八年级上册银川数学期末试卷检测题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册银川数学期末试卷检测题(Word 版 含答案)
一、八年级数学全等三角形解答题压轴题(难)
1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .
(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;
(2)如图2,请写出AF 与DG 之间的关系并证明.
【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.
【解析】
【分析】
(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.
(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.
【详解】
解:(1)证明:设BE 与AD 交于点H..如图,
∵AD,BE 分别为BC,AC 边上的高,
∴∠BEA=∠ADB=90°.
∵∠ABC=45°,
∴△ABD 是等腰直角三角形.
∴AD=BD.
∵∠AHE=∠BHD,
∴∠DAC=∠DBH.
∵∠ADB=∠FDE=90°,
∴∠ADE=∠BDF.
∴△DAE ≌△DBF.
∴BF=AE,DF=DE.
∴△FDE 是等腰直角三角形.
∴∠DFE=45°.
∵G 为BE 中点,
∴BF=EF.
∴AE=EF.
∴△AEF 是等腰直角三角形.
∴∠AFE=45°.
∴∠AFD=90°,即AF ⊥DF.
(2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM,
∵点G 为BE 的中点,BG=GE.
∵∠BGM ∠EGD,
∴△BGM ≌△EGD.
∴∠MBE=∠FED=45°,BM=DE.
∴∠MBE=∠EFD,BM=DF.
∵∠DAC=∠DBE,
∴∠MBD=∠MBE+∠DBE=45°+∠DBE.
∵∠EFD=45°=∠DBE+∠BDF,
∴∠BDF=45°-∠DBE.
∵∠ADE=∠BDF,
∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.
∵BD=AD,
∴△BDM ≌△DAF.
∴DM=AF=2DG,∠FAD=∠BDM.
∵∠BDM+∠MDA=90°,
∴∠MDA+∠FAD=90°.
∴∠AHD=90°.
∴AF ⊥DG.
∴AF=2DG,且AF ⊥DG
【点睛】
本题考查三角形全等的判定和性质,关键在于灵活运用性质.
2.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直
角边且在AD 的上方作等腰直角三角形ADF .
(1)若AB AC =,90BAC ∠=︒
①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;
(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.
【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.
【解析】
【分析】
(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;
(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .
【详解】
解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,
∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,
∴∠CAF=∠BAD ,
在△ACF 和△ABD 中,
∵AB=AC ,∠CAF=∠BAD ,AD=AF ,
∴△ACF ≌△ABD(SAS),
∴CF=BD ,∠ACF=∠ABD=45°,
∵∠ACB=45°,
∴∠FCB=90°,
∴CF ⊥BD ;
②成立,理由如下:如图2:
∵∠CAB=∠DAF=90°,
∴∠CAB+∠CAD=∠DAF+∠CAD,
即∠CAF=∠BAD,
在△ACF和△ABD中,
∵AB=AC,∠CAF=∠BAD,AD=AF,
∴△ACF≌△ABD(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∴∠BCF=∠ACF+∠ACB=45°+45°=90°,
∴CF⊥BD;
(2)如图3,过点A作AE⊥AC交BC于E,
∵∠BCA=45°,
∴△ACE是等腰直角三角形,
∴AC=AE,∠AED=45°,
∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,
∴∠CAF=∠EAD,
在△ACF和△AED中,
∵AC=AE,∠CAF=∠EAD,AD=AF,
∴△ACF≌△AED(SAS),
∴∠ACF=∠AED=45°,
∴∠BCF=∠ACF+∠BCA=45°+45°=90°,
∴CF⊥BD.
【点睛】
本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的
判定和性质进行综合运用.
3.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .
(1)求出AFC ∠的度数;
(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)
(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.
【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.
【解析】
【分析】
(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;
(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;
(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题.
【详解】
(1)解:∵∠ACB =90°,∠B =60°,
∴∠BAC =90°﹣60°=30°,
∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,
∴∠FAC =15°,∠FCA =45°,
∴∠AFC =180°﹣(∠FAC+∠ACF )=120°
(2)解:FE 与FD 之间的数量关系为:DF =EF .
理由:如图2,在AC 上截取CG =CD ,
∵CE 是∠BCA 的平分线,
∴∠DCF =∠GCF ,
在△CFG 和△CFD 中,
CG CD DCF GCF CF CF =⎧⎪∠=∠⎨⎪=⎩

∴△CFG ≌△CFD (SAS ),
∴DF =GF .∠CFD =∠CFG
由(1)∠AFC =120°得,
∴∠CFD =∠CFG =∠AFE =60°,
∴∠AFG =60°,
又∵∠AFE =∠CFD =60°,
∴∠AFE =∠AFG ,
在△AFG 和△AFE 中,
AFE AFG AF AF
EAF GAF ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△AFG ≌△AFE (ASA ),
∴EF =GF ,
∴DF =EF ;
(3)结论:AC =AE+CD .
理由:如图3,在AC 上截取AG =AE ,
同(2)可得,△EAF ≌△GAF (SAS ),
∴∠EFA =∠GFA ,AG =AE
∵∠BAC+∠BCA=180°-∠B=180°-60°=120°
∴∠AFC =180°﹣(∠FAC+∠FCA)=180°-
12(∠BAC+∠BCA)=180°-12
×120°=120°, ∴∠EFA =∠GFA =180°﹣120°=60°=∠DFC ,
∴∠CFG =∠CFD =60°,
同(2)可得,△FDC ≌△FGC (ASA ),
∴CD =CG ,
∴AC =AG+CG =AE+CD .
【点睛】
本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.
4.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .
()1当点E 在线段AD 上时,
①若点E 与点A 重合时,请说明线段BF DC =;
②如图2,若点E 不与点A 重合,请说明BF DC AE =+;
()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).
【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD
【解析】
【分析】
(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到
120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;
(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.
【详解】
(1)①证明:AB AC =
B C ∴∠=∠
,60DF DE ADB =∠=︒,且E 与A 重合,
ADF
∴∆是等边三角形
60
ADF AFD
∴∠=∠=︒
120
AFB ADC
∴∠=∠=︒
在ABF
∆和ACD
∆中
AFB ADC
B C
AB AC
∠=∠


∠=∠

⎪=

ABF ACD
∴∆∆

BF DC
∴=
②如图2,过点A做AG∥EF交BC于点G,
∵∠ADB=60°DE=DF
∴△DEF为等边三角形
∵AG∥EF
∴∠
DAG=∠DEF=60°,∠AGD=∠EFD=60°
∴∠DAG=∠AGD
∴DA=DG
∴DA-DE=DG-DF,即AE=GF
由①易证△AGB≌△ADC
∴BG=CD
∴BF=BG+GF=CD+AE
(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,
由(1)可知,AE=GF,DC=BG,
BF CD BF BG GF AE
∴+=+==
故BF AE CD
=-.
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.
5.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为
t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由
(2)判断此时线段PC和线段PQ的关系,并说明理由。

(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变,设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由。

【答案】(1)△ACP≌△BPQ,理由见解析;
(2)PC=PQ且PC⊥PQ,理由见解析;
(3)存在;
1
1
t
x
=


=


2
3
2
t
x
=



=
⎪⎩

【解析】
【分析】
(1)利用SAS证得△ACP≌△BPQ;
(2)由(1)得出PC=PQ,∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(3)分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】
解:(1)如图(1),△ACP≌△BPQ,理由如下:
当t=1时,AP=BQ=1,
∴BP=AC=3,
又∵∠A=∠B=90°,
在△ACP和△BPQ中,
AP BQ
A B
AC BP
=


∠=∠

⎪=


∴△ACP≌△BPQ(SAS).
(2)PC=PQ且PC⊥PQ,理由如下:
由(1)可知△ACP≌△BPQ
∴PC=PQ,∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
∴PC⊥PQ.
(3)如图(2),分两种情况讨论:
当AC=BP,AP=BQ时,△ACP≌△BPQ,则
34t
t xt
=-


=


解得
1
1
t
x
=


=


当AC=BQ,AP=BP时,△ACP≌△BQP,则,
3
4
xt
t t
=


=-

解得
2
3
2
t
x
=



=
⎪⎩
综上所述,存在
1
1
t
x
=


=


2
3
2
t
x
=



=
⎪⎩
使得△ACP与△BPQ全等.
【点睛】
本题主要考查了全等三角形的判定与性质的综合应用,能熟练进行全等的分析判断以及运
用分类讨论思想是解题关键.
6.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).
(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;
(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时
DE AD BE 、、之间的数量关系(不需要证明).
【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD
【解析】
【分析】
(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;
(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.
【详解】
(1)不成立.
DE 、AD 、BE 之间的数量关系是DE=AD-BE ,
理由如下:如图,
∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,
∴∠ACD+∠CAD=90°,
又∠ACD+∠BCE=90°,
∴∠CAD=∠BCE ,
在△ACD 和△CBE 中,
90
ADC CEB
CAD BCE
AC CB
∠=∠=︒


∠=∠

⎪=


∴△ACD≌△CBE(AAS),
∴AD=CE,CD=BE,
∴DE=CE-CD=AD-BE;
(2)结论:DE=BE-AD.
∵∠ACB=90°,BE⊥CE,AD⊥CE,AC CB
=,
∴∠ACD+∠CAD=90°,
又∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ACD和△CBE中,
90
ADC CEB
CAD BCE
AC CB
∠=∠=︒


∠=∠

⎪=


∴△ADC≌△CEB(AAS),
∴AD=CE,DC=BE,
∴DE=CD-CE=BE-AD.
【点睛】
本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.
7.如图1,Rt△ABC中,∠A=90°,AB=AC,点D是BC边的中点连接AD,则易证AD=BD=CD,即AD=
1
2
BC;如图2,若将题中AB=AC这个条件删去,此时AD仍然等于
1
2
BC.
理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,
即可证得AH=BC,此时AD=
1
2
BC,由此可见倍长过中点的线段是我们三角形证明中常用
的方法.
(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;
(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出
△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.
(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.
【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.
【解析】
【分析】
(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.
(3)图5,图6中,上面的关系式仍然成立.
【详解】
(1)证明:如图2中,
∵BD=DC,∠ADB=∠HDC,AD=HD,
∴△ADB≌△HDC(SAS),
∴∠B=∠HCD,AB=CH,
∴AB∥CH,
∴∠BAC +∠ACH =180°,
∵∠BAC =90°,
∴∠ACH =∠BAC =90°,
∵AC =CA ,
∴△BAC ≌△HCA (SAS ),
∴AH =BC ,
∴AD =DH =BD =DC ,
∴AD =12
BC . 结论:直角三角形斜边上的中线等于斜边的一半.
(2)解:有这样分关系式.
理由:如图4中,延长ED 到H 山顶DH =DE .
∵ED =DH ,∠EDB =∠HDC ,DB =DC ,
∴△EDB ≌△HDC (SAS ),
∴∠B =∠HCD ,BE =CH ,
∵∠B +∠ACB =90°,
∴∠ACB +∠HCD =90°,
∴∠FCH =90°,
∴FH 2=CF 2+CH 2,
∵DF ⊥EH ,ED =DH ,
∴EF =FH ,
∴EF 2=BE 2+CF 2.
(3)图5,图6中,上面的关系式仍然成立.结论:EF 2=BE 2+CF 2.
证明方法类似(2).
【点睛】
本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
8.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.
(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请
问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.
(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.
【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.
【解析】
【分析】
(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;
(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;
(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.
【详解】
(1)∵BD ⊥直线l ,CE ⊥直线l ,
∴∠BDA=∠AEC=90°,
∴∠BAD+∠ABD=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∴∠CAE=∠ABD ,
在△ABD 与△CAE 中,
∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,
∴△ABD ≌△CAE(AAS),
∴BD=AE ,AD=CE ,
∵DE=AD+AE ,
∴DE=CE+BD ,
故答案为:DE=CE+BD ;
(2)(1)中结论还仍然成立,理由如下:
∵BDA AEC BAC α∠=∠=∠=,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,
∴∠CAE=∠ABD ,
在△ADB 与△CEA 中,
∵∠ABD=∠CAE ,∠ADB=∠CEA ,AB=AC ,
∴△ADB ≌△CEA(AAS),
∴AE=BD ,AD=CE ,
∴BD+CE=AE+AD=DE ,
即:DE=CE+BD ,
(3)DEF ∆为等边三角形,理由如下:
由(2)可知:△ADB ≌△CEA ,
∴BD=EA ,∠DBA=∠CAE ,
∵△ABF 与△ACF 均为等边三角形,
∴∠ABF=∠CAF=60°,BF=AF ,
∴∠DBA+∠ABF=∠CAE+CAF ,
∴∠DBF=∠FAE ,
在△DBF 与△EAF 中,
∵FB=FA ,∠FDB=∠FAE ,BD=AE ,
∴△DBF ≌△EAF(SAS),
∴DF=EF ,∠BFD=∠AFE ,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF 为等边三角形.
【点睛】
本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.
9.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =
,且AE BE = . (1)求线段 AO 的长;
(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;
(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.
【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是
102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152
t <≤;(3)存在,1t =或
53. 【解析】
【分析】
(1)只要证明△AOE ≌△BCE 即可解决问题;
(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;
(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;
【详解】
解:(1)∵AD 是高,∴90ADC ∠=
∵BE 是高,∴90AEB BEC ∠=∠=
∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,
∴EAO EBC ∠=∠
在AOE ∆和BCE ∆中,
EAO EBC AE BE
AEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴AOE ∆≌BCE ∆
∴5AO BC ==;
(2)∵23
BD CD =,=5BC ∴=2BD ,=3CD ,
根据题意,OP t =,4BQ t =,
①当点Q 在线段BD 上时,24QD t =-, ∴21(24)22S t t t t =
-=-+,t 的取值范围是102
t <<. ②当点Q 在射线DC 上时,42QD t =-, ∴21(42)22S t t t t =-=-,t 的取值范围是152
t <≤ (3)存在.
①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .
∴CQ=OP ,
∴5-4t ═t ,
解得t=1,
②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .
∴CQ=OP ,
∴4t-5=t , 解得t=53
. 综上所述,t=1或
53s 时,△BOP 与△FCQ 全等. 【点睛】
本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
10.已知:4590ABC A ACB ∆∠=∠=,,,点D 是AC 延长线上一点,且
22AD =,
,M 是线段CD 上一个动点,连接BM ,延长MB 到H ,使得HB MB =,以点B 为中心,将线段BH 逆时针旋转45,得到线段BQ ,连接AQ .
(1)依题意补全图形;
(2)求证:ABQ AMB ∠=∠;
(3)点N 是射线AC 上一点,且点N 是点M 关于点D 的对称点,连接BN ,如果QA BN =, 求线段AB 的长.
【答案】(1)见解析;(2)证明见解析;(3)22AB =
【解析】
【分析】
(1)根据题意可以补全图形;
(2)根据三角形外角的性质即可证明;
(3)作QE ⊥AB ,根据AAS 证得QEB BCM ≅,根据HL 证得
Rt QEA Rt BCN ≅,设法证得2AB CD =,设AC BC x ==,则2AB x =,22
CD x =,结合已知22AD =+,构建方程即可求解. 【详解】
(1)补全图形如下图所示:
(2)解:∵∠ABH 是
ABM 的一个外角,
∴ ABH BAM AMB ∠=∠+∠
∵ABH HBQ ABQ ∠=∠+∠ 又∵45HBQ BAM ∠=∠=︒
∴ ABQ AMB ∠=∠
(3)过Q 作QE ⊥AB ,垂足为E , 如下图:
∵⊥QE AB
∴90QEB BCM ∠=∠=︒, 在QEB 和BCM 中,QEB BCM QBE BMC QB BM ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴ QEB BCM ≅(AAS)
∴EB CM =,QE BC =,
在Rt QEA 和Rt BCN 中
∵QE BC =,
Q A BN = ∴Rt QEA Rt BCN ≅ (HL)
∴AE CN CM MD DN ==++
∵点N 是点M 关于点D 的对称点,
∴MD DN =
∴22AE CM MD EB MD =+=+
∴ ()2222AB AE EB EB MD EB MD CD =+=+=+=
设AC BC x ==,则2AB x =,2CD x =, 又∵22AD =
,2 AD AC CD x x =+= ∴2222
x x += 解得:2x =
∴ 22AB =【点睛】
本题主要考查了全等三角形的判定与性质、三角形外角定理、等腰直角三角形的判定与性质等知识点.熟悉全等三角形的判定方法以及正确作出辅助线、构建方程是解答的关键.
二、八年级数学 轴对称解答题压轴题(难)
11.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.
(1)求证:△DCE为等腰三角形;
(2)若∠CDE=22.5°,DC=2,求GH的长;
(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.
【答案】(1)证明见解析;(2)
2
2
;(3)CE=2GH,理由见解析.
【解析】【分析】
(1)根据题意可得∠CBD=1
2
∠ABC=
1
2
∠ACB,,由BD=DE,可得∠DBC=∠E=
1 2∠ACB,根据三角形的外角性质可得∠CDE=
1
2
∠ACB=∠E,可证△DCE为等腰三角
形;
(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;
(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣
(HE﹣CE)=1
2
BC﹣
1
2
BE+CE=
1
2
CE,即CE=2GH
【详解】
证明:(1)∵AB=AC,∴∠ABC=∠ACB,
∵BD平分∠ABC,
∴∠CBD=1
2
∠ABC=
1
2
∠ACB,
∵BD=DE,
∴∠DBC=∠E=1
2
∠ACB,
∵∠ACB=∠E+∠CDE,
∴∠CDE=1
2
∠ACB=∠E,
∴CD=CE,
∴△DCE是等腰三角形
(2)
∵∠CDE=22.5°,CD=CE2,
∴∠DCH=45°,且DH⊥BC,
∴∠HDC=∠DCH=45°
∴DH=CH,
∵DH2+CH2=DC2=2,
∴DH=CH=1,
∵∠ABC=∠DCH=45°
∴△ABC是等腰直角三角形,
又∵点G是BC中点
∴AG⊥BC,AG=GC=BG,
∵BD=DE,DH⊥BC
∴BH=HE2+1
∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1
∴GH=
2 2
(3)CE=2GH
理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,
∵BD=DE,DH⊥BC,
∴BH=HE,
∵GH=GC﹣HC=GC﹣(HE﹣CE)=1
2
BC﹣
1
2
BE+CE=
1
2
CE,
∴CE=2GH
【点睛】
本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.
12.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)
(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.
【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-3
4
∠C或∠ABC=3∠C
或∠ABC=180°-3∠C或∠A BC=90°,∠C是小于45°的任意锐角.
【解析】
试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.
(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.
试题解析:(1)如图①②(共有2种不同的分割法).
(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.
在△DBC中,
①若∠C是顶角,如图,则∠CBD=∠CDB=90°-1
2
x,∠A=180°-x-y.
故∠ADB=180°-∠CDB=90°+1
2
x>90°,此时只能有∠A=∠ABD,
即180°-x-y=y-
1
90
2
x
⎛⎫
-
⎪⎝⎭

∴3x+4y=540°,∴∠ABC=135°-3
4
∠C.
②若∠C是底角,
第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.
若AB=AD,则2x=y-x,此时有y=3x,
∴∠ABC=3∠C.
若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.
若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.
第二种情况:如图,
当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=
BD,∴∠A=∠ABD=1
2
∠BDC=1
2
∠C<∠C,这与题设∠C是最小角矛盾.
∴当∠C是底角时,BD=BC不成立.
综上所述,∠ABC与∠C之间的关系是∠ABC=135°-3
4
∠C或∠ABC=3∠C或∠ABC=
180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.
点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨
论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.
13.(1)问题发现.
如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .
①求证:ADC BEC ∆∆≌.
②求AEB ∠的度数.
③线段AD 、BE 之间的数量关系为__________.
(2)拓展探究.
如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .
①请判断AEB ∠的度数为____________.
②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)
【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+
【解析】
【分析】
(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;
(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.
【详解】
解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,
∴AC CB =,CD CE =,
又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,
∴ACD ECB ∠=∠,
∴()ADC BEC SAS ∆∆≌.
②∵CDE ∆为等边三角形,
∴60CDE ∠=︒.
∵点A 、D 、E 在同一直线上,
∴180120ADC CDE ∠=︒-∠=︒,
又∵ADC BEC ∆∆≌,
∴120ADC BEC ∠=∠=︒,
∴1206060AEB ∠=︒-︒=︒.
③AD BE =
ADC BEC ∆∆≌,
∴AD BE =.
故填:AD BE =;
(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,
∴AC CB =,CD CE =,
又∵90ACB DCE ∠=∠=︒,
∴ACD DCB ECB DCB ∠+∠=∠+∠,
∴ACD ECB ∠=∠,
在ACD ∆和BCE ∆中,
AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩

∴E ACD BC ∆∆≌,

ADC BEC ∠∠=.
∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,
∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.
②∵CDA CEB ∆∆≌,
∴BE AD =.
∵CD CE =,CM DE ⊥,
∴DM ME =.
又∵90DCE ∠=︒,
∴2DE CM =,
∴2AE AD DE BE CM =+=+.
故填:①90°;②2AE BE CM =+.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.
14.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金
三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:
(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;
(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.
(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.
【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°
【解析】
【分析】
(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;
(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;
(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.
【详解】
解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,
∴∠ABD=∠BAD,
∴△ABD为等腰三角形,
∴∠BDC=72°=∠C,
∴△BCD为等腰三角形;
(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:
(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:
①当分割的直线过顶点B时,
【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点
此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;
【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点
此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;
【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况
△BCD以B为顶点:∠A=36°,∠D=72°,
∴∠ABD=72°,最大角的值为72°;
△BCD以C为顶点:∠A=36°,∠D=54°,
∴∠ABD=90°,最大角的值为90°;
△BCD以D为顶点:∠A=36°,∠D=36°
∴∠ABD=108°,最大角的值为108°;
②当分割三角形的直线过点D时情况和过点B一样的;
③当分割三角形的直线过点A时,
此时∠A=36°,∠D=12°,∠B=132°,
最大角的值为132°;
综上所述:最大角的可能值为72°,90°,108°,126°,132°.
【点睛】
本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.
15.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.
⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;
⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;
⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.
【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.
【解析】
【分析】
(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设
∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可
得到结论.
【详解】
解: (1)∵∠B=∠C=35°,
∴∠BAC=110° ,
∵∠BAD=80°,
∴∠DAE=30°,
∵AD=AE ,
∴∠ADE=∠AED=75°,
∴∠CDE=∠AED-∠C=75°−35°=40°;
(2)∵∠ACB=75°,∠CDE=18° ,
∴∠E=75°−18°=57°,
∴∠ADE=∠AED=57°,
∴∠ADC=39°,
∵∠ABC=∠ADB+∠DAB=75° ,
∴∠BAD=36°.
(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β
①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α
∴y x y x ααβ=+⎧⎨=-+⎩
①② -②得,2α﹣β=0,
∴2α=β;
②如图2,当点D 在线段BC 上时,∠ADC=y°+α
∴+y x y x ααβ=+⎧⎨=+⎩
①② -①得,α=β﹣α,
∴2α=β;
③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α
∴180180y x y x αβα-++=⎧⎨++=⎩①②
-①得,2α﹣β=0,
∴2α=β.
综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .
【点睛】
本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.
16.再读教材:
宽与长的比是5-1
(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.
世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)
第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.
第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.
第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,
第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,
问题解决:
(1)图③中AB=________(保留根号);
(2)如图③,判断四边形 BADQ的形状,并说明理由;
(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.
(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.
【答案】(15(2)见解析;(3)见解析; (4) 见解析.
【解析】
分析:(1)由勾股定理计算即可;。

相关文档
最新文档