七年级上册北京第五十四中学数学期末试卷中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册北京第五十四中学数学期末试卷中考真题汇编[解析版]
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.将一副三角板放在同一平面内,使直角顶点重合于点O
(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.
(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.
(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.
【答案】(1)解:∵

同理:


(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:
(3)解:仍然成立.
理由如下:∵
又∵

【解析】【分析】(1)先计算出
再根据
(2)根据(1)中得出的度数直接写出结论即可.(3)根据
即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.
2.已知 (本题中的角均大于且小于 )
(1)如图1,在内部作,若,求的度数;
(2)如图2,在内部作,在内,在内,且
,,,求的度数;
(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.
【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD
又∵∠AOD+∠BOC=160°且∠AOB=120°

(2)解:,
设,则,
则,
(3) s或15s或30s或45s
【解析】【解答】(2)解:当OI在直线OA的上方时,
有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,
∠PON= ×60°=30°,
∵∠MOI=3∠POI,
∴3t=3(30-3t)或3t=3(3t-30),
解得t= 或15;
当OI在直线AO的下方时,
∠MON═(360°-∠AOB)═ ×240°=120°,
∵∠MOI=3∠POI,
∴180°-3t=3(60°- )或180°-3t=3( -60°),
解得t=30或45,
综上所述,满足条件的t的值为 s或15s或30s或45s
【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.
3.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC 和BC的中点.
(1)若点C恰好是AB中点,则DE=________cm;
(2)若AC=4cm,求DE的长;
(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;
(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.
【答案】(1)7
(2)解:∵AC=4cm ∴BC=AB-AC=10cm 又∵D为AC中点,E为BC中点∴CD=2cm,CE=5cm ∴DE=CD+CE=7cm.
(3)解:∵AC=acm ∴BC=AB-AC=(14-a)cm 又∵D为AC中点,E为BC中点∴CD=
cm,CE= cm ∴DE=CD+CE= +∴无论a取何值(不超过14)DE的长不变。

(4)解:设∠AOC=α,∠BOC=120-α ∵OD平分∠AOC,OE平分∠BOC ∴∠COD= ,
∠COE= ∴∠DOE=∠COD+∠COE= + = =60°∴∠DOE=60°与OC位置无关.
【解析】【解答】解:(1)∵AB=12cm,点D、E分别是AC和BC的中点,C点为AB的中点,
∴AC=BC=7cm,
∴CD=CE=3.5cm,
∴DE=7cm,.
【分析】(1)根据中点的定义AC=BC=AB,DC=AC,CE=CB,然后根据DE=DC+CE即可算出答案;
(2)首先根据BC=AB-AC 算出BC,根据中点的定义DC=AC,CE=CB,然后根据DE=DC+CE 即可算出答案;
(3)首先根据BC=AB-AC 表示出BC,根据中点的定义DC=AC,CE=CB,然后根据DE=DC+CE=AC+CB=(AC+CB)=AB即可算出答案;
(4)根据角平分线的定义∠COD =∠AOC ,∠COE =∠BOC ,然后根据
∠DOE=∠COD+∠COE =∠COD+∠COE=(∠COD+∠COE)=∠AOB即可得出答案。

4.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90 ).
(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:
ON是否平分∠AOC?请说明理由;
(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60 ,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.
【答案】(1)解:ON平分∠AOC.理由如下:∵OM平分∠BOC,∴∠BOM=∠MOC.∵∠MON=90°,∴∠BOM+∠AON=90°.又∵∠MOC+∠NOC=90°∴∠AON=∠NOC,即ON平分∠AOC
(2)解:∠BOM=∠NOC+30°.理由如下:∵∠BOC=60°,即:∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,所以:∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°,∴∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.
【解析】【分析】(1)ON平分∠AOC.理由如下:根据角平分线的定义得出∠BOM=∠MOC ,根据平角的定义得出∠BOM+∠AON=90°.又∠MOC+∠NOC=90°,根据等角的余角相等即可得出∠AON=∠NOC,即ON平分∠AOC ;
(2)∠BOM=∠NOC+30°.理由如下:根据角的和差得出∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,利用整体替换得出∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°。

5.如果两个角的差的绝对值等于,就称这两个角互为反余角,其中一个角叫做另一个角的反余角,例如,,,,则和互为反余角,其中是的反余角,也是的反余角.
(1)如图为直线AB上一点,于点O,于点O,则的反余角是________,的反余角是________;
(2)若一个角的反余角等于它的补角的,求这个角.
(3)如图2,O为直线AB上一点,,将绕着点O以每秒角的速度逆时针旋转得,同时射线OP从射线OA的位置出发绕点O以每秒角的速度逆时针旋转,当射线OP与射线OB重合时旋转同时停止,若设旋转时间为t秒,求当t为何值时,与互为反余角图中所指的角均为小于平角的角 .
【答案】(1);∠BOD、∠COE
(2)解:设这个角为,则补角为,反余角为或者:当反余角为时
解得:
:当反余角为时
解得:
答:这个角为或者
(3)解:当旋转时间为t时,与互为反余角.
射线OP从射线OA的位置出发绕点O以每秒角的速度逆时针旋转,当射线OP与射线OB重合时旋转同时停止,
此时:
.
解得:或者
答:当t为40或者10时,与互为反余角.
【解析】【解答】解:的反余角是,的反余角是、∠COE;
【分析】(1)由∠AOD-∠AOE=90°,可得∠AOE的反余角;由∠BOE-∠COE=90°,根据同角的余角相等可得∠COE=∠BOD,据此可得∠BOE的反余角是∠BOD、∠COE;
(2)设这个角为,则补角为,反余角为或者,所以分两种情况①当反余角为时②当反余角为时,分别列出方程,求出x值即可.
(3)当旋转时间为t时,与互为反余角,先求出此时t=45s,当t≤45时,可得∠POD=3t+30,∠POE=180-3t,根据互为反余角列出方程,求出t值即可.
6.将一副三角板如图1摆放在直线MN上,在三角板OAB和三角板OCD中,
,, .
(1)保持三角板OCD不动,将三角板OAB绕点O以每秒的速度逆时针旋转,旋转时间为t秒.
①当 ________秒时,OB平分此时 ________ ;
②当三角板OAB旋转至图2的位置,此时与有怎样的数量关系?请说明理由;________
(2)
如图3,若在三角板OAB开始旋转的同时,另一个三角板OCD也绕点O以每秒的速度逆时针旋转,当OB旋转至射线OM上时同时停止.
①当t为何值时,OB平分?
②直接写出在旋转过程中,与之间的数量关系.
【答案】(1)1.5;;

(2)解:①由题意:,,

所以t为2时,OB平分
②当时,
当时,
当时,
【解析】【解答】(1)①
当时,即

故答案为
【分析】(1)该小题是简单的旋转问题,结合图1即可求得t的值及与的关系该小题第二问涉及角的旋转问题,利用特殊角解决本题就好做多了(2)平分时,根据角平分线的定义即可建立等量关系
7.如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30 ,OB 运动速度为每秒10 ,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:
(1)如图①,若OA顺时针转动,OB逆时针转动, =________秒时,OA与OB第一次重合;
(2)如图②,若OA、OB同时顺时针转动,
①当 =3秒时,∠AOB=________ ;
②当为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?________
【答案】(1)4.5
(2);解:由题意知,
∴∠BON=10t ,∠AON=180-30t (0≤t≤6),∠AON=30t-180(6<t≤12).
当ON为∠AOB的角平分线时,有
180-30t =10t ,
解得:t =4.5;
当OA为∠BON的角平分线时,
10t =2(30t -180),
解得:t =7.2;
当OB为∠AON的角平分线时,
30t -180=2×10t ,
解得:t =18(舍去);
∴经过4.5,7.2秒时,射线OA、OB、ON其中一条射线是另外两条射线夹角的平分线
【解析】【解答】(1)解:若OA顺时针转动,OB逆时针转动,
∴∠AOM+∠BON=180 ,
∴,
解得:;
∴秒,OA与OB第一次重合;
故答案为:4.5
2)解:①若OA、OB同时顺时针转动,
∴,,
∴;
故答案为:120;
【分析】(1)设t秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180 减去OA转动的角度,加上OB转动的角度,即可得到答案;
②先用t的代数式表示∠BON和∠AON,然后分为三种情况进行讨论:当ON、OA、OB为角平分线时,分别求出t的值,即可得到答案.
8.如图,点C在线段AB上,点M,N分别是AC,BC的中点.
(1)若AC=8 cm,CB=6 cm,求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=a,其他条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;
(3)若点C在线段AB的延长线上,且满足AC-BC=b,M,N分别为AC,BC的中点,你能猜想MN的长度吗?请画出图.
【答案】(1)解:点M、N分别是AC、BC的中点,
∴CM= AC=4cm,
CN= BC=3cm,
∴MN=CM+CN=4+3=7cm
所以线段MN的长为7cm
(2)解:MN的长度等于 a,
根据图形和题意可得:
MN=MC+CN= AC+ BC= (AC+BC)= a
(3)解:MN的长度等于 b,
根据图形和题意可得:
MN=MC-NC= AC- BC= (AC-BC)= b.
【解析】【分析】(1)据“点M、N分别是AC,BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.
9.如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=________;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;
(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.
【答案】(1)25°
(2)解:如图②,∵OC平分∠EOA,∠AOC=65°,∴∠EOA=2∠AOC=130°,∵∠DOE=90°,∴∠AOD=∠AOE-∠DOE=40°,∵∠BOC=65°,∴∠COD=∠AOC-∠AOD=25°(3)解:根据图形得出∠AOD+∠COD=∠AOC=65°,∠COE+∠COD=∠DOE=90°


【解析】【解答】(1)如图①,∠COE=∠DOE-∠AOC=90°-65°=25°;
【分析】(1)根据图形得出∠COE=∠DOE-∠AOC,代入求出即可;(2)根据角平分线定义求出∠EOA=2∠AOC=130°,代入∠EOC=∠BOA-∠AOC,求出∠EOC,代入∠COD=∠DOE-∠EOC求出即可;(3)根据图形得出∠AOD+∠COD=∠AOC=65°,∠COE+∠COD=∠DOE=90°,相减即可求出答案.
10. O为直线AB上的一点,OC⊥OD,射线OE平分∠AOD.
(1)如图①,判断∠COE和∠BOD之间的数量关系,并说明理由;
(2)若将∠COD绕点O旋转至图②的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;
(3)若将∠COD绕点O旋转至图③的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.
【答案】(1)解:∠BOD=2∠COE,
理由如下:∵OC⊥OD
∴∠COD=90°
∴∠BOD=90°﹣∠AOC
∵射线OE平分∠AOD.
∴∠AOE=∠AOD
∵∠COE=∠AOE﹣∠AOC=﹣∠AOC=
∴∠BOD=2∠COE
(2)解:不发生变化,
理由如下:∵OC⊥OD
∴∠COD=90°
∵∠COE=90°﹣∠DOE,且∠BOD=180°﹣2∠DOE=2(90°﹣∠DOE)
∴∠BOD=2∠COE
(3)解:∠BOD+2∠COE=360°
理由如下:∵OC⊥OD
∴∠COD=90°
∴∠DOE=90°﹣∠COE,且∠BOD=90°+∠BOC=90°+90°﹣2∠DOE=180°﹣2∠DOE
∴∠BOD+2∠COE=360°
【解析】【分析】(1)本题运用统一量的思想求∠COE和∠BOD之间的数量关系。


为OC⊥OD,则∠BOD=90°﹣∠AOC,因为OE平分∠AOD,∠AOE=∠AOD,而∠AOD=∠COD+∠AOC=90°+∠AOC,从而由∠COE=∠AOE﹣∠AOC,把∠COE
用含∠AOC的代数式表示,经过比较即可求得∠BOD=2∠COE;
(2)本题也是运用统一量的思想,把∠COE和∠BOD用含∠DOE的代数式表示,即∠COE=90°﹣∠DOE,∠BOD=180°﹣2∠DOE=2(90°﹣∠DOE),两式比较即可得到∠BOD=2∠COE;
(3)本题依然运用统一量的思想,把∠BOD和∠DOE用含∠COE的代数式表示,即∠DOE=90°+∠COE,∠BOD=180°﹣2∠DOE,观察分析即可得出∠BOD+2∠COE=360°。

11.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
【答案】(1)解:AB∥CD.理由如下:
如图1,
∵∠1与∠2互补,
∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)证明:如图2,由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,
∴∠EPF=90°,
即EG⊥PF.
∵GH⊥EG,
∴PF∥G H;
(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,
∴∠3=2∠2.
又∵GH⊥EG,
∴∠4=90°-∠3=90°-2∠2.
∴∠EPK=180°-∠4=90°+2∠2.
∵PQ平分∠EPK,
∴∠QPK= ∠EPK=45°+∠2.
∴∠HPQ=∠QPK-∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.
【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;
(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;
(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角
的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.
12.综合题
(1)ⅰ问题引入
如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=________(用α表示);
ⅱ拓展研究
如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,试求∠BOC的度数________(用α表示).
ⅲ归纳猜想
若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=
∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=________(用α表示).
(2)类比探索
ⅰ特例思考
如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数________(用α表示).
ⅱ一般猜想
若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=
∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=________(用α表示).
【答案】(1)90°+∠α;120°+∠α;
(2)120°-∠α; .
【解析】【解答】(1)ⅰ90°+∠α;
ⅱ如图②,∵∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,∴∠BOC=180°-
(∠ABC+∠ACB)=180°-(180°-∠A)=180°-(180°-∠α)=180°-60°+∠α
=120°+∠α;
ⅲ;
( 2 )ⅰ如图③,∵∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,∴∠BOC=180°-(∠DBC+∠ECB)=180°- [360°-(∠ABC+∠ACB)]=180°- [360°-(180°-
∠A)]=180°-(180°+∠α)=180°-60°-∠α=120°-∠α.;
ⅱ .
【分析】(1)ⅰ根据角平分线的定义,可得出∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅱ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅲ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出
∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果。

(2)ⅰ根据∠CBO= ∠DBC,∠OCB= ∠ECB,可得出∠CBO+∠OCB=180°- (∠DBC+∠ECB),再根据平角的定义∠BOC=180°-[360°-(∠ABC+∠ACB)】,化简即可得出结果;根据∠CBO= ∠DBC,∠OCB= ∠ECB,可得出∠CBO+∠OCB=180°-
(∠DBC+∠ECB),再根据平角的定义∠BOC=180°-[360°-(∠ABC+∠ACB)】,化简即可得出结果。

13.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)
(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:
(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.
(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN
的值不变;② 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
【答案】(1)解:由题意:BD=2PC
∵PD=2AC,
∴BD+PD=2(PC+AC),即PB=2AP.
∴点P在线段AB上的处
(2)解:如图:
∵AQ-BQ=PQ,
∴AQ=PQ+BQ,
∵AQ=AP+PQ,
∴AP=BQ,
∴PQ= AB,

(3)解:② 的值不变.
理由:如图,
当点C停止运动时,有CD= AB,
∴CM= AB,
∴PM=CM-CP= AB-5,
∵PD= AB-10,
∴PN= AB-10)= AB-5,
∴MN=PN-PM= AB,
当点C停止运动,D点继续运动时,MN的值不变,
所以
【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得
PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有
CD= AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM= AB.
14.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.
①求t值;
②试说明此时ON平分∠AOC;
(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;
(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.
【答案】(1)解:①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.
∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;
②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC
(2)解:∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°
(3)解:设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.
即t=5时,射线OC第一次平分∠MON.
【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON列方程求解即可.
15.如图,已知AM//BN,∠A=600.点P是射线AM上一动点(与点A不重合),BC、BD 分别平分∠ABP和∠PBN.
(1)求∠ABN的度数
(2)当点P运动时,∠CBD的度数是否随之发生变化?若不变化,请求出它的度数。

若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数。

【答案】(1)证明:∵AM//BN
∴∠A+∠ABN=180°
∵∠A=60°
∴∠ABN=180°−∠A=180°−60=120°
(2)解:如图,
没有变化。

∵CB平分∠ABP, BD平分∠PBN
∴∠1= ∠ABP , ∠2= ∠PBN
∴∠CBD=∠1 +∠2 = ∠ABP+∠PBN)
= ×1200=600
(3)解:如图,
∵AM//BN
∴∠ACB=∠CBN
∵∠ACB=∠ABD
∴∠CBN=∠ABD
∴∠CBN−∠CBD=∠ABD−∠CBD
即∠1=∠4
又∵CB平分∠ABP, BD平分∠PBN
∴∠1=∠2 ∠3=∠4
∴∠1=∠2=∠3=∠4=120°÷4=30°
即∠ABC=30°
【解析】【分析】(1)根据两直线平行,同旁内角互补即可求出答案;
(2)根据角平分线的性质以及角度相加减即可得证;
(3)根据两直线平行,同旁内角互补以及已知条件得到∠CBN=∠ABD,根据角度的相加减得到∠1=∠4,再根据角平分线的性质得到∠1=∠2=∠3=∠4,最后根据∠ABN=120°即可得到答案.。

相关文档
最新文档