章复习 第14章 整式的乘法与因式分解

合集下载

(人教版)杭州八年级数学上册第十四章《整式的乘法与因式分解》知识点复习

(人教版)杭州八年级数学上册第十四章《整式的乘法与因式分解》知识点复习

一、选择题1.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( )A .52-B .52C .5D .-5B解析:B 【分析】 把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关C 解析:C【分析】根据幂的乘方和积的乘方的运算法则求解即可.【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72,故选:C【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键. 4.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- A 解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.5.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .18A 解析:A【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可.【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=,则()62106256126a b a b --=-+=-=-.故选:A .【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.6.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+ B解析:B【分析】 观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y + 分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.7.下列计算一定正确的是( )A .235a b ab +=B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+ B解析:B【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意.故选B .【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.8.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数C解析:C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】 ()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.9.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ).A .6或20B .20 或-20C .6或-6D .-6或20A 解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.10.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .54B 解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键.二、填空题11.计算:248(21)(21)(21)(21)1+++++=___________.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键 解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.12.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故 解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 13.若2a 与()23b +互为相反数,则2-=b a ______.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答 解析:-8【分析】根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可.【详解】由题意得:2a +2(3)b +=0∵2a ≥0,2(3)b +≥0,∴a-2=0,b+3=0,∴a=2,b=-3,∴2b-a=-6-2=8,故答案为:-8.【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.14.如图是一块长方形ABCD 的场地,长AB a 米,宽AD b 米,从A 、B 两处入口的小路宽都为1米,两小路汇合处的路宽是2米,其余部分种植草坪,则草坪面积为________2m .【分析】可以将草坪拼成一块完整的长方形分别表示出它的长和宽即可求出面积【详解】解:可以将草坪拼成一块完整的长方形这个长方形的长是:米宽是:米∴草坪的面积是:(平方米)故答案是:【点睛】本题考查多项式解析:22ab a b --+【分析】可以将草坪拼成一块完整的长方形,分别表示出它的长和宽即可求出面积.【详解】解:可以将草坪拼成一块完整的长方形,这个长方形的长是:112a a --=-米,宽是:1b -米,∴草坪的面积是:()()2122a b ab a b --=--+(平方米).故答案是:22ab a b --+.【点睛】本题考查多项式的乘法和图形的平移,解题的关键是通过平移的方法将不规则的图形拼成规则图形进行求解.15.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示)【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案.【详解】根据题意得:20a b c ++=,2342a b c ++=∴204223a b c b c =--=--∴222b c =-∴20202222a b c c c c =--=-+-=-∴()()2222222644w a b c c c c =⨯=--=-+- 故答案为:222644c c -+-.【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.16.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 17.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.18.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.19.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.1【分析】根据一元一次方程的定义可求出m 的值在将m 代入代数式计算即可【详解】原方程可整理为根据题意可知且所以所以故答案为:1【点睛】本题考查一元一次方程的定义以及代数式求值利用一元一次方程的定义求出解析:1【分析】根据一元一次方程的定义,可求出m 的值.在将m 代入代数式计算即可.【详解】原方程可整理为22(1)(1)80m x m x --++=.根据题意可知210m -=且10m +≠,所以1m =. 所以2008200811111m m --=--=.故答案为:1.【点睛】本题考查一元一次方程的定义以及代数式求值.利用一元一次方程的定义求出m 的值是解答本题的关键.20.分解因式:2a 2﹣8=______.2(a+2)(a-2)【分析】先提取公因式2再对余下的多项式利用平方差公式继续分解【详解】解:2a2-8=2(a2-4)=2(a+2)(a-2)故答案为:2(a+2)(a-2)【点睛】本题考查了用提解析:2(a+2)(a-2)【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2-8,=2(a 2-4),=2(a+2)(a-2).故答案为:2(a+2)(a-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.解析:(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a2+7a+a+7-a2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.22.阅读材料:把形2++的二次三项式(或其一部分)配成完全平方式的方法叫ax bx c配方法.配方法的基本形式是完全平方公式的逆写,即()2222a ab b a b ±+=±.请根据阅读材料解决下列问题:(1)填空:244a a -+=__________.(2)先化简,再求值:()()()33242a b a b a b ab ab +-+-÷,其中a b 、满足2226100a a b b ++-+=.(3)若a b c 、、分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.解析:(1)()22a -;(2)25-;(3)△ABC 为等边三角形,理由见解析.【分析】(1)根据完全平方公式即可因式分解;(2)先将原式化成最简式,然后将2226100a a b b ++-+=,分成两个完全平方公式的形式,根据非负数的性质求出a 、b 的值,代入最简式中计算即可;(3)将已知等式化成几个平方和的形式,再利用非负数的性质求解即可.【详解】解:(1)∵()22442a a a -+=-,故答案为:()22a -;(2)()()()33242a b a b a b ab ab +-+-÷=()2222222a b ab a b ab -+-÷=222222223a b a b a b -+-=-∵2226100a a b b ++-+=,∴()()22130a b ++-=, ∴13a b =-=,,把13a b =-=,代入上式得:()222223213322725a b -=⨯--⨯=-=-; (3)△ABC 为等边三角形,理由如下:∵222426240a b c ab b c ++---+=,∴()()()2221310a b c b -+-+-=, ∴01010a b c b -=-=-=,,,∴1a b c ===,∴△ABC 为等边三角形.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点与非负数的应用.23.所谓完全平方式,就是对一个整式M ,如果存在另一个整式N ,使2M N =,则称M 是完全平方式,如:422()x x =、222)2(x xy y x y =+++,则称4x 、222x xy y++是完全平方式.(1)下列各式中是完全平方式的编号有 .①2244a a b ++;②24x ;③22x xy y -+; ④21025y y --;⑤21236x x ++;⑥2124949a a -+ (2)已知a 、b 、c 是ABC ∆的三边长,满足22222()a b c c a b ++=+,判定ABC ∆的形状.(3)证明:多项式2(4)(8)64x x x +++是一个完全平方式.解析:(1)②⑤⑥;(2)ABC ∆是等边三角形;(3)见详解【分析】(1)根据完全平方公式的结构特征和完全平方式的定义,逐一判断即可;(2)把等式右边的代数式移到左边,再利用完全平方公式写成平方和的形式,从而即可得到a ,b ,c 的关系,进而即可得到结论;(3)利用完全平方公式进行因式分解,把原式写成一个整式的平方的形式,即可得到结论.【详解】(1)②24x =2(2)x ;⑤21236x x ++=2(6)x +;⑥2124949a a -+=21(7)7a -是完全平方式,①2244a a b ++;③22x xy y -+; ④21025y y --不是完全平方式,各式中完全平方式的编号有②⑤⑥,故答案为:②⑤⑥;(2)∵22222()a b c c a b ++=+,∴()()2222220a ac cb bc c -++-+=, ∴()()220a c b c -+-=,∴a-c=0且b-c=0,∴a=b=c ,∴ABC ∆是等边三角形;(3)∵原式=2(8)(4)64x x x +++=22(8)(816)64x x x x ++++=222(8)16(8)64x x x x ++++=22(8)8x x ⎡⎤++⎣⎦ =()2288x x ++,∴多项式2(4)(8)64x x x +++是一个完全平方式.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.24.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:-投入)解析:(1)(x+y )(x-y )+(x+3y )2;2x 2+6xy+8y 2;(2)①x=30,y=10;②相等【分析】(1)根据长方形的面积等于长乘以宽,正方形的面积等于边长的平方,最后再求和, (2)①根据整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.列方程组求解即可,②计算出A 园区的净收益和B 园区的净收益,再比较大小.【详解】解:(1)(x +y )(x -y )+(x +3y )2,=x 2-y 2+x 2+6xy +9y 2,=2x 2+6xy +8y 2;(2)①由题意得,()()()()()()()()()112350211243980x y x y x y x y x y x y x y x y x y ⎧⎡⎤⎡⎤++-----⎪⎣⎦⎣⎦⎨⎡⎤++-+---++⎪⎣⎦⎩==,整理得,12350270x y x y -=⎧⎨+=⎩, 解得:x =30,y =10,答:x =30,y =10.②A 园区整改后长为12x 米,宽为y 米,A 园区的净收益(22-12)×12xy =36000元,B 园区的净收益为(26-16)(x +3y )2=36000元,∴B 园区的净收益等于A 园区的净收益.【点睛】本题考查二元一次方程组、整式的加减、多项式乘以多项式的计算方法等知识,正确的列出多项式,并化简是解决问题的关键.25.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S . 解析:(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.26.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是________;(2)根据(1)中的结论,若95,4x y x y ⋅+==,则x y -=________; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)m -(2020)m -的值.解析:(1)(a +b )2-(a -b )2=4ab ;(2)±4;(3)-3【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,根据图1的面积和图2中白色部分的面积相等可得答案; (2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,将x +y =5,x •y 94=代入计算即可得出答案;(3)将等式(2019-m )+(m -2020)=-1两边平方,再根据已知条件及完全平方公式变形可得答案.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,∵图1的面积和图2中白色部分的面积相等,∴(a +b )2-(a -b )2=4ab ,故答案为:(a +b )2-(a -b )2=4ab ;(2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,∵x +y =5,x •y =94, ∴52-(x -y )2=4×94, ∴(x -y )2=16∴x -y =±4,故答案为:±4;(3)∵(2019-m )+(m -2020)=-1,∴[(2019-m )+(m -2020)]2=1,∴(2019-m )2+2(2019-m )(m -2020)+(m -2020)2=1,∵(2019-m )2+(m -2020)2=7,∴2(2019-m )(m -2020)=1-7=-6;∴(2019-m )(m -2020)=-3.【点睛】本题考查了完全平方公式的几何背景,熟练运用完全平方公式并数形结合是解题的关键. 27.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.解析:(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.28.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 解析:(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+- 22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键.。

八年级数学上册第十四章整式的乘法与因式分解知识点题库(带答案)

八年级数学上册第十四章整式的乘法与因式分解知识点题库(带答案)

八年级数学上册第十四章整式的乘法与因式分解知识点题库单选题1、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.2、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;3、若x 2+ax =(x +12)2+b ,则a ,b 的值为( ) A .a =1,b =14B .a =1,b =﹣14 C .a =2,b =12D .a =0,b =﹣12答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解.解:∵x 2+ax =(x +12)2+b =x 2+x +14+b , ∴a =1,14+b =0, ∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.4、下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x +14=(x ﹣12)2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)答案:B分析:直接利用提取公因式法以及公式法分解因式进而判断即可.解:A 、a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)=a 2b (a ﹣3)2,故此选项错误;B 、x 2﹣x +14=(x ﹣12)2,故此选项正确;C 、x 2﹣2x +4,无法运用完全平方公式分解因式,故此选项错误;D 、x 2﹣4=(x +2)(x ﹣2),故此选项错误;故选:B .小提示:本题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法进行解题.5、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分)①2xy−4xyz=2xy(1−2z);②−3x−6x2=−3x(1−2x);③a2+2a+1=a(a+2);④m2−4n2= (m−2n)2;⑤−2x2+2y2=−2(x+y)(x−y)A.40分B.60分C.80分D.100分答案:A分析:根据提公因式法及公式法分解即可.①2xy−4xyz=2xy(1−2z),故该项正确;②−3x−6x2=−3x(1+2x),故该项错误;③a2+2a+1=(a+1)2,故该项错误;④m2−4n2=(m+2n)(m−2n),故该项错误;⑤−2x2+2y2=−2(x+y)(x−y),故该项正确;正确的有:①与⑤共2道题,得40分,故选:A.小提示:此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若2a+3b−3=0,则4a×23b的值为()A.23B.24C.25D.26答案:A分析:先利用已知条件2a+3b−3=0,得2a+3b=3,再利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:∵2a+3b−3=0,∴2a+3b=3,∵4a×23b=(22)a×23b=22×a×23b=22a+3b,∴原式=4a×23b=(22)a×23b=22×a×23b=22a+3b=23,故选:A.小提示:本题主要考查了同底数幂的乘法运算和幂的乘方,正确将原式变形是解题关键.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知2n=a,3n=b,12n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b答案:D分析:直接利用积的乘方、幂的乘方运算法则将原式变形得出答案.A选项:ab=2n⋅3n=6n≠12n,即c≠ab,A错误;B选项:ab3=2n⋅(3n)3=2n⋅33n=2n⋅27n=54n≠12n,即c≠ab3,B错误;C选项:a3b=(2n)3⋅3n=8n⋅3n=24n≠12n,即c≠a3b,C错误;D选项:a2b=(2n)2⋅3n=4n⋅3n=12n=c,D正确.故选:D.小提示:本题主要考查了积的乘方运算,幂的乘方运算,正确将原式变形是解题关键.填空题11、计算:(√5-2)2018(√5+2)2019的结果是_____.答案:√5+2分析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.12、若|a|=2,且(a−2)0=1,则2a的值为_______.答案:1##0.254分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4.所以答案是:14小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.13、已知x−y=3,xy=10,则(x+y)2=______.答案:49分析:根据(x+y)2=(x-y)2+4xy即可代入求解.解:(x+y)2=(x-y)2+4xy=9+40=49.所以答案是:49.小提示:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14、分解因式:am+an−bm−bn=_________________答案:(m+n)(a−b)分析:利用分组分解法和提取公因式法进行分解因式即可得.解:原式=(am+an)−(bm+bn)=a(m+n)−b(m+n)=(m+n)(a−b),所以答案是:(m+n)(a−b).小提示:本题考查了因式分解,熟练掌握因式分解的方法是解题关键.15、若x−y−3=0,则代数式x2−y2−6y的值等于______.答案:9分析:先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.解:∵x−y−3=0,∴x−y=3,∴x2−y2−6y=(x+y)(x−y)−6y=3(x+y)−6y=3x+3y−6y=3(x−y)=9所以答案是:9.小提示:本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.解答题16、化简:3(a﹣2)(a+2)﹣(a﹣1)2.答案:2a2+2a-13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a﹣2)(a+2)﹣(a﹣1)2=3(a2-4)-(a2-2a+1)=3a2-12-a2+2a-1=2a2+2a-13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.17、爱动脑筋的小明在学习《幂的运算》时发现:若a m=a n(a>0,且a≠1,m、n都是正整数),则m= n,例如:若5m=54,则m=4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x×32x=236,求x的值;(2)如果3x+2+3x+1=108,求x的值.答案:(1)x=5(2)x=2分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.18、阅读:已知a、b、c为△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.答案:(1)③,忽略了a2−b2=0的情况;(2)见解析分析:(1)根据题意可直接进行求解;(2)由因式分解及勾股定理逆定理可直接进行求解.解:(1)由题意可得:从第③步开始错误,错的原因为:忽略了a2−b2=0的情况;故答案为③;忽略了a2−b2=0的情况;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2)c2(a2−b2)−(a2+b2)(a2−b2)=0(a2−b2)[c2−(a2+b2)]=0当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.小提示:本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键.解析:解:因为a2c2−b2c2=a4−b4,①所以c2(a2−b2)=(a2−b2)(a2+b2)②所以c2=a2+b2③所以△ABC是直角三角形④请据上述解题回答下列问题:(1)上述解题过程,从第______步(该步的序号)开始出现错误,错的原因为______;(2)请你将正确的解答过程写下来.。

初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn aa = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2015·襄阳中考)下列运算正确的是( ) =3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2015·烟台中考)下列运算中正确的是( ) +2a=5a2 B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2015·遵义中考)计算(−12ab2)3的结果是( )3 23218184.(2015·沈阳中考)下面的计算一定正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2015·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2015·长春中考)计算:7a2·5a3= .7.(2015·广州中考)分解因式:x2+xy= .8.(2015·东营中考)分解因式2a2-8b2= .9.(2015·无锡中考)分解因式:2x2-4x= .10.(2015·连云港中考)分解因式:4-x2= .11.(2015·盐城中考)分解因式a2-9= .12.(2015·长沙中考)x2+2x+1= .13.(2015·临沂中考)分解因式4x-x3= .14.(2015·安徽中考)分解因式:x2y-y= .15.(2015·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2015·遂宁中考)为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2015·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2015·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2015·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2015·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2015·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( ) A .4,3 B .3,4 C .5,2 D .2,510.(2015·日照)观察下列各式及其展开式: (a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b)10的展开式第三项的系数是( ) A .36 B .45 C .55 D .6611.计算:(x -y)(x 2+xy +y 2)= .12.(2015·孝感)分解因式:(a -b)2-4b 2= .13.若(2x +1)0=(3x -6)0,则x 的取值范围是 .14.已知a m =3,a n =2,则a 2m -3n = .15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c为.18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n个等式为.19.计算:(1)(2015·重庆)y(2x-y)+(x+y)2; (2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2015·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 定义2a b a b *=-,则(12)3**= .。

第十四章 整式的乘法与因式分解复习题--解答题(含解析)

第十四章 整式的乘法与因式分解复习题--解答题(含解析)

人教版八年级上14章整式的乘除与分解因式复习题(解答题)一.解答题1.(2018秋•雨花区校级月考)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,则(a,b)=c.我们叫(a,b)为“雅对”.例如:因为23=8,所以(2,8)=3.我们还可以利用“雅对”定义说明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5,故3m⋅3n=3m+n=3×5=15,则(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=;(5,1)=;(3,27)=.(2)计算(5,2)+(5,7)=,并说明理由.(3)利用“雅对”定义证明:(2n,3n)=(2,3),对于任意自然数n都成立.2.(2018春•苏州期中)规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.3.(2018春•开福区校级期中)阅读材料:n个相同的因数a相乘,可记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).根据以上材料,解决下列问题:(1)计算以下各对数的值:log24=,log216=,log264=;(2)根据(1)中的计算结果,写出log24,log216,log264满足的关系式;(3)根据(2)中的关系式及4,16,64满足的关系式猜想一般性结论:log a M+log a N=(a>0且a≠1,M>0,N>0);(4)根据幂的运算法则说明(3)中一般性结论的正确性.4.(2018春•苏州期中)若33×9m+4÷272m﹣1的值为729,求m的值.5.(2018春•利津县期末)若x m=16,x n=128,求x2m﹣n的值.6.(2018秋•安溪县期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)7.(2018秋•松北区校级期中)(1)计算:﹣82018×(﹣0.125)2018(2)已知a m=6,a n=2,求a2m+3n的值.8.(2018•安庆一模)特殊两位数乘法的速算﹣﹣如果两个两位数的十位数字相同,个位数字相加为10,那么能立即说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.如:47×43=2021,61×69=4209.(1)请你直接写出83×87的值;(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.(3)99991×99999=.9.(2017秋•武昌区期末)如图,某小区有一块长为4a米(a>1),宽为(4a﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a+1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A型绿化方案,对正中间的长方形采用B型绿化方案.(1)用含a的代数式表示采用A型绿化方案的四个正方形边长是米,B型绿化方案的长方形的另一边长是米.(2)请你判断使用A型,B型绿化方案的面积哪个少?并说明理由.(3)若使用A型,B型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多元,求a的值.10.(2018春•三原县期末)如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=(2a+6b)米,BC=(8a+4b)米.(1)该长方形ABCD的面积是多少平方米?(2)若E为AB边的中点,DF=BC,现打算在阴影部分种植一片草坪,这片草坪的面积是多少平方米?11.(2018秋•开福区校级月考)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.12.(2018秋•海安县期中)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,求p、q的值;13.(2018秋•宜宾县期中)小明在计算一个多项式乘﹣2x2+x﹣1时,因看错运算符号,变成了加上﹣2x2+x﹣1,得到的结果为4x2﹣2x﹣1,那么正确的计算结果为多少?14.(2018秋•德惠市校级月考)已知(x+a)(x2﹣x+c)的乘积中不含x2和x项,求a,c的值.15.(2018秋•临清市校级月考)计算:(1)(3a+b2)(b2﹣3a)(2)(m﹣2n)216.(2018秋•龙凤区校级月考)利用乘法公式计算:(1)5002﹣499×501.(2)50×4917.(2018秋•武邑县校级月考)化简:(2x+3y)2﹣2(2x+3y)(2x﹣3y)+(2x﹣3y)218.(2018秋•襄汾县期中)已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.19.(2018秋•德惠市校级月考)已知a+b=2,a2+b2=10,求:(1)ab的值.(2)a﹣b的值.20.(2018春•福田区校级期末)乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n﹣p)(2m﹣n+p)21.(2018春•常熟市期末)(1)如图1,阴影部分的面积是.(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).22.(2018秋•思明区校级期中)如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.23.(2018秋•路南区期中)已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a﹣b)2,ab 之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a﹣b)2的值.24.(2018春•大田县期中)乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B 种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.25.(2018春•杏花岭区校级期中)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均剪成四个小长方形,然后拼成如图乙所示的一个大正方形.(1)你认为图乙中的阴影部分的正方形的边长=;(2)请用两种不同的方法求图乙中阴影部分的面积:方法一:方法二:(3)观察图乙,请你写出下列代数式之间的等量关系:(m+n)2、(m﹣n)2、mn.(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=7,求a﹣b的值.26.(2018春•埇桥区期末)(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求x2+xy+y2的值.27.(2018春•沧县期末)请给4x2+1添上一个单项式,使新得到的多项式能运用完全平方公式分解因式.请写出两种情况,并对其分别进行因式分解.28.(2018春•宿豫区期中)把下列各式因式分解:(1)a4﹣1(2)(x+2)(x+4)+x2﹣429.(2017秋•前郭县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.30.(2018春•郓城县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.31.(2018春•诸城市期末)因式分解:(1)x2y﹣2xy2+y3(2)4ax2﹣48ax+128a;(3)(x2+16y2)2﹣64x2y232.(2018春•雨城区校级期中)分解因式:(1)a2(a﹣b)+b2(b﹣a)(2)a2﹣4ab+4b2﹣2a+4b33.(2018春•市中区期末)先阅读下面的村料,再分解因式.要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得am+an+bm+bn=a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)中又有公困式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b),因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2=a(b﹣c)﹣b(b﹣c)(请你完成分解因式下面的过程)=(2)m2﹣mn+mx﹣nx;(3)x2y2﹣2x2y﹣4y+8,34.(2018春•揭阳期末)甲、乙两个同学分解因式x2﹣4x+m+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.35.(2018春•迁安市期末)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.36.(2018春•滦县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)我们把这种因式分解的方法称为“换元法”,请据此回答下列问题;(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果:.(2)请模仿上面的方法尝试对多项式(m2﹣2m)(m2﹣2m+2)+1进行因式分解.37.(2018春•山亭区期末)解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.38.(2018春•常熟市期末)将下列各式分解因式(1)3x(a﹣b)﹣9y(b﹣a);(2)a2﹣4a﹣12;(3)81x4﹣72x2y2+16y4人教版八年级上14章整式的乘除与分解因式复习题(解答题)参考答案与试题解析一.解答题1.(2018秋•雨花区校级月考)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,则(a,b)=c.我们叫(a,b)为“雅对”.例如:因为23=8,所以(2,8)=3.我们还可以利用“雅对”定义说明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5,故3m⋅3n=3m+n=3×5=15,则(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=2;(5,1)=0;(3,27)=3.(2)计算(5,2)+(5,7)=(5,14),并说明理由.(3)利用“雅对”定义证明:(2n,3n)=(2,3),对于任意自然数n都成立.【分析】(1)根据上述规定即可得到结论;(2)设(5,2)=x,(5,7)=y,根据同底数幂的乘法法则即可求解;(3)设(2n,3n)=x,于是得到(2n)x=3n,即(2x)n=3n根据“雅对”定义即可得到结论.【解答】解:(1)∵22=4,∴(2,4)=2;∵50=1,∴(5,1)=0;∵33=27,∴(3,27)=3;故答案为:2,0,3;(2)设(5,2)=x,(5,7)=y,则5x=2,5y=7,∴5x+y=5x•5y=14,∴(5,14)=x+y,∴(5,2)+(5,7)=(5,14),故答案为:(5,14);(3)设(2n,3n)=x,则(2n)x=3n,即(2x)n=3n所以2x=3,即(2,3)=x,所以(2n,3n)=(2,3).2.(2018春•苏州期中)规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.【分析】(1)直接利用已知a*b=2a×2b,将原式变形得出答案;(2)直接利用已知得出等式求出答案.【解答】解:(1)∵a*b=2a×2b,∴2*3=22×23=4×8=32;(2)∵2*(x+1)=16,∴22×2x+1=24,则2+x+1=4,解得:x=1.3.(2018春•开福区校级期中)阅读材料:n个相同的因数a相乘,可记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).根据以上材料,解决下列问题:(1)计算以下各对数的值:log24=2,log216=4,log264=6;(2)根据(1)中的计算结果,写出log24,log216,log264满足的关系式;(3)根据(2)中的关系式及4,16,64满足的关系式猜想一般性结论:log a M+log a N=log a MN(a>0且a≠1,M>0,N>0);(4)根据幂的运算法则说明(3)中一般性结论的正确性.【分析】(1)根据a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b (即log a b=n),进而得出答案;(2)利用(1)中所求进而得出答案;(3)利用(2)中所求规律进而得出答案;(4)利用发现的规律进而分析得出答案.【解答】解:(1)log24=2,log216=4,log264=6;故答案为:2,4,6;(2)由(1)得:log2 4+log2 16=log2 64;(3)由(2)得:log a M+log a N=log a MN;故答案为:log a MN;(4)记log a M=m,log a N=n,则M=a m,N=a n,所以MN=a m•a n=a m+n,所以log a MN=log a a m+n=m+n,所以log a M+log a N=log a MN.4.(2018春•苏州期中)若33×9m+4÷272m﹣1的值为729,求m的值.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.5.(2018春•利津县期末)若x m=16,x n=128,求x2m﹣n的值.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵x m=16,x n=128,∴x2m﹣n=(x m)2÷x n=162÷128=2.6.(2018秋•安溪县期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=3,(﹣2,4)=2,(﹣2,﹣8)=3;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30)【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算.【解答】解:(1)53=125,(5,125)=3,(﹣2)2=4,(﹣2,4)=2,(﹣2)3=﹣8,(﹣2,﹣8)=3,故答案为:3;2;3;(2)设(4,5)=x,(4,6)=y,(4,30)=z,则4x=5,4y=6,4z=30,4x×4y=4x+y=30,∴x+y=z,即(4,5)+(4,6)=(4,30).7.(2018秋•松北区校级期中)(1)计算:﹣82018×(﹣0.125)2018(2)已知a m=6,a n=2,求a2m+3n的值.【分析】(1)直接利用积的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则将原式变形得出答案.【解答】解:(1)﹣82018×(﹣0.125)2018=﹣(8×0.125)2018=﹣1;(2)∵a m=6,a n=2,∴a2m+3n=(a m)2×(a n)3=36×8=288.8.(2018•安庆一模)特殊两位数乘法的速算﹣﹣如果两个两位数的十位数字相同,个位数字相加为10,那么能立即说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.如:47×43=2021,61×69=4209.(1)请你直接写出83×87的值;(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.(3)99991×99999=9999000009.【分析】(1)根据“前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积”进行计算;(2)这两个两位数的十位数字为x(x>3),个位数字分别为y和z,则由题知y+z=10,利用多项式乘多项式的计算法则解答;(3)利用1×9=9,91×99=909,991×999=99009…找出规律解答.【解答】解:(1)83和87满足题中的条件,即十位数都是8,8>3,且个位数字分别是3和7,之和为10,那么它们的乘积是一个4位数,前两位数字是8和9的乘积,后两位数字就是3和7的乘积,因而,答案为:7221;(2)这两个两位数的十位数字为x(x>3),个位数字分别为y和z,则由题知y+z=10,因而有:(10x+y)(10x+z)=100x2+10xz+10xy+yz=100x2+10x(y+z)+yz=100x2+100x+yz=100x(x+1)+yz得证;(3)1×9=991×99=909991×999=99009…99991×99999=9999000009.故答案是:9999000009.9.(2017秋•武昌区期末)如图,某小区有一块长为4a米(a>1),宽为(4a﹣2)米的长方形地块.该长方形地块正中间是一个长为(2a+1)米的长方形,四个角是大小相同的正方形,该小区计划将阴影部分进行绿化,对四个角的正方形用A型绿化方案,对正中间的长方形采用B型绿化方案.(1)用含a的代数式表示采用A型绿化方案的四个正方形边长是(a﹣)米,B 型绿化方案的长方形的另一边长是(2a﹣1)米.(2)请你判断使用A型,B型绿化方案的面积哪个少?并说明理由.(3)若使用A型,B型绿化方案的总造价相同,均为1350元,每平方米造价高的比低的多元,求a的值.【分析】(1)根据题意表示出A、B型绿化方案的边长或另一边长即可;(2)分别表示出A、B型的面积,利用作差法判断大小即可;(3)根据题意列出分式方程,求出方程的解即可得到结果.【解答】解:(1)A型绿化方案的四个正方形边长是(a﹣)米,B型绿化方案的长方形的另一边长是(2a﹣1)米;故答案为:(a﹣);(2a﹣1);(2)记A型面积为S A,B型面积为S B,根据题意得:S A=4(a﹣)2=4a2﹣4a+1,S B=(2a+1)(2a﹣1)=4a2﹣1,∴S A﹣S B=﹣4a+2,∵4a﹣2>0,∴﹣4a+2<0,即S A﹣S B<0,则S A<S B;(3)由(2)得S A<S B,∴﹣=,即﹣=,解得:a=2,经检验a=2是分式方程的解.10.(2018春•三原县期末)如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=(2a+6b)米,BC=(8a+4b)米.(1)该长方形ABCD的面积是多少平方米?(2)若E为AB边的中点,DF=BC,现打算在阴影部分种植一片草坪,这片草坪的面积是多少平方米?【分析】(1)根据长方形的面积公式,多项式与多项式相乘的法则计算;(2)根据题意分别求出AE,AF,根据多项式与多项式相乘的法则计算.【解答】解:(1)长方形ABCD的面积=AB×BC=(2a+6b)(8a+4b)=16a2+56ab+24b2;(2)由题意得,AF=AD﹣DF=BC﹣BC=(8a+4b)﹣(8a+4b)=(6a+3b),AE=(2a+6b)=a+3b,则草坪的面积=×AE×AF=×(a+3b)(6a+3b)=3a2+ab+b2.11.(2018秋•开福区校级月考)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.【分析】(1)利用矩形的面积公式计算即可;(2)求出正方形的面积即可解决问题;(3)构建不等式即可解决问题;【解答】解:(1)∵S1=(m+13)(m+3)=m2+16m+39,S2=(m+7)(m+5)=m2+12m+35,∴S1﹣S2=4m+4>0,∴S1>S2.(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为m+8,∴正方形的面积=m2+16m+64,∴m2+16m+64﹣(m2+16m+39)=25,∴该正方形的面积与长方形的面积的差是一个常数;(3)由(1)得,S1﹣S2=4m+4,∴当19<4m+4≤20时,∴<m≤4,∵m为正整数,m=4.12.(2018秋•海安县期中)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,求p、q的值;【分析】利用多项式乘多项式法则及合并同类项法则化简式子,找出x项与x3令其系数等于0求解.【解答】解:(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴p﹣3=0,qp+1=0,∴p=3,q=﹣.13.(2018秋•宜宾县期中)小明在计算一个多项式乘﹣2x2+x﹣1时,因看错运算符号,变成了加上﹣2x2+x﹣1,得到的结果为4x2﹣2x﹣1,那么正确的计算结果为多少?【分析】根据整式的加减混合运算求出原多项式,根据多项式乘多项式法则求出正确的结果.【解答】解:原多项式为:(4x2﹣2x﹣1)﹣(﹣2x2+x﹣1)=4x2﹣2x﹣1+2x2﹣x+1=6x2﹣3x(6x2﹣3x)(﹣2x2+x﹣1)=﹣12x4+6x3﹣6x2+6x3﹣3x2+3x=﹣12x4+12x3﹣9x2+3x.14.(2018秋•德惠市校级月考)已知(x+a)(x2﹣x+c)的乘积中不含x2和x项,求a,c的值.【分析】根据多项式乘多项式的法则计算,让x2项和x项的系数为0,即可求得a,c的值.【解答】解:(x+a)(x2﹣x+c)=x3﹣x2+cx+ax2﹣ax+ac=x3+(a﹣1)x2+(c﹣a)x+ac,∵(x+a)(x2﹣x+c)的乘积中不含x2和x项,∴a﹣1=0且c﹣a=0,则a=c=1.15.(2018秋•临清市校级月考)计算:(1)(3a+b2)(b2﹣3a)(2)(m﹣2n)2【分析】(1)根据平方差公式求出即可;(2)根据完全平方公式求出即可.【解答】解:(1)(3a+b2)(b2﹣3a)=(b2)2﹣(3a)2=b4﹣9a2;(2)(m﹣2n)2=m2﹣4mn+4n2.16.(2018秋•龙凤区校级月考)利用乘法公式计算:(1)5002﹣499×501.(2)50×49【分析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式变形后,利用平方差公式计算即可求出值.【解答】解:(1)原式=5002﹣(500﹣1)×(500+1)=5002﹣(5002﹣1)=5002﹣5002+1=1;(2)原式=(50+)×(50﹣)=2500﹣=2499.17.(2018秋•武邑县校级月考)化简:(2x+3y)2﹣2(2x+3y)(2x﹣3y)+(2x﹣3y)2【分析】先根据完全平方公式和平方差公式展开,再去括号、合并同类项即可得.【解答】解:原式=4x2+12xy+9y2﹣2(4x2﹣9y2)+4x2﹣12xy+9y2=4x2+12xy+9y2﹣8x2+18y2+4x2﹣12xy+9y2=36y2.18.(2018秋•襄汾县期中)已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.【分析】直接利用完全平方公式将原式变形,进而得出答案.【解答】解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.19.(2018秋•德惠市校级月考)已知a+b=2,a2+b2=10,求:(1)ab的值.(2)a﹣b的值.【分析】(1)根据(a+b)2=a2+b2+2ab求出即可;(2)先求出(a﹣b)2的值,再开方即可.【解答】解:(1)∵a+b=2,a2+b2=10,∴(a+b)2=4,∴a2+b2+2ab=4,∴10+2ab=4,∴ab=﹣3;(2)∵ab=﹣3,a2+b2=10,∴(a﹣b)2=a2+b2﹣2ab=10﹣2×(﹣3)=16,∴a﹣b==±4.20.(2018春•福田区校级期末)乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b)(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n﹣p)(2m﹣n+p)【分析】(1)由图形的面积关系即可得出结论;(2)由图形即可得到长方形的长,宽以及面积;(3)依据两图的阴影部分面积相等,可以得到乘法公式;(4)依据平方差公式以及完全平方公式,即可得到计算结果.【解答】解:(1)由图可得,阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可得,矩形的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2;故答案为:(a+b)(a﹣b)=a2﹣b2;(4)(2m+n﹣p)(2m﹣n+p)=(2m)2﹣(n﹣p)2=4m2﹣(n2﹣2np+p2)=4m2﹣n2+2np﹣p2.21.(2018春•常熟市期末)(1)如图1,阴影部分的面积是a2﹣b2.(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是(a﹣b)(a+b).(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:a2﹣b2=(a﹣b)(a+b).(4)应用公式计算:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【分析】(1)根据面积的和差,可得答案;(2)根据矩形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可.【解答】解:(1)如图(1)所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知a2﹣b2=(a﹣b)(a+b),故答案为:a2﹣b2=(a﹣b)(a+b);(4)(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××…××=×=.22.(2018秋•思明区校级期中)如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.【分析】根据完全平方公式即可求出答案.【解答】解:∵a2+b2=(a+b)2﹣2ab=100﹣40=60,∴阴影部分的面积=a2+b2﹣(a+b)•b﹣a2=60﹣×ab﹣b2﹣a2=60﹣×20﹣×60=60﹣10﹣30=20.23.(2018秋•路南区期中)已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a﹣b)2,ab 之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a﹣b)2的值.【分析】(1)根据图形即可得出图乙中阴影部分小正方形的边长为a﹣b;(2)直接利用正方形的面积公式得到图中阴影部分的面积为(a﹣b)2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(a+b)2﹣4ab;(3)根据图中阴影部分的面积是定值得到(a+b)2,(a﹣b)2,ab之间的等量关系式;(4)利用(3)中的公式得到(a﹣b)2=(a+b)2﹣4ab,进而得出(a﹣b)2的值.【解答】解:(1)图乙中小正方形的边长为a﹣b.(2)方法①:S=(a﹣b)2;方法②:S=(a+b)2﹣4ab;(3)因为图中阴影部分的面积不变,所以(a﹣b)2=(a+b)2﹣4ab;(4)由(3)得:(a﹣b)2=(a+b)2﹣4ab,∵a+b=8,ab=12,∴(a﹣b)2=82﹣4×12=64﹣48=16.24.(2018春•大田县期中)乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B 种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:(a+b)2;方法2:a2+b2+2ab(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(a+b)2=a2+2ab+b2(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;(3)画出长为a+2b,宽为a+b的长方形,即可验证:(a+b)(a+2b)=a2+3ab+2b2;(4)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设2018﹣a=x,a﹣2017=y,即可得到x+y=1,x2+y2=5,依据(x+y)2=x2+2xy+y2,即可得出xy==﹣2,进而得到(2018﹣a)(a﹣2017)=﹣2.【解答】解:(1)图2大正方形的面积=(a+b)2图2大正方形的面积=a2+b2+2ab故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设2018﹣a=x,a﹣2017=y,则x+y=1,∵(2018﹣a)2+(a﹣2017)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2,∴xy==﹣2,即(2018﹣a)(a﹣2017)=﹣2.25.(2018春•杏花岭区校级期中)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均剪成四个小长方形,然后拼成如图乙所示的一个大正方形.(1)你认为图乙中的阴影部分的正方形的边长=m﹣n;(2)请用两种不同的方法求图乙中阴影部分的面积:方法一:(m﹣n)2方法二:(m+n)2﹣4mn(3)观察图乙,请你写出下列代数式之间的等量关系:(m+n)2、(m﹣n)2、mn(m﹣n)2=(m+n)2﹣4mn.(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=7,求a﹣b的值.【分析】(1)根据图乙中的阴影部分的正方形的边长等于小长方形的长减去宽进行判断;(2)图乙中阴影部分的面积既可以用边长的平方进行计算,也可以用大正方形的面积减去四个小长方形的面积进行计算;(3)根据(m﹣n)2和(m+n)2﹣4mn表示同一个图形的面积进行判断;(4)根据(a﹣b)2=(a+b)2﹣4ab,进行计算即可得到a﹣b的值.【解答】解:(1)由题可得,图乙中的阴影部分的正方形的边长等于m﹣n;故答案为:m﹣n;(2)方法一:图乙中阴影部分的面积=(m﹣n)2方法二:图乙中阴影部分的面积=(m+n)2﹣4mn;故答案为:(m﹣n)2,(m+n)2﹣4mn;(3)∵(m﹣n)2和(m+n)2﹣4mn表示同一个图形的面积;∴(m﹣n)2=(m+n)2﹣4mn;故答案为:(m﹣n)2=(m+n)2﹣4mn;(4)∵(a﹣b)2=(a+b)2﹣4ab,而a+b=8,ab=7,∴(a﹣b)2=82﹣4×7=64﹣28=36,∴a﹣b=±6.26.(2018春•埇桥区期末)(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求x2+xy+y2的值.【分析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式,再利用完全平方公式分解因式,进而把已知代入求出答案.【解答】解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n);(2)x2+xy+y2=(x2+2xy+y2)=(x+y)2,当x+y=1时,原式=×12=.27.(2018春•沧县期末)请给4x2+1添上一个单项式,使新得到的多项式能运用完全平方公式分解因式.请写出两种情况,并对其分别进行因式分解.【分析】添加4x或﹣4x,利用完全平方公式分解即可.【解答】解:添加4x,得4x2+4x+1=(2x+1)2,添加﹣4x,得4x2﹣4x+1=(2x﹣1)2.28.(2018春•宿豫区期中)把下列各式因式分解:(1)a4﹣1(2)(x+2)(x+4)+x2﹣4【分析】(1)直接利用平方差公式计算得出答案;(2)直接将原式分解因式进而提取公因式得出答案.【解答】解:(1)a4﹣1=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)(x+2)(x+4)+x2﹣4=(x+2)(x+4)+(x+2)(x﹣2)=(x+2)(2x+2)=2(x+2)(x+1).29.(2017秋•前郭县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的C(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否.(填“是”或“否”)如果否,直接写出最后的结果(x ﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)这个结果没有分解到最后,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:否,(x﹣2)4;(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.30.(2018春•郓城县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)。

人教版八年级数学上册14.整式的乘除与因式分解--复习课件

人教版八年级数学上册14.整式的乘除与因式分解--复习课件
不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36

第十四章整式的乘法与因式分解-题型

第十四章整式的乘法与因式分解-题型

第十四章整式的乘法与因式分解14.1整式的乘法题型一:整式乘法与整式加减的综合例1:计算:(1)(a+b)(a-2b)-(a+2b)(a-b)(2)5x(x2+2x+1)-(2x+3)(x-5)变式训练:(1)(x+3)(x+4)-x(x+2)-5 (2)(3a-2b)(b-3a)-(2a-b)(3a+b)题型二:整式乘法与方程的综合例2:解方程(3x-2)(2x-3)=(6x+5)(x-1)变式训练:解方程2x(x-1)-(x+1)(2x-5)=12题型三:整式乘法与表达不等式的综合例3:解不等式(3x+4)(3x-4)>9(x-2)(x+3)变式训练:解不等式(2x-1)÷(2x-1)>(2x+5)(2x-5)-2题型四:整式的化简求值例4:先化简,再求值(-2a4x2+4a3x3 -a2x4)÷(-a2x3),其中a=,x=-4.。

变式训练:已知2x-y=10,求代数式[(x2+y2)-(x-y)2+2y(x-y)]÷4y的值。

题型五:整式乘法的实际应用例5:西红柿丰收了,为了方便运输,小红的爸爸把一根长方形为a cm,宽为 a cm的长方形铁板做成了一个有底无盖的盒子。

在长方形铁板的四个角上各截去一个边长为b cm的小正方形(2b<a),然后沿虚线折起即可,如图14-1所示,现在要将盒子的外部表面贴上彩色花纸,小花任务至少需要彩色纸花的面积实际就是小盒子外部的表面积,可以用以下两种方法求得:①直接法,小盒子外部表面的面积=四个侧面的面积+底面的面积=2[(a-2b)b+(a-2b)b]+(a-2b)(a-2b);②间接法,小盒子外部表面的面积=原长方形的面积-四个小正方形的面积=a·a-4b2 。

请你就是一下这两种方法的结果是否一样。

变式训练:如图所示,有正方形卡片A类、B类和长方形卡片C类各若干张,若干要拼一个长为(a+2b),宽为(a+b)的大长方形,那么需要C类卡片多少张?题型六:逆用幂的运算法则例6:已知2x=m,2y=n,2z=mn,求证x+y=z变式训练:已知10m=5,10n=6,求102m+3n的值。

第14章 整式的乘法与因式分解(提优卷)学生版-2024-2025学年八年级数学上册真题汇编章节复习

第14章 整式的乘法与因式分解(提优卷)学生版-2024-2025学年八年级数学上册真题汇编章节复习

2024-2025学年人教版数学八年级上册章节真题汇编检测卷(提优)第14章整式的乘法与因式分解考试时间:120分钟试卷满分:100分难度系数:0.54姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•金沙县期末)下列从左到右的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.a2+2a+1=a(a+2)+1C.a3+2a2+a=a(a2+2a)D.m3﹣mn2=m(m+n)(m﹣n)2.(2分)(2023春•城关区校级期中)下列各式从左到右,是因式分解的是()A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)23.(2分)(2023春•衢江区期末)如(x+m)与(x+4)的乘积中不含x的一次项,则m的值为()A.﹣4 B.4 C.0 D.14.(2分)(2022秋•黄冈期末)若(a2+b2+1)(a2+b2﹣1)=35,则a2+b2=()A.3 B.6 C.±3 D.±65.(2分)(2023春•成县期末)下列各式中,从左到右的变形是因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣4x+4=x(x﹣4)+4C.(x+3)(x﹣4)=x2﹣x﹣12 D.x2﹣4=(x+2)(x﹣2)6.(2分)(2022秋•城关区校级期末)若a m=4,a n=7,则a m+n的值为()A.3 B.11 C.28 D.无法计算7.(2分)(2023春•连平县期末)下面四个整式中,不能表示图中(图中图形均为长方形)阴影部分面积的是()A.﹣x2+5x B.x(x+3)+6C.3(x+2)+x2D.(x+3)(x+2)﹣2x8.(2分)(2023•东莞市校级一模)已知3m=2,3n=5,则32m+n=()A.B.10 C.9 D.209.(2分)(2022秋•鼓楼区校级期末)若二次三项式ax2+bx+c=(a1x+c1)(a2x+c2),则当a>0,b<0,c >0时,c1,c2的符号为()A.c1>0,c2>0 B.c1<0,c2<0 C.c1>0,c2<0 D.c1,c2同号10.(2分)(2023•安徽模拟)若实数a、b满足a2+b2=1,则ab+a+3b的最小值为()A.﹣3 B.﹣2 C.1 D.3评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•建昌县期末)分解因式:mn2+6mn+9m=.12.(2分)(2023春•高港区期中)若x2+mx+16是完全平方式,则m的值是.13.(2分)(2023春•福山区期中)如图1.将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为.(2023春•兴化市期末)已知二次三项式x2+mx+9能用完全平方公式分解因式,则m的值为.14.(2分)(2023春•靖江市期末)若(x+2)(x2﹣ax+5)的乘积中不含x的一次项,则a=.(2分)15.16.(2分)(2023春•江都区期中)若3x=4,3y=5,则3x﹣y=.17.(2分)(2022秋•夏邑县期末)若x2+2(m﹣3)x+16是完全平方式,则m的值为.18.(2分)(2022秋•番禺区期末)若(x﹣1)(x+2)=x2+ax﹣2,则a=.19.(2分)(2023春•达川区校级期末)多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.20.(2分)(2021秋•卢龙县校级期末)计算:15(24+1)(28+1)(216+1)(232+1)=.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2023春•永定区期末)分解因式:(1)﹣2x3+8xy2 (2)3a2﹣12a+1222.(6分)(2022秋•魏都区校级期末)通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图1是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的形状拼成一个正方形.请解答下列问题:(1)图2中阴影部分的正方形的边长是.(2)请用两种不同的方法求图2中阴影部分的面积:方法1:;方法2:.(3)观察图2,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是.(4)根据(3)中的等量关系解决如下问题:若x+y=6,xy=,则(x﹣y)2=.23.(8分)(2022秋•陕州区期末)如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.24.(8分)(2022秋•射洪市期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下面试题:已知x2﹣4y2=12,x+2y=4,求x和y的值;25.(8分)(2023春•金水区校级期中)(1)已知2x+5y﹣3=0,试求4x×32y的值.(2)已知2m=3,2n=5,求24m+2n的值.26.(8分)(2022春•阳谷县期中)阅读,学习和解题.(1)阅读和学习下面的材料:比较355,444,533的大小.分析:小刚同学发现55,44,33都是11的倍数,于是把这三个数都转化为指数为11的幂,然后通过比较底数的方法,比较了这三个数的大小.解法如下:解:∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,∴533<355<444.学习以上解题思路和方法,然后完成下题:比较34040,43030,52020的大小.(2)阅读和学习下面的材料:已知a m=3,a n=5,求a3m+2n的值.分析:小刚同学发现,这些已知的和所求的幂的底数都相同,于是逆用同底数幂和幂的乘方公式,完成题目的解答.解法如下:解:∵a3m=(a m)3=33=27,a2n=(a n)2=52=25,∴a3m+2n=a3m•a2n=27×25=675.学习以上解题思路和方法,然后完成下题:已知a m=2,a n=3,求a2m+3n的值.(3)计算:(﹣16)505×(﹣0.5)2021.27.(8分)(2022秋•怀柔区期末)小柔在进行因式分解时发现一个现象,一个关于x的多项式x2+ax+b若能分解成两个一次整式相乘的形式(x+p)(x+q),则当x+p=0或x+q=0时原多项式的值为0,因此定义x=﹣p和x=﹣q为多项式x2+ax+b的0值,﹣p和﹣q的平均值为轴值.例:x2﹣2x+3=(x﹣3)(x+1),x﹣3=0或x+1=0时x2﹣2x+3=0,则x=3和x=﹣1为x2﹣2x+3的0值,3和﹣1的平均值1为x2﹣2x+3的轴值.(1)x2﹣4的0值为,轴值为;(2)若x2+ax+4的0值只有一个,则a=,此时0值与轴值相等;(3)x2﹣bx(b>0)的0值为x1,x2(x1<x2),轴值为m,则x1=,若x2﹣6x+m的0值与轴值相等,则b=.28.(8分)(2021秋•定西期末)我们在课堂上学习了运用提取公因式法、公式法等分解因式的方法,但单一运用这些方法分解某些多项式的因式时往往无法分解.例如:a2+6ab+9b2﹣1,通过观察可知,多项式的前三项符合完全平方公式,通过变形后可以与第四项结合再运用平方差公式分解因式,解题过程如下:a2+6ab+9b2﹣1=(a+3b)2﹣1=(a+3b+1)(a+3b﹣1),我们把这种分解因式的方法叫做分组分解法.利用这种分解因式的方法解答下列各题:(1)分解因式:x2﹣y2﹣2x+1;(2)若△ABC三边a、b、c满足a2﹣2bc+2ac﹣ab=0,试判断△ABC的形状,并说明理由.。

《整式的乘法与因式分解》(原卷版)

《整式的乘法与因式分解》(原卷版)

2022-2023学年人教版数学八年级上册章节考点精讲精练第14章《整式的乘法与因式分解》知识点01:幂的运算1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方: (为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方: (为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.m n ,m n ,n a m n ,m n 知识互联网知识导航5.零指数幂:即任何不等于零的数的零次方等于1.细节剖析:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点02:整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.细节剖析:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式. 5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加. 即:知识点03:乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.细节剖析:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相()010.a a =≠mc mb ma c b a m ++=++)(c b a m ,,,()()a b m n am an bm bn ++=+++()()()2x a x b x a b x ab ++=+++()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++22()()a b a b a b +-=-a b ,反项”的平方.2. 完全平方公式:;两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.细节剖析:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点04:因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等. 细节剖析:落实好方法的综合运用:首先提取公因式,然后考虑用公式; 两项平方或立方,三项完全或十字; 四项以上想分组,分组分得要合适; 几种方法反复试,最后须是连乘式; 因式分解要彻底,一次一次又一次.考点01:单项式乘多项式1.(2022秋•福州月考)若计算(3x 2+2ax +1)•(﹣3x )﹣4x 2的结果中不含有x 2项,则a 的值为( ) A .2B .0C .﹣D .﹣2.(2022秋•商水县月考)数学课上,老师讲了单项式乘多项式,放学回到家,李刚拿出课堂笔记复习,发现一道题:﹣4xy (3y ﹣2x ﹣3)=﹣12xy 2□+12xy ,□的地方被墨水弄污了,你认为□内应填写( ) A .+8x 2yB .﹣8x 2yC .+8xyD .﹣8xy 23.(2021秋•沐川县期末)已知A 是多项式,若A ×2xy =x 2y 2﹣2x 2y ﹣3xy 2,则A = .4.(2019秋•闵行区校级月考)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:﹣3xy (4y ﹣2x ﹣1)=﹣12xy 2+6x 2y +□,□的地方被墨水弄污了,你认为□处应填写 .()2222a b a ab b +=++2222)(b ab a b a +-=-考点提优练5.(2021秋•廉江市期末)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.考点02:多项式乘多项式6.(2022秋•铁西区校级月考)若(x+3)(2x﹣m)=2x2+nx﹣15,则()A.m=﹣5,n=1 B.m=﹣5,n=﹣1 C.m=5,n=1 D.m=5,n=﹣17.(2022春•雁塔区校级期中)已知(x2+ax)(x2﹣2x+b)的乘积中不含x3和x2项,那么b﹣a=()A.﹣2 B.2 C.0 D.48.(2022春•温州期中)用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为a+b的长方形,需要B类卡片()张.A.3 B.4 C.5 D.69.(2022春•通川区期末)已知(x﹣m)(x2﹣2x+n)展开后得到多项式为x3﹣(m+2)x2+x+5,则n2+4m2的值为.10.(2022春•和平区校级月考)已知4x=10,25y=10,则(x﹣2)(y﹣2)+3(xy﹣1)的值为.11.(2022春•雅安期末)已知x≠1.观察下列等式:(1﹣x)(1+x)=1﹣x2;(1﹣x)(1+x+x2)=1﹣x3;(1﹣x)(1+x+x2+x3)=1﹣x4;…(1)猜想:(1﹣x)(1+x+x2+x3+…+x n﹣1)=;(2)应用:根据你的猜想请你计算下列式子的值:①(1﹣2)(1+2+22+23+24+25+26)=;②(x﹣1)(x2022+x2021+x2020+…+x2+x+1)=.(3)判断2100+299+298+…+22+2+1的值的个位数是几?并说明你的理由.12.(2022春•全椒县期末)数学课上,老师用图1中的一张边长为a的正方形纸片A,1张边长为b的正方形纸片B和2张宽与长分别为a与b的长方形纸片C,拼成了如图2所示的大正方形,观察图形并解答下列问题:(1)由图1和图2可以得到的等式为(用含a,b的等式表示);(2)莉莉想用这三种纸片拼出一个面积为(2a+b)(a+2b)的大长方形,求需A,B,C三种纸片各多少张;(3)如图3,S1,S2分别表示边长为p,q的正方形的面积,且A,B,C三点在一条直线上,S1+S2=20,p+q=6.求图中阴影部分的面积.考点03:同底数幂的除法13.(2022秋•渝中区校级月考)下列运算正确的是()A.(x3)2=x5B.3x2+2x2=5x4C.x8÷x2=x6D.(2xy)2=2x2y214.(2022秋•兰考县月考)下列运算不正确的是()A.a2•a3=a5B.a5÷a=a4C.a4﹣2a4=﹣a4D.(﹣a2)3=﹣a515.(2021秋•淮阳区期末)已知25a•52b=5b,4b÷4a=4,则代数式a2+b2值是.16.(2022春•东台市期中)已知a﹣2b﹣3c=2,则2a÷4b×的值是.17.(2021春•毕节市期中)(1)已知3×9m×27m=311,求m的值.(2)已知2a=3,4b=5,8c=5,求8a+c﹣2b的值.18.(2021春•海州区校级期中)尝试解决下列有关幂的问题:(1)若9×27x=317,求x的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若x=×25m+×5m+,y=×25m+5m+1,请比较x与y的大小.考点04:完全平方公式19.(2022春•北碚区校级期中)设a=x﹣2020,b=x﹣2022,c=x﹣2021,若a2+b2=56,则c2=()A.27 B.24 C.22 D.2020.(2022秋•工业园区校级月考)若A=x2+2x﹣6y,B=﹣y2+4x﹣11,则A、B的大小关系为()A.A>B B.A<B C.A≥B D.A=B21.(2022春•汉寿县期末)若x+y=3,xy=﹣5,则(x﹣y)2=.22.(2022春•莱西市期中)小淇将(2018x+2019)2展开后得到a1x2+b1x+c1;小尧将(2019x﹣2018)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值为.23.(2022春•招远市期末)利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(c﹣a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你检验这个等式的正确性;(2)若a=2020,b=2021,c=2022,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值吗?考点05:完全平方公式的几何背景24.(2022春•碑林区校级期末)如图,正方形ABCD的边长为x,其中AI=5,JC=3,两个阴影部分都是正方形且面积和为60,则重叠部分FJDI的面积为()A.28 B.29 C.30 D.3125.(2022春•钱塘区期末)如图,边长为6的正方形ABCD中放置两个长和宽分别为a,b(a<6,b<6)的长方形,若长方形的周长为16,面积为15.75,则图中阴影部分面积S1+S2+S3=.26.(2022春•皇姑区校级期中)图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于;(2)观察图2写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系;(3)若mn=﹣3,m﹣n=5,则:①(m+n)2的值为;②m2+n2的值为;③m4+n4的值为.考点06:平方差公式27.(2022春•新城区校级期中)下列等式成立的是()A.(﹣x﹣1)(﹣x﹣1)=x2﹣2x+1B.(﹣x+1)(﹣x+1)=﹣x2﹣2x+1C.(1+x)(﹣x+1)=1﹣x2D.(﹣x+1)(﹣x﹣1)=﹣x2﹣128.(2021秋•望城区期末)如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:7=7×1=(4+3)×(4﹣3)=42﹣32,7就是一个智慧数,8=4×2=(3+1)×(3﹣1)=32﹣12,8也是一个智慧数,则下列各数不是智慧数的是()A.2021 B.2022 C.2023 D.202429.(2022春•铁岭期中)若a2﹣b2=﹣72,a﹣b=12,则a+b的值为.30.(2021秋•如皋市期中)小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+)×(1+)×(1+)×(1+)+=.31.(2022春•莲池区期末)阅读理解:我们知道,(a+b)2=a2+2ab+b2,①(a﹣b)2=a2﹣2ab+b2,②①﹣②得:(a+b)2﹣(a﹣b)2=4ab.所以.利用上面乘法公式的变形有时能简化计算,例如:.发现运用:根据阅读解答问题(1)利用上面乘法公式的变形填空:101×99=()2﹣()2.(2)利用上面乘法公式的变形计算:9.2×10.8.(3)根据平方差公式可得:(m+2)(m﹣2)=m2﹣22,请利用上面乘法公式的变形验证此等式成立.考点07:平方差公式的几何背景32.(2021秋•台江区期中)能够用如图中已有图形的面积说明的等式是()A.a(a+4)=a2+4a B.(a+4)(a﹣4)=a2﹣16C.(a+2)(a﹣2)=a2﹣4 D.(a+2) 2=a2+4a+433.(2020秋•丛台区期末)如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是.34.(2019秋•奈曼旗期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形(a>b),将剩下的阴影部分沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为.35.(2022春•潍坊期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形,然后将剩余部分拼成图2所示长方形.(1)上述操作能验证的等式是.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2﹣ab=a(a﹣b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2﹣4y2=18,x﹣2y=3,求x+2y.②计算:(1﹣)×(1﹣)×(1﹣)×……×(1﹣)×(1﹣).考点08:提公因式法与公式法的综合运用36.(2021春•滦州市期末)下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.x2y﹣y3=y(x+y)(x﹣y)37.(2012春•揭西县校级期中)下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有()A.1个B.2个C.3个D.4个38.(2022秋•岳麓区校级月考)把ab3﹣9ab分解因式的结果是.39.(2022•本溪模拟)把多项式ax2﹣4ay2分解因式的结果是.40.(2022春•江干区校级期中)(1)解方程组:.(2)因式分解①a2﹣6ab+9b2.②a2b﹣16b.考点09:因式分解-十字相乘法等41.(2022春•高新区校级期末)若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,则a的值为()A.1 B.5 C.﹣1 D.﹣542.(2019秋•天心区校级月考)把多项式(x﹣y)2﹣2(x﹣y)﹣8分解因式,正确的结果是()A.(x﹣y+4)(x﹣y+2)B.(x﹣y﹣4)(x﹣y﹣2)C.(x﹣y﹣4)(x﹣y+2)D.(x﹣y+4)(x﹣y﹣2)43.(2022春•酒泉期末)阅读与思考:整式乘法与因式分解是方向相反的变形.由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题:(1)分解因式:x2+7x+12=;(2)分解因式:(x2﹣3)2+(x2﹣3)﹣2;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能的值是.44.(2021秋•顺城区期末)因式分解:(1)(a﹣b)2+4ab;(2)(m﹣4)(m+1)+3m.45.(2020秋•沂南县期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay,x2+2xy+y2﹣1分组分解法:解:原式=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)解:原式=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7.。

八年级数学上册听课记录:第十四章整式的乘法与因式分解《整式的乘法:整式的乘法》

八年级数学上册听课记录:第十四章整式的乘法与因式分解《整式的乘法:整式的乘法》

新2024秋季八年级人教版数学上册第十四章整式的乘法与因式分解《整式的乘法:整式的乘法》听课记录一、教学目标(核心素养)1.知识与技能:学生能够理解并掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式以及多项式乘多项式,能够准确进行整式的乘法运算。

2.过程与方法:通过具体实例的探究,引导学生经历整式乘法法则的发现过程,培养学生的观察、归纳和推理能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养严谨、细致的学习态度,以及合作学习的精神。

二、导入教师行为:•教师首先展示几个简单的整式乘法实例,如(2x+3)×4、x2×3x,让学生尝试进行计算,并请几位学生分享他们的解题思路。

•接着,教师提出问题:“同学们,你们在进行整式乘法时,有没有发现一些通用的方法和规律呢?我们能否将这些方法和规律总结出来,以便更好地解决类似的问题呢?”学生活动:•学生认真观察教师给出的例子,尝试进行计算,并思考整式乘法可能存在的规律。

•学生分享自己的解题思路,与同桌或小组内成员讨论可能的答案。

过程点评:•导入环节通过具体实例和问题的引导,有效地激发了学生的探究欲望,为学习整式乘法的基本法则做好了铺垫。

•学生积极参与讨论,初步感知了整式乘法的运算规律,为后续学习打下了基础。

三、教学过程3.1 单项式乘单项式教师行为:•明确给出单项式乘单项式的法则,即“系数相乘,字母部分按同底数幂的乘法法则进行运算”。

•通过具体例子演示法则的应用,如3a2×2a3,引导学生观察结果并验证法则的正确性。

学生活动:•认真听讲,记录单项式乘单项式的法则,并尝试理解其含义。

•跟随教师的演示,自己完成例题的计算,验证法则的正确性。

过程点评:•教师讲解清晰,通过具体例子帮助学生理解单项式乘单项式的法则及其应用。

•学生通过动手计算,加深了对法则的理解和掌握。

3.2 单项式乘多项式教师行为:•引入单项式乘多项式的概念,讲解其运算法则,即“用单项式去乘多项式的每一项,再把所得的积相加”。

第十四章整式的乘除与因式分解 章末复习小结(4)基本技能、基本思想方法和基本活动经验 教学设计

第十四章整式的乘除与因式分解 章末复习小结(4)基本技能、基本思想方法和基本活动经验  教学设计

第十四章章末复习小结(4)基本技能、基本思想方法和基本活动经验教学设计学习目标:1.会利用乘法公式进行简便运算;2.能利用乘法公式的变式求解;3.体验整体、从特殊到一般的思想,会用类比的方法解决身边的问题.一、知识梳理二、典例精讲例1 运用乘法公式简便计算:(1)9992(2)29.4×30.4解:⑴9992=(1000−1)2=10002-2×1000×1+12=100 0000-2000+1=998001⑵ 29.4×30.4=(30-0.4) (30+0.4)=302-0.42=900-0.16=899.84归纳:求一个复杂数的平方时,可以考虑用完全平方公式简化计算,将其化为整十、整百与另一个数的完全平方和或完全平方差,再用公式计算;求两个比较接近的数的乘积时,可以考虑用平方差公式简便运算,将其化为整十、整百与另一个数的平方差,再用公式计算.小试牛刀:1. (1)2023²-2022×2024+32(2)9×11×101×10001.解:⑴原式=2023²-(2023-1)(2023+1)+32=2023²-(2023²-1²)+32=2023²-2023²+1+32=33⑵8×12×104×10001=(10-2)(10+2) (100+4) (10000+16)=(10²-2²) (10²+2²) (104+16)= (104-4²) (104+4²)=108-16²=99999744例2 已知a+b=8,ab=5,求a2+b2和(a-b)2的值.解:a2+b2=(a+b)2-2ab ,(a-b)2=(a+b)2-4ab .当a+b=8,ab=5时,a2+b2=82-2×5=54(a-b)2 =82-4×5=44归纳:平方差公式:(a+b)(a-b)=a2-b2完全平方和公式:(a+b)2=a2+b2+2ab完全平方差公式:(a-b)2=a2+b2+2ab表达了完全平方和(差)与平方和、乘积之间的关系,如果知道其中的部分量,可以运用公式求出剩下的量.小试牛刀:2. 已知(a+b)2=10,(a-b)2=2,求a2+b2+ab的值.解:由(a+b)2=10得a2+b2+2ab=10①由(a-b)2=2得a2+b2-2ab=2②(①+②)÷2得a2+b2=6(①-②)÷4得ab=2∴a2+b2+ab=6+2=8三、拓展提高若(25−m)(m−15)=7,则(25−m)2+(m−15)2的值.解:设x=25−m ,y=m−15 .则:xy=7,x+y=10 .∴x2+y2=(x+y)2−2xy=102−2×7=86即(25−m)2+(m−15)2=86四、课堂小结本节课,你学到了什么数学知识?学会了哪些学习方法?五、布置作业见精准作业单六、板书设计。

八年级数学上册第十四章整式的乘法与因式分解14-1整式的乘法14-1-4整式的乘法第2课时单项式与多

八年级数学上册第十四章整式的乘法与因式分解14-1整式的乘法14-1-4整式的乘法第2课时单项式与多
解:(2)( a2- b +1)*b- b = a2 b - b2+ b +1- b = a2
b - b2+1.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
16. 【新视角·新定义题】已知 x , y 为有理数,现规定一种
新运算,满足x*y= xy +1.
(3)探索a*( b + c )与a*b+a*c的关系,并用等式把它们表
2-9+6=-1.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
16. 【新视角·新定义题】已知 x , y 为有理数,现规定一种
新运算,满足x*y= xy +1.
(1)求14*(-2)的值;
解:(1)∵x*y= xy +1,
∴14*(-2)=14×(-2)+1=-28+1=-27.
(2)化简:( a2- b +1)*b- b ;
11
12
13
14
15
16
17
11. 【新视角·程序计算法】如图所示的运算程序中,甲输入
的 x 为3 a +2 b ,乙输入的 x 为-3 a -2 b ,丙输入的 x
为2 b -3 a .若 a > b >0,则输出结果相同的是(
A. 甲和乙
B. 甲和丙
C. 乙和丙
D. 三人均不相同
1
2
3
4
5
6
7
有这样一道题的计算过程:( x -3 y )·(-6 x )= x ·(-6 x )

人教版八年级数学上册作业课件 第十四章 整式的乘法与因式分解 章末复习 (四) 整式的乘法与因式分解

人教版八年级数学上册作业课件 第十四章 整式的乘法与因式分解 章末复习 (四) 整式的乘法与因式分解

17.(2020·乐山)已知 y≠0,且 x2-3xy-4y2=0.则xy 的值是_4_或__-__1_.
18.分解因式: (1)2x2-8x+8; 解:原式=2(x-2)2 (2)m3(a-2)+m(2-a). 解:原式=m(a-2)(m+1)(m-1)
19.(大庆中考)已知:x2-y2=12,x+y=3,求2x2-2xy的值. 解:∵x2-y2=12,∴(x+y)(x-y)=12,∵x+y=3①,∴x-y=4②, ①+②,得2x=7,∴2x2-2xy=2x(x-y)=7×4=28
知识点三 乘法公式的运用(河南中考2019T4,2017T16) 10.(贵阳中考)选择计算(-4xy2+3x2y)(4xy2+3x2y)的最佳方法是( B ) A.运用多项式乘多项式法则 B.运用平方差公式 C.运用单项式乘多项式法则 D.运用完全平方公式
11.运用乘法公式计算: (1)(m-2n+3)(m+2n-3); 解:原式=m2-4n2+12n-9 (2)(a-3b+2)2. 解:原式=a2-6ab+9b2+4a-12b+4
12.先化简,再求值:(m-n)2-m(m-2n),其中m=3,n=2. 解:原式=n2,当n=2时,原式=4
13.(河南中考改编)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1), 其中x=-2. 解:原式=x2+3,当x=-2时,原式=7
知识点四 分解因式 14.(无锡中考)分解因式4x2-y2的结果是( C ) A.(4x+y)(4x-y) B.4(x+y)(x-y) C.(2x+y)(2x-y) D.2(x+y)(x-y)
15.(株洲中考)下列各选项中因式分解正确的是( D ) A.x2-1=(x-1)2 B.a3-2a2+a=a2(a-2) C.-2y2+4y=-2y(y+2) D.m2n-2mn+n=n(m-1)2

第十四章整式乘法与因式分解单元教学精选全文完整版

第十四章整式乘法与因式分解单元教学精选全文完整版

可编辑修改精选全文完整版第十四章整式乘法与因式分解单元教学第一篇:第十四章整式乘法与因式分解单元教学第十四章整式的乘法与因式分解单元教学计划14.3因式分解。

小结复习。

一、教学内容:14.1整式的乘法。

14.2乘法公式。

二、教学目标:知识与技能:1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。

使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。

2、使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运算运算律与乘法公式简化运算4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

过程与方法:1、通过探索、猜测,进一步体会学会推理的必要性,发展学生过程与方法〕初步推理归纳能力;2、通过揭示一些概念和法则之间的联系,对学生进行创新精神和实践能力的及主观能动培养.情感态度与价值观:1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主、合作精神,激发学生乐于探索的热情。

三、教学重点:掌握整式的乘法公式。

四、教学难点:掌握因式分解的方法。

五、课时分配:教学时间约需 14 课时,具体分配如下:14.1整式的乘法6课时。

14.2乘法公式3课时。

14.3因式分解3课时。

小结复习2课时。

第二篇:因式分解与整式乘法的关系因式分解与整式乘法的关系【知识点】整式乘法与因式分解一个是积化和差,另一个是和差化积,是两种互逆的变形.即:多项式整式乘积【练习题】1.下列因式分解正确的是①②③④⑤2.下列因式分解正确的是①②③④⑤3.下列因式分解正确的是①②③④⑤4.下列因式分解正确的是①②③④⑤5.下列因式分解正确的是①②③④⑤6.下列因式分解正确的是①②③④⑤答案1.1;22.1;3;53.4;54.3;45.2;46.1;3;57.第三篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

可编辑修改精选全文完整版第十四章 《整式的乘法与因式分解》知识点及考点典例重点知识回顾:一、整式的乘法:),(都是正整数n m a a a n m n m +=• ),(都是正整数)(n m a a mn n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个_______,其项数与因式中多项式的项数______。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

二、整式的除法: nm n m a a a -=÷ ()0≠a 10=a()0≠a单项式÷单项式 多项式÷单项式三、因式分解 1、把一个多项式化成几个_________的形式,叫做把这个多项式因式分解。

2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用________公式分解因式;三项式可以尝试运用______________、__________分解因式;四项式及四项式以上的可以尝试______________分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

第14章整式的乘法与因式分解知识点归纳教案

第14章整式的乘法与因式分解知识点归纳教案
此外,我还注意到在总结回顾环节,有些学生对于今天所学的知识点仍然存在疑问。这可能是因为我在课堂上的讲解不够清晰,或者是学生的理解不够深入。为了解决这个问题,我计划在下一节课开始时,先对今天的知识点进行快速回顾,并针对学生的疑问进行解答。
-在多项式乘法中,强调每一项都要与另一个多项式的每一项相乘;
-通过图形或具体例题展示完全平方公式的来源和应用;
-通过实际例题让学生掌握平方差公式的转换和应用;
-通过典型例题讲解和练习,让学生熟练掌握因式分解的几种方法。
2.教学难点
-符号的正确处理,特别是在多项式乘法中容易出现的符号错误;
-完全平方公式和平方差公式的记忆和应用,学生容易混淆;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式的乘法与因式分解在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调整式乘法法则和因式分解的方法这两个重点。对于难点部分,如符号的处理和分解策略的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式乘法或因式分解相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的数学实验操作。比如,通过实际模型展示长方体的体积计算,并探讨如何通过因式分解简化计算。
5.多项式的因式分解:多项式的分解方法及步骤;
6.综合应用:解决实际问题时运用整式的乘法与因式分解。

八年级数学上册第十四章《整式的乘法与因式分解》知识点总结

八年级数学上册第十四章《整式的乘法与因式分解》知识点总结

一、选择题1.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2B .3C .4D .6B解析:B【分析】 根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 2.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .7D 解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.3.在下列的计算中正确的是( )A .23a ab a b ⋅=;B .()()2224a a a +-=+;C .235x y xy +=;D .()22369x x x -=++ A 解析:A【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解.【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误.故选:A .【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.4.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个B .2个C .3个D .4个A解析:A【分析】 ①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.5.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2D 解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意;C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.6.如图,从边长为21a +的正方形纸片中剪去一个边长为2a +的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .233a -B .233a +C .221a a -+D .2189a a ++ A解析:A【分析】 矩形的面积就是边长是21a +的正方形与边长是2a +的正方形的面积的差,列代数式进行化简即可.【详解】解:由题意可知,矩形的面积就是边长是21a +的正方形与边长是2a +的正方形的面积的差,∴S 矩形=()()22212a a +-+=2244144a a a a ++---=233a -.故选:A .【点睛】本题考查了整式的运算,根据题意列出代数式,同时正确使用完全平方公式是解决本题的关键.7.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数C 解析:C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】 ()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.8.当2x =时,代数式31ax bx ++的值为6,则2x =-时,31ax bx ++的值为( ) A .6-B .5-C .4D .4- D 解析:D【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:-8a-2b=-5,再将x=-2代入这个代数式中,最后整体代入即可.【详解】解:当x=2时,代数式ax 3+bx+1的值为6,则8a+2b+1=6,即8a+2b=5,∴-8a-2b=-5,则当x=-2时,ax 3+bx+1=(-2)3a-2b+1=-8a-2b+1=-5+1=-4,故选:D .【点睛】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.9.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.75D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭ =20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯=34-, 故选:D .【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.10.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握. 二、填空题11.已知2a -b +2=0,则1-4a +2b 的值为______.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5【分析】由220a b -+=得22a b -=-,整体代入代数式求值.【详解】解:∵220a b -+=,∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=.故答案是:5.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.12.若2,3x y a a ==,则22x y a +=_______________________.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可.【详解】解:∵2,3x y a a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36,故答案为36.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键. 13.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和(23,2)+放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对(23,2)+放入其中,最后得到的数是:(23+-1)(2-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.15.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____120【分析】令x=0可求得a=1;令x=1可求得a5a4a3a2a1a=243①;令x=-1可求得-a5a4-a3a2-a1a=-1②把①和②相加即可求出a2+a4的值【详解】解:解析:120【分析】 令x=0,可求得a=1;令x=1,可求得a 5+a 4+a 3+a 2+a 1+a=243①;令x=-1,可求得-a 5+a 4-a 3+a 2-a 1+a=-1②,把①和②相加即可求出a 2+a 4的值.【详解】解:当x=0时, a=1;当x=1时, a 5+a 4+a 3+a 2+a 1+a=243①,当x=-1时,-a 5+a 4-a 3+a 2-a 1+a=-1②,2a 4+2a 2+2a=242,∴a 2+a 4=120.故答案为:120.【点睛】本题考查了求代数式的值,正确代入特殊值是解答本题的关键.16.分解因式323a a -=____.【分析】提取公因式a2即可【详解】解:=故答案为:【点睛】本题考查了分解因式方法之一提取公因式正确提取公因式是解决本题的关键解析:2)(3a a -【分析】提取公因式a 2即可.【详解】解:323a a -,=2)(3a a -,故答案为:2)(3a a -.【点睛】本题考查了分解因式方法之一提取公因式,正确提取公因式是解决本题的关键. 17.已知23x y -=,则432x y --=________.3【分析】把看成一个整体原式可化为2()-3整体代入即可【详解】解:原式=2()-3=2×3-3=3故答案为:3【点睛】本题考查了求代数式的值把看成一个整体是解题的关键解析:3【分析】把2x y -看成一个整体,原式可化为2(2x y -)-3,整体代入即可.【详解】解:原式=2(2x y -)-3=2×3-3=3,故答案为:3.【点睛】本题考查了求代数式的值,把2x y -看成一个整体是解题的关键.18.若2x y a +=,2x y b -=,则22x y -的值为____________.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.19.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.20.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a +b )0=1(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.a5+5a4b+10a3b2+10a2b3+5ab4+b515【分析】多项式乘方运算安全平方公式安全立方公式发现规律数字规律归纳即可【详解】解:(a+b )5=a5+5a4b+10a3b2+10a2b解析:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 15【分析】多项式乘方运算,安全平方公式,安全立方公式,发现规律,数字规律归纳即可,【详解】解:(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;第7排的第三个数是15,故答案为:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;15,【点睛】本题考查完全平方公式、完全立方公式,规律型:数字的变化类,掌握多项式乘法法则,和完全平方公式,观察式子的特征是解题关键,三、解答题21.计算下列各题:(12(2)-3125-9(2)(7)(37)2(22解析:(1)0;(2)2【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(12(2)-3125-9=2+(﹣5)+3=0;(2)(3+7)(3﹣7)+2(2﹣2)=32﹣(7)2+22﹣2=9﹣7+22﹣2=22.【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.22.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.解析:(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a2+7a+a+7-a2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.23.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是_______(写成两数平方差的形式);(2)图2是将图1中的阴影部分裁剪开,重新拼成的一个长方形,观察它的长和宽,其面积是______(写成多项式乘法的形式).(3)比较左、右两图的阴影部分面积,可以得到乘法公式_______.(用等式表示) (4)运用你所得到的公式,计算下列各题:①10.39.7⨯②(2)(2)m n p m n p +--+解析:(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;(4)①99.91;②22242m n np p -+-【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】解:(1)利用大正方形面积减去小正方形面积即可求出:22a b -,故填:22a b -;(2)它的宽是a ﹣b ,长是a+b ,面积是()()a b a b +-,故填:()()a b a b +-;(3)根据题意得出:22()()a b a b a b +-=-,故填:22()()a b a b a b +-=-;(4)①解:原式(100.3)(100.3)=+⨯- 22100.3=-1000.09=-99.91=;②解:原式[2()][2()]m n p m n p =+-⋅--22(2)()m n p =--22242m n np p =-+-.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观. 24.先化简,再求值:()()()2222(2)x y y x x y x y x --++---,其中1,22x y =-=. 解析:232+x xy ,54-. 【分析】利用平方差公式,和的完全平方公式,单项式乘以多项式法则化简,合并同类项后,代入求值即可.【详解】原式2222244 42x y x xy y xy x =-+++-+ 232x xy =+,当1,22x y =-=时, 原式2115322224⎛⎫⎛⎫=⨯-+⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查了运用乘法公式进行化简,熟练运用公式,正确合并同类项是解题的关键. 25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________;(2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________. 解析:【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤;故答案为:17;64-;(2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨,619999999999=÷÷÷÷÷÷÷=⑧,∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.因式分解:(1)2ax 2-4axy +2ay 2(2)x 2-2x -8解析:(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.27.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF ,CF ,AC .(1)用含a 、b 的代数式表示GC =______;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长; (3)若8a =,AFC △的面积为S ,求S 的值.解析:(1)a+b ;(2)10;(3)32【分析】(1)可由图形直观的得出结论;(2)利用完全平方公式通过展开推导,再将数值代入计算可得;(3)通过面积计算可得,△AFC 的面积为12a 2即为32. 【详解】解:(1)∵GC =GB+BC ,∴GC =a+b ,故答案为:a+b ;(2)∵(a+b )2=a 2+b 2+2ab =60+20×2=100,∴a+b =10,∴GC =10;(3)S △AFC =S △AFE +S ▱FGBE +S △ABC -S △FGC 22111()()222b a b b a b b a =-++-+ 22221111122222ab b b a b ab =-++-- 212a = 2182=⨯ 32=故答案为:32.【点睛】本题主要考查了完全平方公式运用,解题的关键是完全平方公式展开与合并.运用几何直观理解、通过几何图形之间的数量关系对完全平方公式做出几何解释的知识点. 28.因式分解:(1)4x 2y ﹣4xy +y ;(2)9a 2﹣4(a +b )2.解析:(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x2y﹣4xy+y=y(4x2﹣4x+1)=y(2x﹣1)2;(2)9a2﹣4(a+b)2=[3a+2(a+b)][3a﹣2(a+b)]=(5a+2b)(a﹣2b).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。

第十四章 整式的乘法与因式分解

第十四章 整式的乘法与因式分解

第十四章 整式的乘法与因式分解一、选择题(每小题3分,共36分.每小题均有A,B,C,D四个选项,其中只有一个选项正确)1.(2024·遵义绥阳县期末)下列计算正确的是(A)A.(-2a)2=4a2B.x3·x3=x9C.(-b)7÷b5=b2D.(m2)3·m4=m92.(2024·黔南州期末)式子(-ab)4·a2化简后的结果是(B)A.a2b4B.a6b4C.a8b4D.a16b43.(2024·黔南州期末)下列等式中,从左到右的变形是因式分解的是(D)A.a(a-3)=a2-3aB.(a+1)2=a2+2a+1) D.a2-9=(a+3)(a-3)C.a+2=a(1+2a4.(2024·遵义红花岗区期中)若(x+4)(x-2)=x2+mx+n,则m,n的值分别是(C)A.2,8B.-2,-8C.2,-8D.-2,85.(2024·遵义播州区期末)已知实数n满足n2-n+1=0,则4n3-5n2+5n+11的值为(A)A.12B.10C.8D.66.(2024·黔南州期末)若x2-nx+36是关于x的完全平方式,则n的值为(C)A.6B.12C.±12D.367.若a+b=-5,ab=3,则a2+b2的值为(B)A.25B.19C.31D.168.(2023·六盘水期中)小明在做作业的时候,不小心把墨水滴到了作业本上,■×3ab=6ab-3ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的是(D)A.(2ab+b2)B.(3ab+2b2)C.(2+2b)D.(2-b2)9.如图,两个正方形边长分别为a,b,已知a+b=7,ab=9,则阴影部分的面积为(B)A.10B.11C.12D.1310.已知a,b,c为△ABC的三边长,且a2+ac=b2+bc,则△ABC是(D)A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形11.(2023·黔西南州期末)在日常生活中取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:对于多项式x4-y4,因式分解的结果是(x+y)(x-y)(x2+y2),若取x=9,y=9,则各个因式的值是x-y=0,x+y=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3-xy2,取x=20,y=10,用上述方法产生的密码不可能是(C)A.102030B.103020C.305010D.20103012.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”,比如8=32-12,16=52-32,即8,16均为“和谐数”.在不超过2 023的正整数中,所有的“和谐数”之和为(A)A.255 024B.253 008C.257 048D.255 054二、填空题(每小题4分,共16分)13.(2024·遵义绥阳县期末)计算:(2a)3·(-3a2)= -24a5 .14.(2023·沈阳中考)因式分解:a3+2a2+a= a(a+1)2 . .15.(2024·遵义红花岗区期中)若x m=5,x n=10,则x2m-n=5216.如图,点C 是线段BG 上的一点,以BC ,CG 为边向两边作正方形,面积分别是S 1和S 2,两正方形的面积和S 1+S 2=20,已知BG =6,则图中阴影部分面积为 4 .三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算下列各题:(1)-12x 2y ·(13x 3y 2-34x 2y +16);(2)(x +3y -2z )(x -3y +2z );(3)(2x -1)2-(2x +5)(2x -5).【解析】(1)原式=-12x 2y ·13x 3y 2+12x 2y ·34x 2y -12x 2y ·16=-4x 5y 3+9x 4y 2-2x 2y.(2)原式=(x +3y -2z )[x -(3y -2z )]=x 2-(3y -2z )2=x 2-9y 2+12yz -4z 2.(3)原式=4x 2-4x +1-(4x 2-25)=4x 2-4x +1-4x 2+25=-4x +26.18.(10分)分解因式:(1)9a2(x-y)+4b2(y-x);(2)a2-2a(b+c)+(b+c)2.【解析】(1)9a2(x-y)+4b2(y-x)=9a2(x-y)-4b2(x-y)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);(2)a2-2a(b+c)+(b+c)2=[a-(b+c)]2=(a-b-c)2.19.(10分)(2024·遵义红花岗区期中)先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.【解析】3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a,当a=-2时,原式=-20×4-9×2=-98.20.(10分)(2023·毕节七星关区期中)如图所示,某地区有一块长为(2a+3b)米、宽为(2a-b)米的长方形地块,角上有四个边长均为(a-b)米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含a,b的代数式表示绿化的面积是多少平方米?(2)若a=20,b=10,求出绿化面积.【解析】(1)绿化的面积:(2a-b)(2a+3b)-4(a-b)2=4a2+6ab-2ab-3b2-4(a2-2ab+b2)=4a2+4ab-3b2-4a2+8ab-4b2=(12ab-7b2)平方米.答:绿化的面积是(12ab-7b2)平方米.(2)当a=20,b=10时,原式=12×20×10-7×102=1 700(平方米),答:绿化面积为1 700平方米.21.(10分)(2024·上海期中)已知x-y=-5,xy=3,求下列各式的值:(1)x2+y2;(2)(3x+2)(3y-2);(3)(x+y)2.【解析】(1)∵x-y=-5,xy=3,∴x2+y2=(x-y)2+2xy=(-5)2+2×3=25+6=31;(2)∵x-y=-5,xy=3,∴(3x+2)(3y-2)=9xy-6x+6y-4=9xy-6(x-y)-4=9×3-6×(-5)-4=27+30-4=57-4=53;(3)∵x-y=-5,xy=3,∴(x+y)2=(x-y)2+4xy=(-5)2+4×3=25+12=37.22.(12分)(2024·黔西南州期末)先阅读材料,再解答问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1-2(x-y)+(x-y)2= ;(2)因式分解:9(x-2)2-6(x-2)+1.【解析】(1)将“x-y”看成整体,令x-y=m,则原式=1-2m+m2=(m-1)2.再将x-y=m代入,得原式=(x-y-1)2;答案:(x-y-1)2(2)将“x-2”看成整体,令x-2=t,则原式=9t2-6t+1=(3t-1)2.再将x-2=t代入,得原式=[3(x-2)-1]2=(3x-7)2.23.(12分)甲、乙两人共同计算一道整式乘法题(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“-a”,得到的结果为6x2+11x-10.乙由于漏抄了第二个多项式中x 的系数,得到的结果为2x2-9x+10.(1)求正确的a,b的值;(2)计算出这道整式乘法题的正确结果.【解析】(1)由题意得(2x-a)(3x+b)=6x2+(2b-3a)x-ab=6x2+11x-10,∴2b-3a=11①,∵乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2-9x+10,∴(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2-9x+10,∴2b+a=-9②,由①②联立方程组,解得a=-5,b=-2;(2)(2x-5)(3x-2)=6x2-19x+10.24.(12分)(2023·铜仁石阡县期中)阅读下面的材料:材料一:比较322和411的大小.材料二:比较28和82的大小.解:因为411=(22)11=222,且3>2,所以322>222,即322>411.解:因为82=(23)2=26,且8>6,所以28>26,即28>82.小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小.小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小.解决下列问题:(1)比较344,433,522的大小;(2)比较8131,2741,961的大小.【解析】(1)∵344=(34)11=8111, 433=(43)11=6411,522=(52)11=2511,81>64>25,∴344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,124>123>122,∴8131>2741>961.25.(12分)(2023·贵阳南明区期中)八年级课外兴趣小组活动时,老师提出了如下问题:将2a-3ab-4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a-3ab)-(4-6b)=a(2-3b)-2(2-3b)=(2-3b)(a-2);解法二:原式=(2a-4)-(3ab-6b)=2(a-2)-3b(a-2)=(a-2)(2-3b);【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.【类比】(1)请用分组分解法将x2-a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2-2ab-bx+b2因式分解;(3)将a4-2a3b+2a2b2-2ab3+b4因式分解.【解析】(1)原式=(x2-a2)+(x+a)=(x+a)(x-a)+(x+a)=(x+a)(x-a+1);(2)原式=(ax-bx)+(a2-2ab+b2)=x(a-b)+(a-b)2=(a-b)(x+a-b);(3)原式=(a4+2a2b2+b4)-(2ab3+2a3b) =(a2+b2)2-2ab(a2+b2)=(a2+b2)(a2+b2-2ab)=(a2+b2)(a-b)2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章复习 第十五章 整式的乘除与因式分解一、整式的乘法1、幂的运算法则⑴同底数幂的乘法.同底数幂相乘,底数______,指数______.即____________(m ,n 都是正整数). 注:三个或三个以上同底数幂相乘时也具有这一性质,如p n m a a a ⋅⋅=______(m ,n ,p 都是正整数).⑵幂的乘方.幂的乘方,底数______,指数______.即____________(m ,n 都是正整数). ⑶积的乘方.积的乘方,等于把积的每一个因式____________,再把所得的幂______.即()n ab =______(n 为正整数).2⑴单项式与单项式的乘法法则单项式与单项式相乘,把它们的______、____________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注:①此法则可利用乘法交换律、结合律及同底数幂的运算性质推导;②几个单项式的积仍是一个______,其次数等于原来各个单项式的次数之______.⑵单项式与多项式的乘法法则单项式与多项式相乘,就是用单项式去乘多项式的______,再把所得的积______. 注:①此法则是由乘法分配律推导的,即m (a +b +c )= ma + mb + mc .②单项式乘多项式,如果单项式不为0,那么结果仍是多项式,积的项数与原多项式的项数相同. ⑶多项式与多项式的乘法法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.注:①此法则实质上是将多项式乘多项式转化为单项式与多项式相乘.即: ++=++)())((n m a n m b a bn bm an am n m b +++=+)(②使用法则时,应按一定的顺序相乘,避免重项、漏项,要注意“三数及整理”,“三数”即项数、次数、系数;“整理”即合并同类项.3、乘法公式⑴平方差公式两个数的______与这两个数的______的______,等于这两个数的平方差.即: ________________________注:平方差公式的特征:①必须是两个二项式相乘;②两因式中的一对数相同,另一对数互为相反数.⑵完全平方公式两数和(或差)的______,等于它们的______,加上(或减去)它们的____________.即: ________________________或________________________注:a 与b 可以是数,也可以是整式.运用乘法公式计算,有时要在式子中去掉括号.去括号法则: 去括号时,如果括号前面是正号,括号里的各项都不变号;如果括号前面是负号,括号里的各项都要变号.即:++()a b c =____________,()-+a b c =____________,()--a b c =____________.反过来可得添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号.即:(后两项添括号)a b c ++=____________,a b c --=____________,a b c -+=____________.二、整式的除法1、同底数幂的除法同底数幂相除,底数不变,指数相减.即:____________,n m a ,,0=/都是正整数,并且n m >.注:应用法则时,不要忽略幂的指数为“1”的情况.如a a a =÷2,而不是a a ÷2=)0(202=/=-a a a .2、零指数幂任何不等于0的数的0次幂都等于______.即:____________.注:①零次幂的底数不能为0,0的零次幂无意义;②a 0不能理解成0个a 相乘,)0(0=/a a 是一种规定,这种规定的合理性可由同底数幂的除法说明:∵m m a a ÷0a a m m ==-,又m m a a ÷=1,∴)0(10=/=a a .3、整式的除法⑴单项式除以单项式.单项式相除,把______与____________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.注:单项式相除的步骤:①将单项式除法“转化”为有理数的除法或同底数幂的除法;②进行有理数或同底数幂的除法运算.⑵多项式除以单项式.多项式除以单项式,先把这个多项式的______除以____________,再把所得的商______. 注:此法则是将多项式除以单项式问题转化为单项式除以单项式问题,即:.)(c b a m cm m bm m am m cm bm am ++=÷+÷+÷=÷++ 三、因式分解1、因式分解⑴概念:把一个多项式化成几个______的______的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注:①因式分解专指多项式的恒等变形;②因式分解的结果必须是几个整式的积的形式. ⑵因式分解与整式乘法的关系.因式分解与整式乘法是______方向的变形,它们互为______.2、提公因式法⑴公因式.多项式各项都含有的公共的因式叫做这个多项式各项的公因式.⑵提公因式法.一般地,如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.注:①提公因式法关键是确定公因式,确定公因式的步骤是:(a)取各项系数的______作为公因式的系数,(b)取相同字母____________的积;②公因式可以是单项式,也可以是多项式.3、公式法⑴公式法的概念把乘法公式反过来运用,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做公式法.⑵平方差公式两个数的平方差,等于这两个数的______与这两个数的______的______.即:__________________注:公式中所说的“两个数”是a ,b ,而不是a 2、b 2,其中a ,b 既可以是单项式,也可以是多项式.⑶完全平方公式.两个数的______加上(或减去)这两个数的______的2倍,等于这两个数的______(或______)的______.即__________________注:符合以下特点的多项式才能运用完全平方公式分解因式:是三项式,其中首末两项分别是两个式子(可以是单项式,也可以是多项式)的平方,且这两项的符号相同,中间一项是这两个式子的积的2倍,符号正负均可.*四、公式2()()()++=+++x p x q x p q x pq 、十字相乘法五、典型例题*例1 下列数中能整除20062005(8)(8)-+-的是( )A.3B.5C.7D.9*例2 若2312a b c ++=,且222a b c ab bc ca ++=++,求23a b c ++的值.例3 分解因式: ⑴214x x -+ ⑵2221a ab b -+-例4 在实数范围内分解因式:44x -.*例5 计算:++-+-+- 22222295969798991002212-.注:逆用平方差公式,常常可以简化运算.*例6 如图,D 、E 分别是△ABC 的边BC 和AB 上的点,△ABD 与△ACD 的周长相等,△CAE 与△CBE 的周长相等,设BC=a ,AC=b ,AB=c .(1)求AE 和BD 的长;(2)若∠BAC=90°,△ABC 的面积为S .求证:S=AE·BD.第十五章 整式的乘除与因式分解 测试题一、选择题(每小题3分,共24分)1.下列计算中正确的是( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=- 2. ()()22a ax x a x ++-的计算结果是( )A .3232a ax x -+B .33a x -C .3232a x a x -+D .322322a a ax x -++3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( )①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷-A .1个B .2个C .3个D .4个4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( )A .x 2+3x -1B .x 2+2xC .x 2-1D .x 2-3x+15.是完全平方式的是( )A .12+-x xB .21x +C .1++xy xD .122-+x x 6.把多项式)2()2(2a m a m -+-分解因式等于( )A .))(2(2m m a +-B .))(2(2m m a --C .m (a -2)(m -1)D .m (a -2)(m +1)7.如()m x +与()3+x 的乘积中不含x 的一次项,则m 的值为( )A. –3B. 3C. 0D. 18.若153=x ,53=y ,则y x -3等于( )A .5B .3C .15D .10二、填空题(每空3分,共21分)9.=--+-)32)(32(n n n m ___________. 10.=--2)2332(y x ______________. 11.当x ___________时,()04-x 等于__________.12.若=,,则b a b b a ==+-+-01222.13.已知31=+a a ,则221aa +的值是 . 三、解答题(共55分)14.计算题(每小题5分,共15分)(1) 22)1)2)(2(xx x x x +-+--((2) ()()[]xy y x y x 222÷--+(3)用简便方法计算:1198992++15.因式分解:(每小题5分,共20分)(1)3123x x - (2)a a a 1812223-+-(3)()()x y b y x a -+-2249; (4)()()122++++y x y x16.先化简,再求值. (10分) 2)3)(3()2)(3(2-=-+-+-a a a x x 其中,x =117.(本题10分)对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由.。

相关文档
最新文档