五年级小学数学下册应用题(40题)及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级小学数学下册应用题(40题)及答案
一、人教五年级下册数学应用题
1.有一张长方形纸,长70厘米,宽50厘米,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最长是几厘米?
2.小刚去买文具,日记本3元一本、钢笔4元一支、文具盒12元一个。

如果小刚买了一些钢笔和文具盒,他付给营业员50元,找回17元,找的钱对吗?写出你的理由。

3.一块长方形铁皮,长50cm,宽35cm。

像下图那样从四个角分别切掉一个边长为6cm 的正方形,然后做成一个水槽。

这个水槽最多能装多少升水?
4.长75厘米、宽60厘米的长方形纸,要把它裁成同样大小的正方形,边长为整厘米,且没有剩余,裁成的正方形边长最大是多少厘米?至少可以裁成多少个这样的正方形?5.35名学生分成甲、乙两队。

如果甲队人数为偶数,乙队人数为奇数还是偶数?如果甲队人数为奇数呢?
6.张阿姨去超市买饼干,已知每包饼干的价格是5元,张阿姨付给收银员50元,找回12元。

你认为收银员找给张阿姨的钱对吗?说说你的理由。

7.一种盒装纸巾的长、宽、高(如图1)所示。

用塑料包装纸将3盒这样的纸巾包装起来(如图2),至少需要多少平方厘米的塑料包装纸?(接头处忽略不计)
8.童童和红红都在舞蹈馆培训舞蹈,童童每6天去一次,红红每8天去一次,如果4月1日她们在舞蹈馆相遇,那么下一次在舞蹈馆相遇是几月几日?
9.一张长方形纸,长50厘米,宽30厘米.若把它裁成若干个大小相同的最大方形,且不许有剩余。

能裁多少个这样的正方形?边长有多大?
10.甲、乙两人到体育馆健身,甲每6天去一次.乙每9天去一次,如果6月5日他们两人在体育馆相遇。

(1)那么下一次两人都到体育馆的时间是几月几日?
(2)如果丙6月5日也去了体育馆,他每4天去一次,他们三人下一次都到体育馆的时间是几月几日?
11.汽车总站是3路汽车和5路汽车的起点站,3路汽车每5分钟发车一次,5路汽车每8分钟发车一次。

两路汽车第一次同时发车的时间是6:00,最后一次同时发车的时间是22:00。

一天内一共同时发车多少次?
12.下图是一个长方体纸盒的展开图,计算立体图形的表面积和体积。

(单位:cm)
13.把一个棱长为12cm的正方体铁块沉入水深15cm的长方体水箱中。

这个长方体水箱长48cm、宽25cm、高20cm。

(1)这个长方体水箱的容积是多少升?
(2)放入铁块后,水箱内的水面将上升到几厘米?
14.一条公路,已经修了干米,剩下的比已经修了的多千米,这条公路有多少千米?15.一间长方体库房,长5m、宽4m、高3m,在房顶和四面刷油漆(门窗忽略不计),刷油漆的面积是多少平方米?
16.把长16米和40米的两根绳子截成同样长的小段,没有剩余。

每段最长是多少?共截成了多少段?
17.甲、乙、丙三人到图书馆去借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果4月25日他们三人在图书馆相遇,那么下一次都到图书馆是几月几日?
18.一个长方体,如果高增加3厘米,就成为一个正方体。

这时表面积比原来增加了96平方厘米,原来的长方体的体积是多少立方厘米?
19.
(1)求出下图长方体的体积。

(2)下图是由棱长1cm的小正方体摆成的,请计算这个图形的表面积。

20.教室长8m,宽7m,高3m,门窗和黑板的面积是20.8m2,要粉刷这间教室的四面墙
壁,需粉刷多少平方米?如果每平方米需要花7元涂料费,粉刷这间教室要花费多少钱?21.一(1)班有男生24人,女生16人。

现在要把男生、女生分别分成若干个小组,要使每组的人数相同,每组最多有多少人?
22.一块方钢长80厘米,横截面是边长3厘米的正方形,如果每立方厘米的钢重7.8克,这块方钢共重多少千克?
23.鱼缸里水深2.8分米,放入一块珊瑚石完全浸没在水中,水面上升到3分米珊瑚石的体积是多少立方分米?
24.挖一个长10米,宽6米、深2米的蓄水池。

(1)这个蓄水池的占地面积是多少平方米?
(2)这个蓄水池已经蓄水1.5米,最多还能蓄水多少立方米?
25.玲玲家有一个长方体的玻璃鱼缸,长8dm,宽4dm,高6dm。

(1)制作这个鱼缸至少需要多少玻璃?【鱼缸上面没有玻璃】
(2)鱼缸里原来有一些水,放入4个同样大的装饰球后(如右图),水面上升了0.05dm。

每个装饰球的体积是多少dm3?
26.一个长方体高24厘米,平行于底面截成三个长方体后,表面积比原来增加了120平方厘米,原来长方体的体积是多少立方厘米?
27.一个长方体罐头盒,长12厘米,宽8厘米,高10厘米。

(1)在它的四周贴上商标纸,这张纸的面积至少是多少?(接缝处不计)
(2)小明打开罐头后吃了一些,现在盒内罐头只剩下2厘米高了,小明吃了多少立方厘米的罐头?(罐头盒厚度不计,食物装满状态)
28.李叔叔想要制作一个长20cm、宽15cm、高30cm的无盖长方体鱼缸。

(1)李叔叔至少需要买多少cm2的玻璃?
(2)为了提高观赏性,李叔叔在鱼缸里放了一块假山石,水面高度由原来的10cm上升到13cm。

这块假山石头的体积是多少cm3?
29.有三张正方形纸,边长分别是6分米、18分米和24分米。

如果想裁剪成长4分米、宽3分米的长方形小纸片,且没有剩余。

选择裁剪哪张正方形纸比较合适,能够裁剪成多少张小长方形纸片?
30.一个长方体水箱,长10dm,宽8dm,水深4.5dm,当把一块石块浸入水箱后,水位上升到6.5dm,这块石块的体积是多少?
【参考答案】***试卷处理标记,请不要删除
一、人教五年级下册数学应用题
1.解:70=7×2×5;
50=5×2×5;
70和50的最大公因数是2×5=10,剪出的小正方形的边长最长是10厘米。

答:剪出的小正方形的边长最长是10厘米。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也是剪出的小正方形的边长的最大数值,据此解答。

2. 50-17=33(元)
33是奇数,找的钱不对。

答:找的钱不对。

理由是钢笔和文具盒的单价都是偶数,所以不管怎么买,花的钱也是偶数,付的钱50元也是偶数,所以找回的钱应该是偶数才对。

【解析】【分析】一个数×偶数=偶数;偶数+偶数=偶数,偶数-偶数=偶数,据此解答。

3.(50-6×2)×(35-6×2)×6
=38×23×6
=5244(立方厘米)
=5.244(升)
答:这个水槽最多能装5.244升水。

【解析】【分析】水槽的长=铁皮的长-2个6厘米;水槽的宽=铁皮的宽-2个6厘米;水槽的高是6厘米;水槽的体积=底面积×高,计算时注意单位统一。

4.解:75=3×5×5
60=2×2×3×5
75与60的最大公因数是3×5=15
75×60÷(15×15)
=4500÷225
=20(个)
答:正方形的边长是15厘米。

至少可以裁成20个这样的正方形。

【解析】【分析】此题主要考查了最大公因数的应用,要求把长方形纸裁成同样大小的正方形,边长为整厘米,且没有剩余,要求裁成的正方形边长最大是多少厘米?就是求长与宽的最大公因数,据此利用分解质因数的方法,求出长与宽的最大公因数,就是裁成的正方形最大边长;
要求至少可以裁成多少个这样的正方形?依据长方形的面积÷小正方形的面积=可以裁的个数,据此列式解答。

5.解:如果甲队人数为偶数,乙队人数为奇数;如果甲队人数为奇数,乙队人数为偶数。

【解析】【分析】奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。

据此作答即可。

6.解:50-12=38(元)
38÷5=7(包)……3(元),不符合题意。

答:收银员找给张阿姨的钱不对,找回12元,饼干花了38元,38不是5的倍数,所以找回的钱不对。

【解析】【分析】根据题意可知,先求出买饼干用去的钱数,付出的钱数-找回的钱数=用去的钱数,用去的钱数÷每包饼干的单价=购买的包数,因为饼干的单价是5元,则用去的钱数是5的倍数,如果有余数,则找回的钱数不对,据此解答。

7.解:8×3=24(cm)
(21×10+21×24+10×24)×2
=(210+504+240)×2
=954×2
=1908(平方厘米)
答:至少需要1908平方厘米的塑料包装纸。

【解析】【分析】观察图可知,先求出现在的长方体的高,然后用公式:长方体的表面积=(长×宽+长×高+宽×高)×2,据此列式解答。

8.解:6=2×3,
8=2×2×2,
6和8的最小公倍数是2×3×2×2=24,
4月1日+24日=4月25日
答:下一次在舞蹈馆相遇是4月25日。

【解析】【分析】此题主要考查了最小公倍数的应用,用分解质因数的方法求两个数的最小公倍数,先把每个数分别分解质因数,把这两个数公有的质因数和各自独有的质因数相乘,它们的乘积就是这两个数的最小公倍数,也就是需要间隔的天数,然后用上次相遇的时间+间隔的天数=下次相遇的时间,据此列式解答。

9.解:50和30的最大公因数是10,所以正方形边长是10厘米,
(50÷10)×(30÷10)
=5×3
=15(个)
答:能裁15个这样的正方形,边长是10厘米。

【解析】【分析】要使裁成的正方形最大,则正方形的边长一定是30和50的最大公因数,由此确定正方形的边长是10厘米。

这样用除法计算出沿着长和宽分别能裁出正方形的个数即可求出一共裁出正方形的个数。

10.(1)解:6和9的最小公倍数是18,
6月5日向后推18天是6月23日。

答:下一次两人都到体育馆的时间是6月23日。

(2)解:4、6、9的最小公倍数是36,6月5日向后推36天是7月11日。

答:他们三人下一次都到体育馆的时间是7月11日。

【解析】【分析】(1)他们两人下一次都到体育馆经过的时间一定是6和9的最小公倍数,由此确定两个数的最小公倍数,在从6月5日向后推算时间即可;
(2)他们三人下一次都到体育馆经过的时间一定是4、6、9的最小公倍数,三个数的最小公倍数是36。

6月是小月共30天,6月5日过25天是6月30日,再过11天就是7月11日。

11.解:5×8=40(分),
22时-6时=16(时)=960(分),
960÷40=24(次)
24+1=25(次)
答:一天内一共同时发车25次。

【解析】【分析】此题主要考查了最小公倍数的应用,先求出两车每两次同时发车的间隔时间,也就是它们发车时间的最小公倍数,然后计算出从第一次同时发车到最后一次同时发车间隔的时间,最后用间隔的时间÷每两次同时发车的间隔时间+1=同时发车的总次数,据此列式解答。

12.解:(30-10×2)÷2=5(cm)
(10×20+20×5+10×5)×2=700(cm2)
10×20×5=1000(cm3)
【解析】【分析】长方体的长是20厘米,宽是10厘米,长方体的高=(30-2×宽)÷2;(长×宽+长×高+宽×高)×2=长方体表面积;长×宽×高=长方体体积。

13.(1)解:48×25×20=24000(cm3)=24(L)
答:这个长方体水箱的容积是24升。

(2)解:15+12×12×12÷(48×25)=16.44(cm)
答:放入铁块后,水箱内的水面将上升到16.44厘米。

【解析】【分析】(1)长方体水箱的容积=长方体水箱的长×宽×高,计算时注意单位统一;
(2)铁块体积÷水箱的长与宽的积=水面升高的高度;长方体水箱中水原来的高度+水面升高的高度=放入铁块后,水箱内的水面将上升到的高度。

14.解:+(+)
=++
=
=(千米)
答:这条公路有千米。

【解析】【分析】这条公路的总长=已经修了的千米数+剩下的千米数(已经修了的千米数+剩下的比已经修了的多的千米数),代入数值计算即可。

15.解:房顶:5×4=20(平方米)
前后:5×3×2=30(平方米)
左右::4×3×2=24(平方米)
总面积:20+30+24=74(平方米)
答:刷油漆的面积是74平方米。

【解析】【分析】刷油漆的面积一共是5个面的面积,长方体上面的面积+前后左右的面积=刷油漆的面积;
长×宽=上面的面积,长×高×2=前后面的面积;宽×高×2=左右面的面积。

16.解:16=2×8,40=5×8,
所以每段最长是8厘米,
(16+40)÷8=56÷8=7(段)
答:每段最长是8厘米,共截成了7段。

【解析】【分析】16和40的最大公因数是截取的最长的长度,两条绳子的长度和÷8米=截成的段数。

17.解:6、8、9的最小公倍数是72
4月25日+72天=7月6日
答:下一次都到图书馆是7月6日。

【解析】【分析】先求出6、8、9的最小公倍数,这就是再次相遇经过的天数,然后在4月25日的时间上加上这些天数即可。

18.解:设原长方体的长为x厘米,则它的宽也为x厘米。

3x×4=96
12x÷12=96÷12
x=8
8×8×(8-3)=64×5=320(立方厘米)
答:原来的长方体的体积是320立方厘米。

【解析】【分析】表面积增加数量=长方体的长×3×4,据此列出方程,求出原长方题的长;长方体体积=长×宽×高。

19.(1)解:体积=7×3×2
=21×2
=42(立方厘米)
(2)解:图形的表面积=(5+3+5)×2×(1×1)
=13×2×1
=26(平方厘米)
【解析】【分析】(1)长方体的体积=长×宽×高,代入数值计算即可;
(2)图形的表面积=(从前面看到的正方形的个数+从左面看到的正方形的个数+从上面看到的正方形的个数)×2×1个小正方形的面积,计算即可。

20.解:8×7+8×3×2+7×3×2-20.8
=56+48+42-20.8
=125.2(平方米)
125.2×7=876.4(元)
答:需粉刷125.2平方米,花费876.4元。

【解析】【分析】要求粉刷教室需要花费多少元,需要先求出粉刷的面积,即求出教室的上面、四面墙,5个面的面积去掉门窗和黑板的面积,然后再求出花费的钱数。

21.解:24=3×2×2×2;
16=2×2×2×2;
24和16的最大公因数是2×2×2=8,每组最多有8人。

答:每组最多有8人。

【解析】【分析】根据题意可知,要求每组的人数相同,每组最多有多少人,就是求这两个数的最大公因数,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数。

22.解:3×3×80×7.8÷1000
=9×80×7.8÷1000
=720×7.8÷1000
=5616÷1000
=5.616(千克)
答:这块方钢共重5.616千克。

【解析】【分析】根据题意可知长方体的体积=底面积×高,计算出体积后,体积× 每立方厘米的质量=总质量,关键最后要单位换算。

23.解: 6×5× (3-2.8)
= 6(dm³)
答:水面上升到3分米珊瑚石的体积是6立方分米。

【解析】【分析】珊瑚石的体积=底面积×(放入珊瑚石后水面高度-原来水深)。

24.(1)解:10×6=60(平方米)
答:这个蓄水池的占地面积是60平方米。

(2)解:10×6×(2-1.5)
=10×6×0.5
=60×0.5
=30(立方米)
答:最多还能蓄水30立方米。

【解析】【分析】(1)根据题意可知,已知长方体的长、宽、高,求底面积,用长×宽=长方体的底面积;
(2)要求长方体的容积,用公式:长方体蓄水池内还能蓄水的容积=长×宽×还能蓄水的高度,据此列式解答。

25.(1)解:8×4+8×6×2+4×6×2
=32+96+48
=176(平方分米)
答:制作这个鱼缸至少需要176平方分米玻璃。

(2)解:8×4×0.05÷4
=8×0.05
=0.4(立方分米)
答:每个装饰球的体积是0.4立方分米。

【解析】【分析】(1)底面面积+前后两个面的面积+左右两个面的面积=制作这个鱼缸至少需要的玻璃面积;
(2)鱼缸的长×宽×水面上升的高度=4个装饰球的体积;4个装饰球的体积÷4=每个装饰球的体积。

26.解:120÷4×24
=30×24
=720(立方厘米)
答:原来长方体的体积是720立方厘米。

【解析】【分析】沿着平行于底面截成三个长方体后,表面积比原来增加了4个横截面的面积,平均每个横截面的面积(原来长方体的底面积)=表面积增加的总面积÷4,长方体的体积=底面积×高,代入数值计算,据此解答即可。

27.(1)(12×10+10×8)×2
=(120+80)×2
=200×2
=400(平方厘米)
答:这张纸的面积至少是400平方厘米。

(2)12×8×(10-2)
=768(立方厘米)
答:小明吃了768立方厘米的罐头。

【解析】【分析】(1)四周四个面都是长方形,分别是长12厘米、宽10厘米的面两个,长10厘米、宽8厘米的面两个;计算出四个面的面积就是这张纸的面积;
(2)小明吃罐头的高度是(10-2)厘米,根据长方体体积公式,用长乘宽再乘吃罐头的高度即可求出小明吃罐头的体积。

28.(1)解:20×15+(20×30+15×30)×2
=20×15+(600+450)×2
=20×15+1050×2
=300+2100
=2400(cm2)
答:李叔叔至少需要买2400cm2的玻璃。

(2)解:20×15×(13-10)
=20×15×3
=300×3
=900(cm3)
答:这块假山石头的体积是900cm3。

【解析】【分析】(1)此题主要考查了长方体的表面积,无盖长方体的表面积=长×宽+(长×高+宽×高)×2,据此列式计算;
(2)观察图可知,假山石头的体积=长方体的底面积×上升的水位高度,据此列式解答。

29.解:4和3的倍数有12、24、......;
所以选择裁剪边长是24分米的正方形纸比较合适,
能够裁剪成的张数:
(24÷4)×(24÷3)
=6×8
=48(张)
答:选择裁剪边长是24分米的正方形纸比较合适,能够裁剪成48张小长方形纸片。

【解析】【分析】正方形的边长如果是4和3的倍数,这样裁剪起来没有剩余,比较合适;
(正方形的边长÷4分米)×(正方形的边长÷3分米)=可以裁剪的个数。

30.解:10×8×(6.5-4.5)
=10×8×2
=80×2
=160(dm3)
答:这块石块的体积是160dm3。

【解析】【分析】此题主要考查了不规则物体的体积计算,水位上升部分的体积就是石块的体积,长方体水箱的长×宽×水位上升的高度=这块石块的体积,据此列式解答。

相关文档
最新文档