性质 课件 2024-2025学年北师大版八年级数学上册
同,图象都经过点 (0 , 3))
y = 5x - 2 的图象经过点 ( 0 , -2 )
一次函数 y = kx+ b 的图象经过点 ( 0 , b )
图象与 y 轴交点的纵坐标就是 b 的值
y = -x + 3
y = 5x - 2
y = -x
归纳总结
一次函数 y = kx + b 的图象是一条经过 ( 0 , b
一次函数 y=kx+b图像有什么特点?
一次函数的图象:一次函数y=kx+b的图象是一条经过点(0,b)的直线,
通常也称为直线y=kx+b.
y=kx+b
y
b
( k , 0)
(0, b)
O
x
一次函数图象的画法
画图时通常取两点(0,b)与( b ,0)(k≠0),有时也可取横、纵坐标均为
整数的点.
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
B )
3. 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k,b的
取值范围为(
C
)
A. k>0,b>0
B. k>0,b<0
C. k<0,b<0
D. k<0,b>0
第3题图
4.在平面直角坐标系中,一次函数y=-x-4的图象与y轴交于点A.
y = -2x向上平移一个单位得到y = -2x + 1;
y = -2x向下平移一个单位得到y = -2x - 1;
y = -2x - 1
(3)平移直线y = -2x+ 1,能得到y = -2x,y = -2x - 1吗?
y = -2x
y = -2x + 1
北师大版八年级数学上册:4-3一次函数的图象(教案)
2.教学难点
-斜率k的正负对一次函数图象在坐标平面内位置的影响,特别是斜率为0和斜率不存在的情况;
4.作出一次函数图象的方法,包括描点法和图形变换;
5.运用一次函数图象解决实际问题,如根据图象求解方程和不等式。
二、核心素养目标
本节课的核心素养目标如下:
1.培养学生的逻辑推理能力,使其能够通过一次函数的定义和性质,推导出图象的特点和变化规律;
2.提升学生的数据分析能力,使其能够利用一次函数图象解决实际问题,进行数据预测和分析;
3.增强学生的空间想象力和几何直观,通过作一次函数图象,培养学生的图形认识和变换能力;
4.培养学生的数学建模素养,使其能够运用一次函数模型表达现实世界中的数量关系,解决实际问题;
5.培养学生的团队协作和交流能力,通过小组合作探讨一次函数图象的绘制和运用,促进学生之间的相互学习与分享。
三、教学难点与重点
1.教学重点
-理解一次函数的定义及一般形式,掌握y = kx + b中k和b的含义及其对图象的影响;
-学会通过分析斜率k和截距b的符号,判断一次函数图象在坐标平面内的位置关系;
-掌握用描点法绘制一次函数图象的基本步骤,并能够运用图象解决相关问题;
-能够运用一次函数图象分析实际问题中的数量关系,建立数学模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
数学北师大版八年级上册4.4.2一次函数应用第二课时说课稿
4.3.2《一次函数的图象和性质》第二课时说课稿一、设计理念新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、教材分析本节课选自北师大版八年级上册的第四章第三节《一次函数的图象》第2课时。
本节课在学生已经掌握了一次函数的概念以及表达式的基础之上,通过探究活动,进行一次函数的图象及性质的研究,这是本节课的一个重点和难点问题,学生在学习的过程中体会“数形结合”思想的重要性,也为后续函数相关知识的学习和经验的积累起到重要的引领作用。
三、学情分析学生在生活和课本知识上对变量之间的关系已经有了初步的了解,在上节课已经经历了正比例函数的图象绘制和性质探究过程,并初步具备利用类比的方法进行探究一次函数性质的能力基础。
我校八年级的学生思维已经从具体思维向抽象思维发展,具有初步的数形结合思想,学生具有一定的探索意识,敢于表达自己的观点和想法,这都为开展本次数学学习活动打下了基础。
但我校学生存在动手能力差,计算能力弱等特点,因此在本节课的教学中,将重难点进行了分解。
四、教法与学法(一)教法分析数学教学是数学活动的教学,是师生之间、学生之间的交往互动与共同发展的过程。
针对八年级学生的认知水平与心理特征,本节课选择由浅入深提出问题、分析问题、解决问题的流程进行教学。
引导全体学生自主探索,合作交流。
充分体现教师是教学活动的组织者,引导者,合作者,学生才是学习的主体。
基本的教学程序是:“引导激发----动手实践----合作探究----学以致用”几部分组成。
(二)学法分析本节课在对学生进行学法指导上,主要是引导学生主动探索发现新的数学结论,进而培养学生数学学习的良好习惯,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。
北师大版八年级数学上册:4.3《一次函数的图象》教学设计2
北师大版八年级数学上册:4.3《一次函数的图象》教学设计2一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容,本节课主要让学生掌握一次函数的图象特点,学会利用图象解决一些实际问题。
教材通过引入直线来表示函数关系,使学生对函数有更直观的认识。
学生通过观察、分析、归纳一次函数图象的性质,进一步理解函数与自变量、因变量之间的关系。
二. 学情分析八年级的学生已经学习了函数的概念、一次函数和正比例函数,对函数有一定的认识。
但学生在理解函数图象方面可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知基础,引导学生通过观察、实践、探究来加深对一次函数图象的理解。
三. 教学目标1.知识与技能:让学生掌握一次函数的图象特点,学会利用图象解决一些实际问题。
2.过程与方法:通过观察、分析、归纳一次函数图象的性质,培养学生的观察能力、分析能力及归纳能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生合作交流、积极探究的精神。
四. 教学重难点1.重点:一次函数的图象特点及性质。
2.难点:如何运用一次函数图象解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例引入一次函数图象,让学生感受到数学与生活的联系。
2.启发式教学法:引导学生观察、分析、归纳一次函数图象的性质,激发学生的思维。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.准备一些实际问题,用于导入和巩固环节。
2.制作一次函数图象的PPT,用于展示和讲解。
3.准备一些练习题,用于课后巩固。
七. 教学过程1.导入(5分钟)利用生活中的实例,如身高与年龄的关系,引出一次函数图象的概念。
让学生观察身高与年龄的对应关系,体会一次函数图象的直观性。
2.呈现(10分钟)通过PPT展示一次函数图象,引导学生观察、分析一次函数图象的性质。
如:斜率、截距、图象的形状等。
同时,讲解一次函数图象与实际问题的联系。
北师大版数学八年级上册4.3一次函数的图像(第1课时)教学设计
4.导入新课:通过以上环节,自然地导入本节课的主题——一次函数的图像。
(二)讲授新知
在这一环节中,我将详细讲解一次函数的定义、图像特点及其增减性。
1.一次函数定义:讲解一次函数的一般形式y=kx+b(k≠0,k、b是常数),并解释k、b的含义。
4.培养学生运用描点法绘制一次函数图像的方法,培养学生数形结合的数学思想。
(三)情感态度与价值观
1.培养学生对数学的兴趣和爱好,激发学生的学习积极性,使学生树立学习数学的信心高学生对数学价值的认识。
3.通过一次函数图像的学习,培养学生勇于探索、善于发现的精神,增强学生的创新意识。
1.分组:将学生分成若干小组,确保每个小组成员在数学水平上具有一定的互补性。
2.讨论任务:让各小组讨论一次函数图像的绘制方法、增减性及其在实际问题中的应用。
3.交流分享:在各小组讨论的基础上,组织学生进行班级分享,互相学习、取长补短。
4.教师点评:对各小组的讨论成果进行点评,强调重点、难点,并解答学生在讨论过程中遇到的问题。
北师大版数学八年级上册4.3一次函数的图像(第1课时)教学设计
一、教学目标
(一)知识与技能
1.理解一次函数的定义,掌握一次函数的一般形式:y=kx+b(k≠0,k、b是常数),并能够识别实际问题中的一次函数关系。
2.能够通过描点法绘制一次函数的图像,了解一次函数图像的特点,即直线图形。
3.能够根据一次函数的图像,判断函数的增减性,理解当k>0时,函数图像呈现上升趋势;当k<0时,函数图像呈现下降趋势。
1.基础巩固题:
(1)请同学们回顾一次函数的定义,并用自己的话简要解释一次函数中k和b的含义。
北师大版数学八年级上册3《一次函数的图象》教学设计3
北师大版数学八年级上册3《一次函数的图象》教学设计3一. 教材分析《一次函数的图象》是北师大版数学八年级上册第三章的内容。
本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。
通过本节内容的学习,使学生能够掌握一次函数的图象的特点,能够根据一次函数的图象判断一次函数的性质,为以后学习其他函数的图象打下基础。
二. 学情分析学生在学习本节内容之前,已经学习了函数的概念、一次函数的定义和性质,对函数有了初步的认识。
但是,对于一次函数的图象的特点,以及如何根据一次函数的图象判断一次函数的性质,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生通过观察、思考、操作、交流等途径,自主探索一次函数的图象的特点,提高学生的动手操作能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握一次函数的图象的特点,能够根据一次函数的图象判断一次函数的性质。
2.过程与方法:培养学生观察、思考、操作、交流的能力,提高学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极向上的学习态度。
四. 教学重难点1.重点:一次函数的图象的特点,一次函数的图象与一次函数的性质之间的关系。
2.难点:如何引导学生通过观察、思考、操作、交流等途径,自主探索一次函数的图象的特点。
五. 教学方法1.引导发现法:教师引导学生通过观察、思考、操作、交流等途径,自主探索一次函数的图象的特点。
2.讲解法:教师对一次函数的图象的特点进行讲解,帮助学生理解和掌握。
3.实践操作法:学生通过动手操作,观察一次函数的图象,加深对一次函数图象特点的理解。
六. 教学准备1.教具:黑板、粉笔、多媒体设备。
2.学具:每人一份一次函数图象的素材,如直线、折线等。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数的定义和性质,为新课的学习做好铺垫。
呈现(10分钟)教师通过多媒体展示一次函数的图象,如y=2x+1,y=3x-2等,让学生观察并思考以下问题:1.这些图象有什么共同的特点?2.如何根据图象判断一次函数的性质?学生在观察和思考的基础上,总结出一次函数的图象是一条直线,且斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点位置。
八年级数学上册第四章一次函数:一次函数的图象2一次函数的图象与性质说课稿新版北师大版
八年级数学上册说课稿新版北师大版:4.3.2 一次函数的图象与性质各位评委,老师大家好,今天我要说课内容是新课标人教版八年级上册《一次函数的图象和性质》从以下五个方面来说:教材分析教法分析学法分析程序设计评价说明教材分析:地位和作用本节教材是一次函数的图象和性质的第一课时,它是紧接一次函数的概念教学内容之后学习的。
从知识的掌握来看,它是对前面所学知识的深化和运用。
从对后继内容的学习来看,它为研究二次函数等较为复杂函数提供了研究的方向和方法.再有结合近年中考命题,一次函数往往是考察的重点和热点知识。
所以本节内容有着十分重要的地位教学目标:[认知目标]:1、理解直线y=kx+b与y=kx之间的位置关系;2、会利用两个合适的点画出一次函数的图象;3、掌握一次函数的性质.[能力目标]:(1)主要是培养学生的看图、识图.动手实践能力。
(2)通过对一次函数的图象和性质的探究,培养学生数形结合数学思想方法。
[情感目标]:通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
[ 教学重点 ]一次函数的图象和性质。
[教学难点]一次函数的图象性质的发现.[教法分析]1. 数形结合:整节课贯穿数形结合方法由数点的坐标描点得到一次函数形状,由一次函数的图象形状观察分析得出性质规律,通过典型习题的练习加深对数形结合方法的应用。
2.由特殊到一般的方法:图象和性质的学习探究都是通过此方法。
3.类比法:由于本节课是在正比例函数图象性质之后学习的,通过类比的方式,由正比例函数图象性质类比出一次函数图象性质,解决了本节课重难点,进而总结正比例函数图象性质与一次函数图象性质这两者之间的关系。
4.使用多媒体课件应用于课堂,增强知识的直观性,增大课堂容量。
[学法分析]1、应用自主探究、互助合作的学习方法。
培养学生独立思考能力,自主探究的学习习惯以及同学间的合作精神。
一次函数图象采用动手操作方式,是学生主动学习的过程,经历画图象进而感悟它的形状与正比例函数图象异同,为后面发现规律作了准备,这样学生所获更多,印象更深。
4.3 一次函数的图象(第2课时) 八年级上册北师大版
解: 列表
描点
连线
y
12
10
8
x
... -1 0 ...
y=-6x ... 6 0 ...
y=-6x+5 ... 11 5 ...
6 4
2
-2 -1 O 1 2 3 x
探究新知
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平 移 5 个单位长度得到.
-2
-3
y=-2x+1
探究新知 归纳小结
一次函数y=kx+b的图象也称为直线y=kx+b.
与x轴的交点 坐标
y=kx+b
y
(
-
b k
, 0)
(0, b)
O
x
与y轴的交点 坐标
由于两点确定一条直线,画一次函数图象时
我们只需描点(0,b)和点
b k
,
0
或
(1,k+b),连线即可.
探究新知 探究一 画出函数y=-6x与y=-6x+5的图象.
的两点,下列判断中,正确的是( D )
A.y1>y2 B. y1<y2
C.当x1<x2时,y1<y2 D.当x1<x2时,y1>y2
提示:反过来也成立:y越大,x就越小.
巩固练习
变式训练
1.在直线y=3x+6上,对于点A(x1,y1)和B(x2,y2)若x1>x2,
则y1 > y2.(填写大小关系)
4.3.21一次函数的图象导学案
白 草 塬 初 级 中 学 义务教育教科书 数学 八年级(上册)导学案 班级: 小组: 姓名: 学案编号:第1页 共2页 黑发不知勤学早 白首方悔读书迟 第2页 共2页《4.3.2一次函数的图象》导学案【学习目标】1、进一步掌握一次函数图象的一画法; 2、掌握一次函数系数与图象位置的关系。
3、 掌握一次函数的性质并会运用. 【学习重点】一次函数的图象和性质。
【学习重点】由一次函数的图像归纳得出一次函数的性质及对性质的理解. 【使用说明及学法指导】“操作—观察—讨论—归纳—应用”为主线的学习模式.【预 习 案】预习86--87页内容,完成下面问题: 一、知识链接:1、一般地,形如_______________(k ,b 是常数,k ≠0)的函数,叫做一次函数;当_________时,y=kx+b 即__________则为正比例函数,所以说正比例函数是一种特殊的一次函数.2、正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过_________的__________,我们称它为_________________.当k >0时,直线y=kx 经过第______、______象限,从左向右______,即________________________;当k <0时,直线y=kx 经过第______、______象限,从左向右_______,即_________________________.3、画函数图象的一般步骤是①_______ ②_______ ③________ 二、预习自测:4、直线y=-6x+5可由直线y=-6x 向_____平移_____个单位得到.5、直线y=kx-4与直线y=-2x 平行,则k=_______.【探 究 案】 三、自主学习: 1、自学86页例2. 四、交流展示:1、议一议 (P86)一次函数y=kx+b 的图象有什么特点?2、做一做(P86) :在同一直角坐标系内分别画出下列一次函数的图象(1)y=2x+3,(2)y=5x-2; (3)y=-x, (4)y=-x+3。
北师大版数学八年级上册3《一次函数的图象》教案3
北师大版数学八年级上册3《一次函数的图象》教案3一. 教材分析《一次函数的图象》是北师大版数学八年级上册第三章的内容。
本节课主要让学生了解一次函数的图象特点,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数的关系。
通过本节课的学习,学生能够掌握一次函数图象的基本性质,为后续学习其他函数图象打下基础。
二. 学情分析学生在七年级已经学习了函数的概念和一次函数的性质,对函数有一定的认识。
但是,对于一次函数的图象,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出一次函数的图象,让学生通过观察、操作、思考,自主探索一次函数图象的特点。
三. 教学目标1.了解一次函数的图象特点,学会绘制一次函数的图象。
2.能够分析一次函数图象与系数的关系。
3.培养学生的观察能力、操作能力、思考能力。
四. 教学重难点1.一次函数的图象特点。
2.一次函数图象与系数的关系。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等多种教学方法,引导学生从实际问题中抽象出一次函数的图象,让学生通过观察、操作、思考,自主探索一次函数图象的特点。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出一次函数的图象。
例如:某商店进行打折活动,原价100元的商品打8折后,售价为80元。
引导学生思考,如何用数学语言描述这个问题。
2.呈现(10分钟)通过PPT课件,展示一次函数的图象。
让学生观察并描述一次函数图象的特点。
引导学生发现,一次函数图象是一条直线,且斜率为正。
3.操练(10分钟)让学生自主绘制一次函数的图象。
可以让学生分组进行,每组选择一个一次函数,根据函数的系数,绘制出函数的图象。
引导学生通过操作,加深对一次函数图象的理解。
4.巩固(10分钟)通过一些练习题,让学生巩固一次函数图象的知识。
可以设置一些选择题、填空题,让学生回答。
5.拓展(10分钟)引导学生思考,一次函数图象与系数之间的关系。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案 新版北师大版
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案新版北师大版一. 教材分析本次课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,主要讲述了两个一次函数图象的应用。
本节课的内容是学生学习一次函数的进一步延伸,通过分析两个一次函数图象的交点、斜率等特征,培养学生解决实际问题的能力。
二. 学情分析学生在学习了八年级数学上册前几章的内容后,对一次函数的基本概念、性质和图象已经有了一定的了解。
但在解决实际问题时,还需要进一步引导他们运用一次函数的知识进行分析。
此外,学生可能对两个一次函数图象的交点、斜率等特征的理解不够深入,需要通过实例进行讲解和练习。
三. 教学目标1.理解两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.培养学生的分析问题和解决问题的能力,提高他们的数学思维水平。
3.培养学生合作交流的能力,提高他们的团队协作能力。
四. 教学重难点1.重点:掌握两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.难点:如何引导学生运用一次函数的知识分析实际问题,并找出解决问题的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生运用一次函数的知识进行分析;通过案例讲解,让学生了解两个一次函数图象的交点、斜率等特征;通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的案例和问题,以便在课堂上进行讲解和练习。
2.准备多媒体教学设备,以便进行图象展示和讲解。
3.准备练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,引导学生运用一次函数的知识进行分析。
例如:某商店进行促销活动,商品的原价一次函数为y=2x+1,促销价一次函数为y=x+3。
问:当商品原价等于促销价时,商品的价格是多少?2.呈现(15分钟)通过多媒体展示两个一次函数图象,让学生观察并分析图象的交点、斜率等特征。
八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案
八年级的学生好奇、好动、好表现,应尽量让学生发表自己的想法。
因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。
就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系更多说课稿因此在教学过程中教师要充分借助具体情境来激发学生学习兴趣的同时设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。
四、教学过程一、情境导入复习上节课学习的函数,教师提出问题:(1)什么是函数?(2)函数有哪些表示方式?(3)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢? 意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识。
二、探索过程(一)活动一某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L.(1)完成下表:0 50 100 150 200 300汽车行驶路程x/km油箱剩余汽油量y/L(2)你能写出x与y之间的关系式吗?(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?答案 (1) 100、91、82、73、64、46;(2) x与y之间的关系式为;kx b (,k b 为常数,当0b 时,则汽车油箱中的余油量从实际问题中抽象出一次函数和正比例函数的概念.效果:从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障总结出一次函数的定义,3x ,(2)5x ,(3)4x ,(4)223x x , 2x (6)12y x 中是一次函数的是_____,是正比例函数的是意图:对本节知识进行巩固练习。
效果:学生基本能交好的独立完成练习题,收到了较好的教学效果。
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质说课稿 (新版北师大版)
八年级数学上册4.3一次函数的图象第2课时一次函数的图象和性质说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.3一次函数的图象第2课时,主要讲述了一次函数的图象和性质。
在这一课时中,学生将学习一次函数的图象特点,以及如何通过图象来判断一次函数的性质。
教材通过生动的例题和丰富的练习,帮助学生理解和掌握一次函数的图象和性质,为后续学习其他函数打下基础。
二. 学情分析在开展本课时,学生已经学习了代数基础知识,对函数有了初步的认识。
然而,对于一次函数的图象和性质,他们可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,通过引导和启发,帮助他们理解和掌握一次函数的图象和性质。
三. 说教学目标1.知识与技能:使学生了解一次函数的图象特点,学会通过图象来判断一次函数的性质。
2.过程与方法:培养学生观察、分析、解决问题的能力,提高他们的数形结合思想。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:一次函数的图象特点,一次函数的性质。
2.教学难点:如何引导学生从图象中判断一次函数的性质,以及如何运用数形结合思想解决实际问题。
五. 说教学方法与手段1.教学方法:采用引导发现法、讨论法、案例分析法等,让学生在实践中学习,提高他们的动手能力和思维能力。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合现代教育技术,为学生提供丰富的学习资源。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考一次函数的图象和性质,激发学生的学习兴趣。
2.讲解新课:讲解一次函数的图象特点,通过例题分析,让学生学会如何从图象中判断一次函数的性质。
3.实践操作:让学生动手绘制一次函数的图象,观察图象特点,进一步理解一次函数的性质。
4.课堂讨论:学生进行小组讨论,分享各自的学习心得,互相答疑解惑。
5.巩固练习:布置一些具有代表性的练习题,让学生巩固所学知识,提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级上册数学4.3一次函数的图象(2)(导学案)
4.3一次函数的图象(2)
学习目标:
1、能熟练作出一次函数y=kx+b的图象.
2.通过画图归纳总结一次函数图象的性质,能说出函数中的k,b对函数图象的影响。
3.已知函数的代数表达式作函数的图象.
4.理解一次函数的代数表达式与图象之间的一一对应关系.
预习案
一、课前导学
阅读课本P86—P87,完成下列内容。
1、下列函数中,图象经过原点的为( )
A.y=5x+1 B.y=-5x-1 C.y=-5x D.y=51?x
2、作函数图象的基本步骤是
3、一次函数与正比例函数有何联系?
二、尝试练习
1、如果直线经过一、二、四象限,则有()
A . k>0,b>0 B. k>0,b<0 C. k<0,b>0 D.k<0,b<0 2、下面哪个点不在函数的图像上()
A、(-5,13) B.(0.5,2) C(3,0) D(1,1)
3、函数y=-2x图象在()
A、第一、三象限
B、第二、四象限
C、第二、三象限
D、第三、四象限
4、函数y=-3x,y=5x,y=6x共同点是()
A、图象位于同样象限
B、y随x增大而减小bkxy??.
C、图象经过原点
D、y随x增大而增大
5、若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________..
6、下列所给的点在正比例函数y=2x的图象上的是()
A、(2,1)
B、(1,2)
C、(-2,1)
D、(-1,2)
学习案
一、知识点拨
1、一次函数的图象的概念
2、作一次函数的基本步骤
3、一次函数图象上的点与函数关系式的对应关系
4、一次函数的性质
二、课内训练
1、一次函数的图象:把一个函数的自变量x与对应的因变量y的值分别作为点的_______和______,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的
_______..
2、请作出正比例函数y=2x的图象.
解:列表: x … -2 -1 0 1 2 …
y=2x
描点:以上表中5组对应值作为点的坐标,依次为___,___,____,____,____在直角坐标系内描出相应
的点.
连线:把这些点依次连接起来,得到y=2x的图象.它是一条________ 由例1我们发现:作一个函数的图象需要三个步骤:_______________ 3、动手操作,深化探索:
(1)作出正比例函数y=?3x的图象.
(2)请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.
①满足关系式y=?3x的x,y所对应的点(x,y)都在正比例函数y=?3x的图象上吗?
____________________
②正比例函数y=?3x的图象上的点(x,y)都满足关系式y=?3x吗?__________ ③正比
例函数y=kx的图象是____________________________________
④思考:既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢? ______________________. 4、合作探究,发现规律
在同一直角坐标系内作出y=x y=3x, y=-12x, y=-4x的图
x ……
y=-3x
……
解:列表、描点、连线。
x 0 1 y=x
y=3x
y=-12x
y=?4x
①思考:上述四个函数中,随着x的增大,y的值分别如何变化
? 总结:在正比例函数y=kx中,
当k>0时,图象在第____________象限,y的值随着x值的增大而________; 当k<0时, 图象在第___________象限, y的值随着x值的增大而____________. ②请你进一步思考:
a、正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?。
b、正比例函数y=-12x和y=-4x中,随着x值的增大y的值都减小了,其中哪一个减小得更快?你是如何判断的?。
反馈案
一、基础训练
1、下列图象哪个可能是函数y=-x的图象().
A B C D 2、函数y=-6x(x ≤0)图象是一条线,y随x增大而。
3、下列哪个点在 y=-5x的图象上().
A.(1,5) B.(-1,5) C.(-5,1) D.(0.5,2.5)
4、函数kxy?的图象经过点P(3,-1),则k的值为().
A.3 B.-3 C31 D.-31
5、在同一直角坐标系作正比例函数y=-2x与y=x的图象。