高考数学压轴专题新备战高考《空间向量与立体几何》知识点总复习含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《空间向量与立体几何》知识点归纳
一、选择题
1.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()
A .222+
B .232+
C .62+
D .72+
【答案】D
【解析】
【分析】 根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果.
【详解】
Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABC AD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=
把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:
当,,D E F 三点共线时,DE EF +取得最小值
又150FAD ∠=o ,3AF =1AD =
()22min 32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭ DEF ∴∆周长的最小值为:72+
本题正确选项:D
【点睛】
本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.
2.四棱锥P ABCD -所有棱长都相等,M 、N 分别为PA 、CD 的中点,下列说法错误的是( )
A .MN 与PD 是异面直线
B .//MN 平面PB
C C .//MN AC
D .MN PB ⊥
【答案】C
【解析】
【分析】
画出图形,利用异面直线以及直线与平面平行的判定定理,判断选项A 、B 、C 的正误,由线线垂直可判断选项D .
【详解】
由题意可知四棱锥P ABCD -所有棱长都相等, M 、N 分别为PA 、CD 的中点,MN 与PD 是异面直线,A 选项正确;
取PB 的中点为H ,连接MH 、HC ,
四边形ABCD 为平行四边形,//AB CD ∴且AB CD =,
M Q 、H 分别为PA 、PB 的中点,则//MH AB 且12
MH AB =, N Q 为CD 的中点,//CN MH ∴且CN MH =,则四边形CHMN 为平行四边形, //MN CH ∴,且MN ⊄平面PBC ,CH ⊂平面PBC ,//MN ∴平面PBC ,B 选项正确;
若//MN AC ,由于//CH MN ,则//CH AC ,事实上AC CH C ⋂=,C 选项错误; PC BC =Q ,H 为PB 的中点,CH PB ∴⊥,//MN CH Q ,MN PB ∴⊥,D 选项正确.
故选:C .
【点睛】
本题考查命题的真假的判断与应用,涉及直线与平面的平行与垂直的位置关系的判断,是中档题.
3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ).
A
B .3:1
C .2:1
D 2 【答案】A
【解析】
【分析】
设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值.
【详解】
设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长l ==,
∴圆锥SC 的侧面积为2rl r π=;
圆柱OM 的底面半径为2r ,高为h , 又圆锥的体积23133V r r r ππ=⋅=,234r h r ππ∴=,4
r h ∴=, ∴圆柱OM 的侧面积为2224rh rh r πππ⋅==,
∴圆锥SC 与圆柱OM 22:r r π=.
故选:A .
【点睛】
本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题.
4.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是( )
A .m l ⊥,m β⊂,l α⊥
B .m l ⊥,l αβ=I ,m α⊂
C .//m l ,m α⊥,l β⊥
D .l α⊥,//m l ,//m β
【答案】D
【解析】
【分析】
A ,有可能出现α,β平行这种情况.
B ,会出现平面α,β相交但不垂直的情况.
C ,根据面面平行的性质定理判断.
D ,根据面面垂直的判定定理判断.
【详解】
对于A ,m l ⊥,m β⊂,l α⊥,则//αβ或α,β相交,故A 错误;
对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;
对于C ,因为//m l ,m α⊥,则l α⊥,由因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.
故选:D
【点睛】
本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.
5.如图是正方体的平面展开图,则在这个正方体中:
①BM 与ED 平行 ②CN 与BE 是异面直线
③CN 与BM 成60︒角 ④DM 与BN 是异面直线
以上四个命题中,正确命题的个数是( )
A .1
B .2
C .3
D .4
【答案】B
【解析】
【分析】 把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.
【详解】
把平面展开图还原原几何体如图:
由正方体的性质可知,BM 与ED 异面且垂直,故①错误;
CN 与BE 平行,故②错误;
连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;
由异面直线的定义可知,DM 与BN 是异面直线,故④正确.
∴正确命题的个数是2个.
故选:B .
【点睛】
本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.
6.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )
A .2⎡⎣
B .3⎡⎣
C .32⎣
D .62⎣ 【答案】D
【解析】
【分析】
以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t
=⎧⎨
=-⎩,然后用空间两点间的距离公式求解即可. 【详解】
以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,
则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y . ()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r 由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r 且01BD AP ⋅=u u u u r u u u r
所以10x t -+=且110x y --+=得+1x t =,1y t =-. 所以()2
221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 62
AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 62AP ≤≤u u u r 故选:D
【点睛】
本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.
7.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为()
A.64
3
πB.83
16
3
π
π+C.28πD.82
16
3
π
π+
【答案】B
【解析】
【分析】
结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可.【详解】
结合三视图,还原直观图,得到
故体积222211832422316333
V r h r l ππππππ=⋅+⋅=⋅+
⋅⋅=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.
8.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )
A .64
B .643
C .16
D .163
【答案】D
【解析】
根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433
V =⨯⨯=,故选D.
9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).
A .130
B .140
C .150
D .160
【答案】D
【解析】 设直四棱柱1111ABCD A B C D -中,对角线1
19,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥,
在1Rt A AC ∆中,15A A =,可得221156AC AC A A =
-=, 同理可得2211200102BD D B D D =-==,
因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,
所以2211()()1450822
AB AC BD =+=+=,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.
点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.
10.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥l
B .若m ∥l ,则m ∥β
C .若m ⊥β,则m ⊥l
D .若m ⊥l ,则m ⊥β
【答案】D
【解析】
【分析】
A由线面平行的性质定理判断.B根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C根据线面垂直的定义判断.D根据线面垂直的判定定理判断.
【详解】
A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;
故选:D.
【点睛】
本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.
11.《九章算术》卷五商功中有如下问题:今有刍甍(音meng,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )
A.3 B.5 C.6 D.12
【答案】B
【解析】
【分析】
首先由三视图还原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积.【详解】
由三视图换元为如图所示的几何体,该几何体分为三部分,中间一部分是直棱柱,两侧是相同的三棱锥,
并且三棱锥的体积113113⨯⨯⨯=, 中间棱柱的体积131232
V =⨯⨯⨯= , 所以该刍甍的体积是1235⨯+=.
故选:B
【点睛】
本题考查组合体的体积,重点考查空间想象能力和计算能力,属于中档题型.
12.已知ABC V 的三个顶点在以O 为球心的球面上,且2cos 3
A =,1BC =,3AC =,三棱锥O ABC -的体积为
146,则球O 的表面积为( ) A .36π
B .16π
C .12π
D .163
π 【答案】B
【解析】
【分析】 根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积.
【详解】 由余弦定理得22229122cos 26AB AC BC AB A AB AC AB +-+-==g ,解得22AB = 222AB BC AC ∴+=,即AB BC ⊥.
AC ∴为平面ABC 所在球截面的直径.
作OD ⊥平面ABC ,则D 为AC 的中点,
11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯=Q g 7OD ∴=
222OA OD AD ∴=+=.
2416O S OA ππ∴=⋅=球.
故选:B .
【点睛】
本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.
13.已知圆锥的母线与底面所成的角等于60°,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( )
A .4:3
B .3:4
C .16:9
D .9:16 【答案】C
【解析】
【分析】
由圆锥的母线与底面所成的角等于60°,可知过高的截面为等边三角形,设底面直径,可以求出其表面积,根据圆锥内接于球O ,在高的截面中可以求出其半径,可求其表面积,可求比值.
【详解】
设圆锥底面直径为2r ,圆锥的母线与底面所成的角等于60°,
则母线长为2r 3r ,
则圆锥的底面积为:2r π,侧面积为
1222r r π⋅, 则圆锥的表面积为2212232
r r r r πππ+⋅=, 该圆锥内接于球O ,则球在圆锥过高的截面中的截面为圆,即为边长为2r 的等边三角形的
内切圆,则半径为323
R r =,表面积为221643r R ππ=, 则球O 与圆锥的表面积之比等于2
216:316:93
r r ππ=, 故选:C .
【点睛】
本题考查圆锥的性质,以及其外接球,表面积,属于中档题.
14.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,
F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )
A .2π
B .3π
C .4π
D .6
π 【答案】C
【解析】
【分析】
设AE BF a ==,13
B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF A
C ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.
【详解】
设AE BF a ==,则()()2
3119333288B EBF a a V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32
a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=352AF =2292A F AA AF ''=+=,13222
EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角, 由余弦定理得222819452424cos 93222222
A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯, ∴4
A FE π'∠=. 方法二:以
B 为坐标原点,以B
C 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,
则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫ ⎪⎝⎭
, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭
u u u u r ,()3,3,0AC =-u u u r , 所以9922cos ,92322
A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r , 所以异面直线A F '与AC 所成的角为
4
π. 故选:C
【点睛】
本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.
15.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为13,此三棱柱的高为23
A .323π
B .163π
C .83π
D .643
π 【答案】A
【解析】
【分析】 求得该直三棱柱的底面外接圆直径为2221(3)2r =+=,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解.
【详解】 由题意可得该直三棱柱的底面外接圆直径为2221(3)21r r =+=⇒=, 根据球的性质,可得外接球的直径为22222(2)2(23)4R r h =+=+=,解得2R =, 所以该三棱柱的外接球的体积为343233
V R ππ=
=,故选A. 【点睛】
本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模
型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.
16.在空间中,下列命题正确的是
A .如果一个角的两边和另一角的两边分别平行,那么这两个角相等
B .两条异面直线所成的有的范围是0,2π⎡⎤⎢⎥⎣⎦
C .如果两个平行平面同时与第三个平面相交,那么它们的交线平行
D .如果一条直线和平面内的一条直线平行,那么这条直线和这个平面平行
【答案】C
【解析】
【分析】
根据两个角可能互补判断A ;根据两条异面直线所成的角不能是零度,判断B ;根据根据两个平面平行的性质定理知判断C ;利用直线与这个平面平行或在这个平面内判断D.
【详解】
如果一个角的两边和另一个角的两边分别平行,这两个角相等或互补,故A 不正确; 两条异面直线所成的角不能是零度,故B 不正确;
根据两个平面平行的性质定理知C 正确;
如果一条直线和一个平面内的一条直线平行,那么这条直线与这个平面平行或在这个平面内,故D 不正确,综上可知只有C 的说法是正确的,故选C.
【点睛】
本题考查平面的基本性质及推论,考查等角定理,考查两个平面平行的性质定理,考查异面直线所成的角的取值范围,考查直线与平面平行的判断定理,意在考查对基础知识的掌握情况,本题是一个概念辨析问题.
17.已知直线
和不同的平面,下列命题中正确的是 A .//m m αβαβ⊥⎫⇒⎬⊥⎭ B .m m αββα⊥⎫⇒⊥⎬⊂⎭
C .
//////m m ααββ⎫⇒⎬⎭
D .////m m αββα⎫⇒⎬⊂⎭
【答案】D
【解析】
【分析】 对各个选项逐一进行分析即可
【详解】 A ,若αβ⊥,m β⊥,则有可能m α⊂,故A 错误
B ,若αβ⊥,m α⊂,则m 与β不一定垂直,可能相交或平行,故B 错误
C ,若//m α,//m β则推不出//αβ,面面平行需要在一个面内找出两条相交线与另一
个平面平行,故C 错误
D ,若//αβ,m α⊂,则有//m β,故D 正确
故选D
【点睛】
本题考查了线面平行与面面平行的判断和性质,在对其判定时需要运用其平行的判定定理或者性质定理,所以要对课本知识掌握牢固,从而判断结果
18.某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )
A .6
B .5
C .2
D .1
【答案】A
【解析】 由三视图可知该多面体的直观图为如图所示的四棱锥P ABCD -:
其中,四边形ABCD 为边长为1的正方形,PE ⊥面ABCD ,且1AE =,1PE =. ∴222AP AE PE =
+=2BE AB AE =+=,222DE AD AE =+= ∴225CE BE BC =+=225PB BE PE =+223PD PE DE =+=∴226PC CE PE =+=∴最长棱为PC
故选A.
点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:①首先看俯视图,根据俯视图画出几何体地面的直观图;②观察正视图和侧视图找到几何体前、后、左、右的高度;③画出整体,然后再根据三
视图进行调整.
19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为
A .2
B .1
C .32
D .52
【答案】C
【解析】
【分析】
判断俯视图的形状,利用三视图数据求解俯视图的面积即可.
【详解】
由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点,
俯视图如图所示:
可得其面积为:1113222111122222
⨯-
⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】 本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.
20.已知棱长为1的正方体被两个平行平面截去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积为( )
A.B.C.D.
【答案】B
【解析】
【分析】
根据三视图得到几何体的直观图,然后再根据题中的数据求出几何体的表面积即可.
【详解】
由三视图可得,该几何体为如图所示的正方体截去三棱锥和三棱锥后的剩余部分.
其表面为六个腰长为1的等腰直角三角形和两个边长为的等边三角形,
所以其表面积为.
故选B.
【点睛】
在由三视图还原空间几何体时,一般以主视图和俯视图为主,结合左视图进行综合考虑.热悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.求解几何体的表面积或体积时要结合题中的数据及几何体的形状进行求解,解题时注意分割等方法的运用,转化为规则的几何体的表面积或体积求解.。