七年级上册成都市金牛中学数学期末试卷综合测试(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册成都市金牛中学数学期末试卷综合测试(Word版含答
案)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.
(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;
(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;
(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.
【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)解:结论DE=BD+CE成立;理由如下:
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,
∴∠CAE=∠ABD,
在△ABD和△CEA中,
∴△ABD≌△CEA(AAS),
∴S△ABD=S△CEA,
设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,
∴S△ABC= BC•h=12,S△ACF= CF•h,
∵BC=2CF,
∴S△ACF=6,
∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,
∴△ABD与△CEF的面积之和为6.
【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.
2.如图,已知:点不在同一条直线, .
(1)求证: .
(2)如图②,分别为的平分线所在直线,试探究与的数量关系;
(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.
【答案】(1)证明:过点C作,则,
∵
∴
∴
(2)解:过点Q作,则,
∵,
∴
∵分别为的平分线所在直线
∴
∴
∵
∴
(3):1:2:2
【解析】【解答】解:(3)∵
∴
∴
∵
∴
∵
∴
∴
∴
∴ .
故答案为: .
【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出
,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.
3.如图,O是直线AB上一点,OD平分∠AOC.
(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.
(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.
【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,
∴∠AOE=∠AOD+∠DOE=90°,
∴∠AOD= ∠AOE= ×90°=30°,
∴∠AOC=2∠AOD=60°,
∴∠COE=90°﹣∠AOC=30°
【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;
②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;
(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
4.如图,点B、C在线段AD上,CD=2AB+3.
(1)若点C是线段AD的中点,求BC-AB的值;
(2)若BC=AD,求BC-AB的值;
(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.
【答案】(1)解:设AB长为x,BC长为y,则CD=2x+3.若C是AB的中点,则AC=CD,即x+y=2x+3,得:y-x=3,即BC-AB=3
(2)解:设AB长为x,BC长为y,若BC= CD,即AB+CD=3BC,∴x+2x+3=3y,∴y=x+1,即y-x=1,∴BC-AB=1
(3)解:以A为原点,AD方向为正方向,1为单位长度建立数轴,则A:0,B:x,C:x+y,D:x+y+2x+3=3x+y+3.设P:p,由已知得:0≤p≤x+y,则AP=p,AC=x+y,DP=3x+y+3-p,∵AP+AC=DP,BP= ,∴p+x+y=3x+y+3-p,解得:2p-2x=3,∴p-x=1.5,∴BP=1.5
【解析】【分析】(1)此题可以设未知数表示题中线段的长度关系,设AB长为x,BC长为y,则AC=AB+BC=x+y,CD=2x+3 ,根据中点的定义得出 AC=CD ,从而列出方程,变形即可得出答案;
(2)设AB长为x,BC长为y ,则CD=2x+3 ,由BC= CD,得出AB+CD=3BC,从而列出方程变形即可得出答案;
(3)设AB长为x,BC长为y ,则CD=2x+3 ,以A为原点,AD方向为正方向,1为单位长度建立数轴,则A点表示的数为0,B点表示的数为x,C点表示的数为x+y,D点表示的数为x+y+2x+3=3x+y+3.设P点表示的数为p,由已知得:0≤p≤x+y,则AP=p,AC=x+y,DP=3x+y+3-p,由AP+AC=DP,列出方程,并行得出P-X的值,再根据BP= 即可得出
答案。
5.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.
(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;
(2)如图2,若∠AOC=140°,则∠BOD=________;
(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.
(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.
【答案】(1)145°;45°
(2)40°
(3)解:∠AOC 与∠BOD 互补.
∵∠AOD+∠BOD+∠BOD+∠BOC=180°.
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠AOC 与∠BOD 互补
(4)解:OD⊥AB 时,∠AOD=30°,
CD⊥OB 时,∠AOD=45°,
CD⊥AB 时,∠AOD=75°,
OC⊥AB 时,∠AOD=60°,
即∠AOD 角度所有可能的值为:30°、45°、60°、75°
【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,
则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;
( 2 )如图 2,若∠AOC=140°,
则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;
故答案为:(1)145°,45°;(2)40°.
【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。
(2)观察如图2可证∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD,代入计算可求解。
(3)观察图形可得出∠AOD+∠BOD+∠BOD+∠BOC=180°,而∠AOC=∠AOD+∠BOD+∠BOC ,即可证得结论。
(4)分情况讨论:OD⊥AB 时;CD⊥OB 时;CD⊥AB 时;OC⊥AB 时,根据垂直的定义,分别求出∠AOD的度数。
6.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .
(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?
(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.
【答案】(1)点B表示的数-6;点P表示的数8-4t
(2)解:设点P运动x秒时,点P与点Q的距离是2个单位长度,则AP=4x,BQ=2x,
如图1时,AP+2=14+BQ,即4x+2=14+2x,解得:x=6,
如图2时,AP=14+BQ+2,即4x=14+2x+2,解得:x=8,
综上,当点P运动6秒或8秒后与点Q的距离为2个单位
(3)解:线段MN的长度不发生变化,都等于7;理由如下:
∵①当点P在点A、B两点之间运动时:
MN=MP+NP= AP+ BP= (AP+BP)= AB= ×14=7,
②当点P运动到点B的左侧时:
MN=MP-NP= AP- BP= (AP-BP)= AB=7,
∴线段MN的长度不发生变化,其值为7.
【解析】【解答】解:(1)∵点A表示的数为8,B在A点左边,AB=14,
∴点B表示的数是8-14=-6,
∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,
∴点P表示的数是8-4t.
故答案为:-6,8-4t;
【分析】(1)根据题意由点A表示的数为8,B在A点左边,AB=14,得到点B表示的数,求出动点P表示的数的代数式;(2)由点P与点Q的距离是2个单位长度,得到AP+2=14+BQ和AP=14+BQ+2,求出点P运的时间;(3)当点P在点A、B两点之间运动时,MN=MP+NP,再由中点定义求出MN的值,当点P运动到点B的左侧时,MN=MP-NP,再由中点定义求出MN的值.
7.已知∠AOB和∠AOC是同一个平面内的两个角,OD是∠BOC的平分线.
(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD的度数;
(2)若∠AOB= 度,∠AOC= 度,其中且
求∠AOD的度数(结果用含的代数式表示),请画出图形,直接写出答案。
【答案】(1)解:图1中∠BOC=∠AOC﹣∠AOB=70°﹣50°=20°,
∵OD是∠BOC的平分线,
∴∠BOD= ∠BOC=10°,
∴∠AOD=∠AOB+∠BOD=50°+10°=60°;
图2中∠BOC=∠AOC+∠AOB=120°,
∵OD是∠BOC的平分线,
∴∠BOD= ∠BOC=60°,
∴∠AOD=∠BOD﹣∠AOB=60°﹣50°=10°;
(2)解:根据题意可知∠AOB= 度,∠AOC= 度,其中
且,
如图1中,
∠BOC=∠AOC﹣∠AOB=n﹣m,
∵OD是∠BOC的平分线,
∴∠BOD= ∠BOC= ,
∴∠AOD=∠AOB+∠BOD= ;
如图2中,
∠BOC=∠AOC+∠AOB=m+n,
∵OD是∠BOC的平分线,
∴∠BOD= ∠BOC= ,
∴∠AOD=∠BOD﹣∠AOB= .
【解析】【分析】(1)图1中∠BOC=∠AOC﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD﹣∠AOB即可得解;(2)图1中∠BOC=∠AOC﹣∠AOB=n﹣m,则∠BOD=
,故∠AOD=∠AOB+∠BOD= ;图2中∠BOC=∠AOC+∠AOB=m+n,则∠BOD= ,故∠AOD=∠BOD﹣∠AOB= .
8.如图,已知OE平分,OF平分
(1)若是直角,,求的度数.
(2)若,,,请用x 的代数式来表示直接写出结果就行 .
【答案】(1)解:∵∠AOB是直角,∠BOC=60°,
∴∠AOC=∠AOB+∠BOC=90°+60°=150°,
∵OE平分∠AOC,
∴∠EOC=∠AOC=75°,
∵OF平分∠BOC,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC−∠COF=75°−30°=45°;
(2)解:∵∠AOC=x°,OE平分∠AOC,
∴∠EOC=∠AOC= x°,
∵OF平分∠BOC,∠BOC=60°,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC−∠COF=x°−30°,即y=x−30.
【解析】【分析】(1)由∠AOB是直角、∠BOC=60°知∠AOC=∠AOB+∠BOC=150°,根据OE平分∠AOC、OF平分∠BOC求得∠EOC、∠COF度数,由∠EOF=∠EOC−∠COF可
得答案;(2)由∠AOC=x°,、OE平分∠AOC 知∠EOC=∠AOC= x°,由OF平分∠BOC、∠BOC=60°知∠COF=∠BOC=30°,根据∠EOF=∠EOC−∠COF可得答案.
9.以直线上点为端点作射线,使,将直角的直角顶点放在点处.
(1)若直角的边在射线上(图①),求的度数;
(2)将直角绕点按逆时针方向转动,使得所在射线平分(图②),说明所在射线是的平分线;
(3)将直角绕点按逆时针方向转动到某个位置时,恰好使得
(图③),求的度数.
【答案】(1)解:∵,
又∵,
∴ .
(2)解:∵平分,
∴,
∵,
∴,,
∴,
∴所在直线是的平分线.
(3)解:设,则,
∵,,
①若∠COD在∠BOC的外部,
∴,解得x=10,
∴∠COD=10°,
∴∠BOD=60°+10°=70°;
②若∠COD在∠BOC的内部,
,解得x=30,
∴∠COD=30°,
∴∠BOD=60°-30°=30°;
即或,
∴或 .
【解析】【分析】(1)代入∠BOE=∠COE+∠COB求出即可;(2)求出∠AOE=∠COE,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB,即可得出答案;(3)要分情况讨论,一种是∠COD在∠BOC的内部,另一种是∠COD在∠BOC的外
部,再根据平角等于180°可通过列方程求出即可.
10.已知点O是直线AB上的一点,∠COE= ,OF是∠AOE的平分线。
(1)当点C,E,F在直线AB的同侧(如图1所示)时.∠AOC= 时,求∠BOE和∠COF的度数,∠BOE和∠COF有什么数量关系?
(2)当点C与点E,F在直线AB的两旁(如图2所示)时,∠AOC= ,(1)中∠BOE和∠COF 的数量关系的结论是否成立?请给出你的结论并说明理由;
【答案】(1)解:∵,,
∴,,
∵OF平分∠AOE,
∴
∴;
∴
(2)成立;;如图所示:
理由如下:∵,,
∴,
∴,
∵OF平分∠AOE,
∴,.
∴;
∴
【解析】【分析】(1)由,,得
,,根据OF平分∠AOE,得则有,并可得;
(2);由,,得
,
,根据OF平分∠AOE得,则有
,即;
11.直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD
(1)如图1,若∠BCE=40°,求∠ACF的度数;
(2)如图2,若∠BCE=a,直接写出∠ACF的度数(结果用含a的代数式表示);
(3)将直角三角板ABC绕顶点C旋转,探究∠ACF与∠BCE的度数之间的关系,并说明理由。
【答案】(1)解:∵∠BCE+∠BCD=180°,∠BCE=40°
∴∠BCD=140°,
∵CF平分∠BCD
∠BCF= ∠BCD=70°
∴∠ACF=∠ACB-∠BCF=20°;
(2)解:∠ACF=
(3)当CF在∠ACB内部时,
∵CF平分∠BCD
∠BCF= ∠BCD= (180°-∠BCE)=90°- ∠BCE
∴∠ACF=∠ACB-∠BCF=90°-(90°- ∠BCE)= ∠BCE
当CF在∠ACB外部时,
∵CF平分∠BCD
∠BCF= ∠BCD= (180°-∠BCE)=90°- ∠BCE
∴∠ACF=∠ACB+∠BCF=90°+(90°-∠BCE)=180°- ∠BCE
【解析】【分析】(1)首先根据邻补角的定义算出∠BCD的度数,根据角平分线的定义得出∠BCF 的度数,最后根据学具的性质及∠ACF=∠ACB-∠BCF 即可算出答案;
(2)同(1)即可得出结论;
(3)分类讨论:当CF在∠ACB内部时,根据角平分线的定义及∠ACF=∠ACB-∠BCF 即可得出结论;当CF在∠ACB外部时,根据角平分线的定义及∠ACF=∠ACB+∠BCF 即可得出结论.
12.如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=________;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;
(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.
【答案】(1)25°
(2)解:如图②,∵OC平分∠EOA,∠AOC=65°,∴∠EOA=2∠AOC=130°,∵∠DOE=90°,∴∠AOD=∠AOE-∠DOE=40°,∵∠BOC=65°,∴∠COD=∠AOC-∠AOD=25°(3)解:根据图形得出∠AOD+∠COD=∠AOC=65°,∠COE+∠COD=∠DOE=90°
∴
∴
【解析】【解答】(1)如图①,∠COE=∠DOE-∠AOC=90°-65°=25°;
【分析】(1)根据图形得出∠COE=∠DOE-∠AOC,代入求出即可;(2)根据角平分线定义求出∠EOA=2∠AOC=130°,代入∠EOC=∠BOA-∠AOC,求出∠EOC,代入∠COD=∠DOE-∠EOC求出即可;(3)根据图形得出∠AOD+∠COD=∠AOC=65°,∠COE+∠COD=∠DOE=90°,相减即可求出答案.
13.如图,在△ ABC中,∠ ABC、∠ ACB的平分线交于点O.
(1)若∠ABC=40°,∠ ACB=50°,则∠BOC=________
(2)若∠ABC+∠ ACB=lO0°,则∠BOC="________"
(3)若∠A=70°,则∠BOC=________
(4)若∠BOC=140°,则∠A=________
(5)你能发现∠ BOC与∠ A之间有什么数量关系吗?写出并说明理由.
【答案】(1)135°
(2)130°
(3)125°
(4)100°
(5)解:BO平分∠ABC, CO平分∠ABC ∴∠OBC=0.5∠ABC ∠OCB=0.5∠ACB ∴∠OBC+∠OCB=0.5∠ABC+0.5∠ACB= 0.5(180-∠A)=90-0.5∠A ∴∠O=180-(∠OBC+∠OCB)=180-(90-0.5∠A)=90°+0.5∠A
【解析】【解答】解:(1)∵∠ABC=40°,∠ACB=50°,在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC=20°,∠OCB= ∠ACB=25°,
∴∠BOC=180°-∠OBC-∠OCB=180°-20°-25°=135°,
故答案是:135°;
( 2 )在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠OBC+∠OCB= (∠ABC+∠ACB)=50°,
∴∠BOC=180°- (∠ABC+∠ACB)=180°-50°=130°,
故答案是130°.
( 3 )在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠OBC+∠OCB= (∠ABC+∠ACB)=55°,
∴∠BOC=180°- (∠ABC+∠ACB)=180°-55°=125°,
故答案是125°;
( 4 )∵∠BOC=140°,
∴∠OBC+OCB=40°,
∵∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=80°,
∴∠A=100°,
故答案是:100°;
【分析】根据角平分线的性质以及三角形内角和定理得出∠OBC和∠OCB与∠A之间的关系,然后根据△BOC的内角和定理得出∠BOC与∠A的关系.
14.已知直线.
(1)如图1,直接写出,和之间的数量关系.
(2)如图2,,分别平分,,那么和有怎样的数量关系?请说明理由.
(3)若点E的位置如图3所示,,仍分别平分,,请直接写出和的数量关系.
【答案】(1)
(2)解:.理由如下:
∵,分别平分,,
∴,,
∴,
由(1)得,,
又∵,
∴
(3)解:,理由如下:
如图3,过点作,
∵,,
∴,
∴,,
∴,
由(1)知,,
又∵,分别平分,,
∴,,
∴,
∴.
【解析】【解答】(1),理由如下:
如图1,过点E作,
∵,
∴,
∴,,
∴,
即;
【分析】(1)过点E作,根据平行线的性质得,,进而即可得到结论;(2)由角平分线的定义得,,
结合第(1)题的结论,即可求证;(3)过点作,由平行线的性质得
,结合第(1)题的结论与角平分线的定义得
,进而即可得到结论.
15.如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30 ,OB 运动速度为每秒10 ,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:
(1)如图①,若OA顺时针转动,OB逆时针转动, =________秒时,OA与OB第一次重合;
(2)如图②,若OA、OB同时顺时针转动,
①当 =3秒时,∠AOB=________ ;
②当为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?________
【答案】(1)4.5
(2);解:由题意知,
∴∠BON=10t ,∠AON=180-30t (0≤t≤6),∠AON=30t-180(6<t≤12).
当ON为∠AOB的角平分线时,有
180-30t =10t ,
解得:t =4.5;
当OA为∠BON的角平分线时,
10t =2(30t -180),
解得:t =7.2;
当OB为∠AON的角平分线时,
30t -180=2×10t ,
解得:t =18(舍去);
∴经过4.5,7.2秒时,射线OA、OB、ON其中一条射线是另外两条射线夹角的平分线
【解析】【解答】(1)解:若OA顺时针转动,OB逆时针转动,
∴∠AOM+∠BON=180 ,
∴,
解得:;
∴秒,OA与OB第一次重合;
故答案为:4.5
2)解:①若OA、OB同时顺时针转动,
∴,,
∴;
故答案为:120;
【分析】(1)设t秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180 减去OA转动的角度,加上OB转动的角度,即可得到答案;
②先用t的代数式表示∠BON和∠AON,然后分为三种情况进行讨论:当ON、OA、OB为角平分线时,分别求出t的值,即可得到答案.。