2009年湖北省高考数学试题(理数)
2009年湖北省高考数学试卷(理科)及答案
![2009年湖北省高考数学试卷(理科)及答案](https://img.taocdn.com/s3/m/8eef8839f524ccbff0218492.png)
2009年湖北省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}2.(5分)设a为非零实数,函数y=(x∈R,且x≠﹣)的反函数是()A.y=(x∈R,且x≠﹣)B.y=(x∈R,且x≠)C.y=(x∈R,且x≠1)D.y=(x∈R,且x≠﹣1)3.(5分)投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n ﹣mi)为实数的概率为()A.B.C.D.4.(5分)函数y=cos(2x+)﹣2的图象F按向量平移到F′,F′的函数解析式为y=f(x),当y=f(x)为奇函数时,向量a可以等于()A.(,﹣2)B.(,2)C.(,﹣2) D.(,2)5.(5分)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,则不同分法的种数为()A.18 B.24 C.30 D.366.(5分)设+a2n x2n,则[(a 0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2]=()A.﹣1 B.0 C.1 D.7.(5分)已知双曲线的准线过椭圆的焦点,则直线y=kx+2与椭圆至多有一个交点的充要条件是()A.K∈[﹣,]B.K∈[﹣∞,﹣]∪[,+∞]C.K∈[﹣,]D.K∈[﹣∞,﹣]∪[,+∞]8.(5分)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元9.(5分)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C10.(5分)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.1378二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知关于x的不等式的解集,则实数a=.12.(5分)如图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数落在[6,10]内的频数为,数据落在(2,10)内的概率约为.13.(5分)如图,卫星和地面之间的电视信号沿直线传播,电视信号能够传送到达的地面区域,称为这个卫星的覆盖区域.为了转播2008年北京奥运会,我国发射了“中星九号”广播电视直播卫星,它离地球表面的距离约为36000km.已知地球半径约为6400km,则“中星九号”覆盖区域内的任意两点的球面距离的最大值约为km.(结果中保留反余弦的符号).14.(5分)已知函数f(x)=f′()cosx+sinx,则f()的值为.15.(5分)已知数列{a n}满足:a1=m(m为正整数),a n+1=若a6=1,则m所有可能的取值为.三、解答题(共6小题,满分75分)16.(10分)一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6.现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量η=x+y,求η的分布列和数学期望.17.(12分)已知向量=(cosα,sinα),=(cosβ,sinβ),=(﹣1,0).(1)求向量的长度的最大值;(2)设α=,且⊥(),求cosβ的值.18.(12分)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE(Ⅱ)设二面角C﹣AE﹣D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ•tanφ=1,求λ的值.19.(13分)已知数列{a n}的前n项和S n=﹣a n﹣()n﹣1+2(n∈N*).(1)令b n=2n a n,求证:数列{b n}是等差数列,并求数列{a n}的通项公式.(2)令c n=,试比较T n与的大小,并予以证明.20.(14分)过抛物线y2=2px(p>0)的对称轴上一点A(a,0)(a>0)的直线与抛物线相交于M、N两点,自M、N向直线l:x=﹣a作垂线,垂足分别为M1、N1.(Ⅰ)当a=时,求证:AM1⊥AN1;(Ⅱ)记△AMM1、△AM1N1、△ANN1的面积分别为S1、S2、S3,是否存在λ,使得对任意的a>0,都有S22=λS1S3成立?若存在,求出λ的值,否则说明理由.21.(14分)在R上定义运算:(b、c∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)2009年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•湖北)已知P={|=(1,0)+m(0,1),m∈R},Q={|=(1,1)+n(﹣1,1),n∈R}是两个向量集合,则P∩Q=()A.{(1,1)}B.{(﹣1,1)}C.{(1,0)}D.{(0,1)}【分析】先根据向量的线性运算化简集合P,Q,求集合的交集就是寻找这两个集合的公共元素,通过列方程组解得.【解答】解:由已知可求得P={(1,m)},Q={(1﹣n,1+n)},再由交集的含义,有⇒,所以选A.2.(5分)(2009•湖北)设a为非零实数,函数y=(x∈R,且x≠﹣)的反函数是()A.y=(x∈R,且x≠﹣)B.y=(x∈R,且x≠)C.y=(x∈R,且x≠1)D.y=(x∈R,且x≠﹣1)【分析】从条件中函数y=(x∈R,且x≠﹣)中反解出x,再将x,y互换即得原函数的反函数,再依据函数的定义域求得反函数的定义域即可.【解答】解:由函数y=(x∈R,且x≠﹣)得:x=,∴函数y=(x∈R,且x≠﹣)的反函数是:y=(x∈R,且x≠﹣1).故选D.3.(5分)(2009•湖北)投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n﹣mi)为实数的概率为()A.B.C.D.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,虚部为0,求出m、n的关系,求出满足关系的基本事件的个数,求出概率即可.【解答】解:因为(m+ni)(n﹣mi)=2mn+(n2﹣m2)i为实数所以n2=m2故m=n则可以取1、2、3、4、5、6,共6种可能,所以,故选C.4.(5分)(2009•湖北)函数y=cos(2x+)﹣2的图象F按向量平移到F′,F′的函数解析式为y=f(x),当y=f(x)为奇函数时,向量a可以等于()A.(,﹣2)B.(,2)C.(,﹣2) D.(,2)【分析】由左加右减上加下减的原则可确定函数y=cos(2x+)﹣2到y=﹣sin2x 的路线,进而确定向量.【解答】解::∵y=cos(2x+)﹣2∴将函数y=cos(2x+)﹣2向左平移个单位,再向上平移2个单位可得到y=cos(2x+)=﹣sin2x∴=(,2)故选B.5.(5分)(2009•湖北)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,则不同分法的种数为()A.18 B.24 C.30 D.36【分析】由题意知本题可以先做出所有情况再减去不合题意的结果,用间接法解四名学生中有两名学生分在一个班的种数是C42,顺序有A33种,而甲乙被分在同一个班的有A33种,两个相减得到结果.【解答】解:∵每个班至少分到一名学生,且甲、乙两名学生不能分到一个班用间接法解四名学生中有两名学生分在一个班的种数是C42,元素还有一个排列,有A33种,而甲乙被分在同一个班的有A33种,∴满足条件的种数是C42A33﹣A33=30故选C.6.(5分)(2009•湖北)设+a2n x2n,则[(a 0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2]=()A.﹣1 B.0 C.1 D.【分析】本题因为求极限的数为二项式展开式的奇数项的系数和的平方与偶数项的系数和的平方的差,故可以把x赋值为1代入二项展开式中,求出A=a0+a1+a2+a3+…a2n﹣1+a2n=,再令x=﹣1,可得到B=a0﹣a1+a2﹣a3+a4﹣a5+…﹣a2n﹣1+a2n=,而求极限的数由平方差公式可以知道就是式子A与B的乘积,代入后由平方差公式即可化简为求得答案.【解答】解:令x=1和x=﹣1分别代入二项式+a2n x2n中得a0+a1+a2+a3+…a2n﹣1+a2n=,a0﹣a1+a2﹣a3+a4﹣a5+…﹣a2n﹣1+a2n=由平方差公式得(a0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2=(a0+a1+a2+a3+…a2n﹣1+a2n)(a0﹣a1+a2﹣a3+a4﹣a5+…﹣a2n﹣1+a2n)═==所以[(a 0+a2+a4+…+a2n)2﹣(a1+a3+a5+…+a2n﹣1)2]==0故选择B7.(5分)(2009•湖北)已知双曲线的准线过椭圆的焦点,则直线y=kx+2与椭圆至多有一个交点的充要条件是()A.K∈[﹣,]B.K∈[﹣∞,﹣]∪[,+∞]C.K∈[﹣,]D.K∈[﹣∞,﹣]∪[,+∞]【分析】先求得准线方程,可推知a和b的关系,进而根据c2=a2﹣b2求得b,椭圆的方程可得,与直线y=kx+2联立消去y,根据判别式小于等于0求得k的范围.【解答】解:根据题意,双曲线中,c2=2+2=4,则c=2,易得准线方程是x=±=±1所以c2=a2﹣b2=4﹣b2=1即b2=3所以方程是联立y=kx+2可得(3+4k2)x2+16kx+4=0由△≤0解得k∈[﹣,]故选A8.(5分)(2009•湖北)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2000元B.2200元C.2400元D.2800元【分析】根据题中的叙述将实际问题转化为不等式中的线性规划问题,利用线性规划确定最值【解答】解:设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z=400x+300y的最小值.解得当时,z min=2200.故选B.9.(5分)(2009•湖北)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C【分析】求出球的体积的表达式,然后球的导数,推出,利用面积的导数是体积,求出球的表面积的增长速度与球半径的比例关系.【解答】解:由题意可知球的体积为,则c=V′(t)=4πR2(t)R′(t),由此可得,而球的表面积为S(t)=4πR2(t),=S′(t)=4πR2(t)=8πR(t)R′(t),所以V表即V=8πR(t)R′(t)=2×4πR(t)R′(t)=表故选D10.(5分)(2009•湖北)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.1378【分析】根据图形观察归纳猜想出两个数列的通项公式,再根据通项公式的特点排除,即可求得结果.【解答】解:由图形可得三角形数构成的数列通项,同理可得正方形数构成的数列通项b n=n2,则由b n=n2(n∈N+)可排除D,又由,与无正整数解,故选C.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2009•湖北)已知关于x的不等式的解集,则实数a=﹣2.【分析】先利用解分式不等式的方法转化原不等式,再结合其解集,得到x=﹣是方程ax﹣1=0的一个根,最后利用方程的思想求解即得.【解答】解:∵不等式,∴(ax﹣1)(x+1)<0,又∵关于x的不等式的解集,∴x=﹣是方程ax﹣1=0的一个根,∴a×(﹣)﹣1=0,∴a=﹣2.故答案为:﹣2.12.(5分)(2009•湖北)如图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数落在[6,10]内的频数为64,数据落在(2,10)内的概率约为0.4.【分析】从直方图得出数落在[6,10]内的频率和数据落在(2,10)内的频率后,再由频率=,计算频数即得.【解答】解:观察直方图易得数落在[6,10]内的频率=0.08×4;数据落在(2,10)内的频率=(0.02+0.08)×4;∴样本数落在[6,10]内的频数为200×0.08×4=64,频率为0.1×4=0.4.故答案为64 0.4.13.(5分)(2009•湖北)如图,卫星和地面之间的电视信号沿直线传播,电视信号能够传送到达的地面区域,称为这个卫星的覆盖区域.为了转播2008年北京奥运会,我国发射了“中星九号”广播电视直播卫星,它离地球表面的距离约为36000km.已知地球半径约为6400km,则“中星九号”覆盖区域内的任意两点的球面距离的最大值约为12800arccos km.(结果中保留反余弦的符号).【分析】先求出球的半径,然后求出∠AOB的余弦值,求出角,再求其外接球面上两点A,B间的球面距离.【解答】解:如图所示,可得AO=42400,则在Rt△ABO中可得:cos∠AOB=,所以l=cosθ×R=2∠AOB•R=12800arccos.球面距离的最大值约为:12800arccos.故答案为:12800arccos.14.(5分)(2009•湖北)已知函数f(x)=f′()cosx+sinx,则f()的值为1.【分析】利用求导法则:(sinx)′=cosx及(cosx)′=﹣sinx,求出f′(x),然后把x等于代入到f′(x)中,利用特殊角的三角函数值即可求出f′()的值,把f′()的值代入到f(x)后,把x=代入到f(x)中,利用特殊角的三角函数值即可求出f()的值.【解答】解:因为f′(x)=﹣f′()•sinx+cosx所以f′()=﹣f′()•sin+cos解得f′()=﹣1故f()=f′()cos+sin=(﹣1)+=1故答案为1.15.(5分)(2009•湖北)已知数列{a n}满足:a1=m(m为正整数),a n+1=若a6=1,则m所有可能的取值为4,5,32.【分析】由题设知a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.【解答】解:∵数列{a n}满足:a1=m(m为正整数),a n+1=,a6=1,∴a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.故答案为:4,5,32.三、解答题(共6小题,满分75分)16.(10分)(2009•湖北)一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6.现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量η=x+y,求η的分布列和数学期望.【分析】随机变量η=x+y,依题意η的可能取值是5,6,7,8,9,10,11,结合变量对应的事件,根据相互独立事件同时发生的概率做出概率的值,写出分布列和期望.【解答】解:随机变量η=x+y,依题意η的可能取值是5,6,7,8,9,10,11得到P(η=5)=;P(η=6)=P(η=7)=;P(η=8)=P(η=9)=;P(η=10)=P(η=11)=∴η的分布列为η56789101 1P∴Eη=5×+6×+7×+8×+9×+10×+11×=817.(12分)(2009•湖北)已知向量=(cosα,sinα),=(cosβ,sinβ),=(﹣1,0).(1)求向量的长度的最大值;(2)设α=,且⊥(),求cosβ的值.【分析】(1)利用向量的运算法则求出,利用向量模的平方等于向量的平方求出的平方,利用三角函数的平方关系将其化简,利用三角函数的有界性求出最值.(2)利用向量垂直的充要条件列出方程,利用两角差的余弦公式化简得到的等式,求出值.【解答】解:(1)=(cosβ﹣1,sinβ),则||2=(cosβ﹣1)2+sin2β=2(1﹣cosβ).∵﹣1≤cosβ≤1,∴0≤||2≤4,即0≤||≤2.当cosβ=﹣1时,有|b+c|=2,所以向量的长度的最大值为2.(2)由(1)可得=(cosβ﹣1,sinβ),•()=cosαcosβ+sinαsinβ﹣cosα=cos(α﹣β)﹣cosα.∵⊥(),∴•()=0,即cos(α﹣β)=cosα.由α=,得cos(﹣β)=cos,即β﹣=2kπ±(k∈Z),∴β=2kπ+或β=2kπ,k∈Z,于是cosβ=0或cosβ=1.18.(12分)(2009•湖北)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE(Ⅱ)设二面角C﹣AE﹣D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ•tanφ=1,求λ的值.【分析】解法一:(几何法)(Ⅰ)因为SD⊥平面ABCD,BD是BE在平面ABCD 上的射影,由三垂线定理只要证AC⊥BD即可.(Ⅱ)先找出θ和φ,因为由SD⊥平面ABCD知,∠DBE=φ,二面角C﹣AE﹣D的平面角可由三垂线定理法作出.再用λ表示出tanθ和tanφ,代入tanθ•tanφ=1,解方程即可.解法二:(向量法)因为DA.DC.DS两两垂直,故可建立空间直角坐标系,由向量法求解.(Ⅰ)写出向量和的坐标,只要数量积为0即可.(Ⅱ)分别求出平面ACE的法向量、平面ABCD与平面ADE的一个法向量,由夹角公式求出cosθ和sinφ,再由tanθ•tanφ=1求解即可.【解答】解:(Ⅰ)证法1:如图1,连接BE、BD,由地面ABCD是正方形可得AC⊥BD.∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE(Ⅱ)解法1:如图1,由SD⊥平面ABCD知,∠DBE=φ,∵SD⊥平面ABCD,CD⊂平面ABCD,∴SD⊥CD.又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.连接AE、CE,过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,故∠CFD是二面角C﹣AE﹣D的平面角,即∠CFD=θ.在Rt△BDE中,∵BD=2a,DE=λa∴tanφ=在Rt△ADE中,∵,DE=λa∴AE=a从而DF=在Rt△CDF中,tanθ=.由tanθ•tanφ=1,得即=2,所以λ2=2.由0<λ≤2,解得,即为所求.(Ⅰ)证法2:以D为原点,以DA.DC.DS的方向分别作为x,y,z轴的正方向建立如图2所示的空间直角坐标系,则D(0,0,0),A(,0,0),B(a,a,0),C(0,a,0),E(0,0,λa),∴,∴,即AC⊥BE.(Ⅱ)解法2:由(I)得,,.设平面ACE的法向量为n=(x,y,z),则由,得即取,得.易知平面ABCD与平面ADE的一个法向量分别为与.∴,.∵0<θ<,λ>0∴tanθ•tanφ=1⇔θ+φ=⇔sinφ=cosθ⇔⇔λ2=2.由0<λ≤2,解得,即为所求.19.(13分)(2009•湖北)已知数列{a n}的前n项和S n=﹣a n﹣()n﹣1+2(n∈N*).(1)令b n=2n a n,求证:数列{b n}是等差数列,并求数列{a n}的通项公式.(2)令c n=,试比较T n与的大小,并予以证明.【分析】(1)由题意知S1=﹣a1﹣1+2=a1,,所以2n a n=2n﹣1a n﹣1+1,b n=b n﹣1+1,再由b1=2a1=1,知数列b n是首项和公差均为1的等差数列.于是b n=1+(n﹣1)•1=n=2n a n,所以(2),,利用错位相减求和法可知,于是确定T n与的大小关系等价于比较2n与2n+1的大小.猜想当n=1,2时,2n<2n+1,当n≥3时,2n>2n+1.然后用数学归纳法证明.【解答】解:(1)在中,令n=1,可得S1=﹣a1﹣1+2=a1,即当n≥2时,所以所以,即2n a n=2n﹣1a n﹣1+1因为b n=2n a n,所以b n=b n﹣1+1,即当n≥2时,b n﹣b n﹣1=1又b1=2a1=1,所以数列b n是首项和公差均为1的等差数列于是b n=1+(n﹣1)•1=n=2n a n,所以(2)由1)得所以①②由①﹣②得所以于是确定T n与的大小关系等价于比较2n与2n+1的大小.猜想当n=1,2时,2n<2n+1,当n≥3时,2n>2n+1下面用数学归纳法证明:当n=3时,显然成立假设当n=k(k≥3)时,2k>2k+1成立则当n=k+1时,2k+1=2•2k>2(2k+1)=4k+2=2(k+1)+1+(2k﹣1)>2(k+1)+1所以当n=k+1时,猜想也成立.于是,当n≥3,n∈N*时,2n>2n+1成立综上所述,当n=1,2时,,当n≥3时,20.(14分)(2009•湖北)过抛物线y2=2px(p>0)的对称轴上一点A(a,0)(a>0)的直线与抛物线相交于M、N两点,自M、N向直线l:x=﹣a作垂线,垂足分别为M1、N1.(Ⅰ)当a=时,求证:AM1⊥AN1;(Ⅱ)记△AMM1、△AM1N1、△ANN1的面积分别为S1、S2、S3,是否存在λ,使得对任意的a>0,都有S22=λS1S3成立?若存在,求出λ的值,否则说明理由.【分析】(Ⅰ)由题意,可设设直线MN的方程为x=my+a,M(x1,y1),N(x2,y2),则有M1(﹣a,y1),N1(﹣a,y2).将x=my+a代入y2=2px(p>0)消去x 可得y2﹣2mpy﹣2ap=0利用根与系数的关系及点A(a,0)得出即可证明出结论;(Ⅱ)假设存在λ=4,使得对任意的a>0,都有S22=4S1S3成立,分别表示出三个三角形的面积,代入验证即可证明出结论【解答】解:依题意,可设直线MN的方程为x=my+a,M(x1,y1),N(x2,y2),则有M1(﹣a,y1),N1(﹣a,y2).将x=my+a代入y2=2px(p>0)消去x可得y2﹣2mpy﹣2ap=0从而有y1+y2=2mp,y1y2=﹣2ap ①于是x1+x2=m(y1+y2)+2a=2(m2p+a)②又由y12=2px1,y22=2px2可得x1x2===a2③(Ⅰ)证:如图,当a=时,点A(,0)即为抛物线的焦点,l为其准线,其方程为x=﹣此时M1(﹣,y1),N1(﹣,y2).并由①可得y1y2=﹣p2∵,∴=0,故有AM1⊥AN1;(Ⅱ)存在λ=4,使得对任意的a>0,都有S22=4S1S3成立,证明如下:证:记直线l与x轴的交点为A1,则|OA|=|OA1|=a.于是有S1=|MM1||A1M1|=(x1+a)|y1|,S2=|M1N1||AA1|=a|y1﹣y2|,S3=|NN1||A1N1|=(x2+a)|y2|,∴S22=4S1S3⇔(a|y1﹣y2|))2=((x1+a)|y1|)2 ×((x2+a)|y2|)2 ⇔a2[(y1+y2)2﹣4y1y2]=[x1x2+a(x1+x2)+a2]|y1y2|将①、②、③代入上式化简可得a2(4m2p2+8ap)=4a2p(m2p+2a)上式恒成立,即对任意的a>0,S22=4S1S3成立21.(14分)(2009•湖北)在R上定义运算:(b、c ∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)【分析】①由题意得到f(x)的解析式,求出f′(x)因为在x=1处有极值得到f (1)=﹣,f′(1)=0求出b、c即可;(2)因为切线的斜率为c,则解出f′(t)=c时t的值得到切点坐标,写出切线方程与曲线解析式联立求出公共点可知公共点的个数;(3)根据题意得到g(x)的解析式,利用已知求出g(x)的最大值M,利用M≥k列出不等式求出k的取值范围即可.【解答】解:①依题意,解得或.若,,′(x)=﹣x2+2x﹣1=﹣(x﹣1)2≤0f(x)在R上单调递减,在x=1处无极值;若,,f′(x)=﹣x2﹣2x+3=﹣(x﹣1)(x+3),直接讨论知,f(x)在x=1处有极大值,所以为所求.②解f′(t)=c得t=0或t=2b,切点分别为(0,bc)、,相应的切线为y=cx+bc或.解得x=0或x=3b;解即x3﹣3bx2+4b3=0得x=﹣b或x=2b.综合可知,b=0时,斜率为c的切线只有一条,与曲线的公共点只有(0,0),b ≠0时,斜率为c的切线有两条,与曲线的公共点分别为(0,bc)、(3b,4bc)和、.③g(x)=|﹣(x﹣b)2+b2+c|.若|b|>1,则f′(x)在[﹣1,1]是单调函数,M=max{|f′(﹣1)|,|f′(1)|}={|﹣1+2b+c|,|﹣1﹣2b+c|},因为f′(1)与f′(﹣1)之差的绝对值|f′(1)﹣f′(﹣1)|=|4b|>4,所以M>2.若|b|≤1,f′(x)在x=b∈[﹣1,1]取极值,则M=max{|f′(﹣1)|,|f′(1)|,|f′(b)|},f′(b)﹣f′(±1)=(b∓1)2.若﹣1≤b<0,f′(1)≤f′(﹣1)≤f′(b;若0≤b≤1,f′(﹣1)≤f′(1)≤f′(b),M=max{|f′(﹣1)|,|f′(b)|}=.当b=0,时,在[﹣1,1]上的最大值.所以,k的取值范围是.。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)及答案
![2009年全国统一高考数学试卷(理科)(全国卷ⅱ)及答案](https://img.taocdn.com/s3/m/fc4ec9912cc58bd63186bd79.png)
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,23ξ01P故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
2009年高考数学(理)真题(Word版)——全国2卷(试题+答案解析)
![2009年高考数学(理)真题(Word版)——全国2卷(试题+答案解析)](https://img.taocdn.com/s3/m/f11ff915227916888486d7d6.png)
2009年普通高等学校招生全国统一考试(全国Ⅱ卷)数学(理)试题一、选择题( 本大题共12 题, 共计60 分)1、(5分)=( )A.-2+4iB.-2-4iC.2+4iD.2-4i2、(5分)设集合A={x|x>3},B={x|},则A∩B=()A. B.(3,4) C.(-2,1) D.(4,+∞)3、(5分)已知△ABC中,,则cosA=( )A. B. C. D.4、(5分)曲线在点(1,1)处的切线方程为( )A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=05、(5分)已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成角的余弦值为( )A. B. C. D.6、(5分)已知向量a=(2,1),a·b=10,|a+b|=,则|b|=( )A. B. C.5 D.257、(5分)设a=log3π,,,则( )A.a>b>cB.a>c>bC.b>a>cD.b>c>a8、(5分)若将函数y=tan()(ω>0)的图象向右平移个单位长度后,与函数y=tan()的图象重合,则ω的最小值为…()A. B. C. D.9、(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )A. B. C. D.10、(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6种B.12种C.30种D.36种11、(5分)已知双曲线C:(a>0,b>0)的右焦点为F,过F且斜率为的直线交C 于A、B两点.若,则C的离心率为( )A. B. C. D.12、(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“Δ”的面的方位是( )A.南B.北C.西D.下二、填空题( 本大题共4 题, 共计20 分)13、(5分) ()4的展开式中x3y3的系数为___________.14、(5分)设等差数列{a n}的前n项和为S n,若a5=5a3.则=___________.15、(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C,若圆C的面积等于,则球O的表面积等于______________.16、(5分)已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD 的面积的最大值为_____________.三、解答题( 本大题共6 题, 共计70 分)17、(10分) 设△ABC的内角A,B,C的对边长分别为a,b,c,cos(A-C)+cosB=,b2=ac,求B.18、(12分)如图,直三棱柱ABC—A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1. (Ⅰ)证明:AB=AC;(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.19、(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2.(Ⅰ)设b n=a n+1-2a n,证明数列{b n}是等比数列;(Ⅱ)求数列{a n}的通项公式.20、(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21、(12分)已知椭圆C:(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为.(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22、(12分)设函数=x2+aln(1+x)有两个极值点x1,x2,且x1<x2.(Ⅰ)求a的取值范围,并讨论的单调性;(Ⅱ)证明: ()21224Inf x->.答案解析一、选择题( 本大题共12 题, 共计60 分)1、(5分) A解析:.故选A.2、(5分) B解析:∵(x-1)(x-4)<0,∴1<x<4,即B={x|1<x<4},∴A∩B=(3,4).故选B.3、(5分) D解析:∵,∴A为钝角.又∵,∴.代入sin2A+cos2A=1,求得.故选D.4、(5分) B解析:∵,∴y′|x=1=-1.∴切线的斜率k=-1.∴切线方程为y-1=-(x-1),即x+y-2=0.故选B.5、(5分) C解析:如图所示,连接A1B,因A1D1BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C,则异面直线BE与CD1所成的角即为BE与BA1所成的角. 不妨设AB=1,则AA1=2,设∠ABE=α,∠ABA1=β,则,,,.∴cos(β-α)=cosβcosα+sinβsinα=.故选C.6、(5分) C解析:设b=(x,y),由得解方程组得或则|b|=.故选C.7、(5分) A解析:∵a=log3π>log33=1,,.∴a>b>c.故选A.8、(5分) D解析:将函数y=tan()(ω>0)的图象向右平移个单位,得y=tan(),又因平移后函数的图象与y=tan()的图象重合, ∴(k∈Z),即,∴当k=0时,,即ω的最小值为.故选D.9、(5分) D解析:设A(x1,y1),B(x2,y2),由题意得k2x2+(4k2-8)x+4k2=0,Δ=16(k2-2)2-4k2·4k2>0.得-1<k<1,即0<k<1,,x1x2=4.又∵|FA|=2|FB|,由抛物线定义,知F(2,0),抛物线的准线方程为x=-2,∴|FA|=x1+2,|FB|=x2+2,∴x1+2=2x2+4,即x1=2x2+2.代入x1·x2=4,得x22+x2-2=0,∴x2=1,或x2=-2(舍去,因x2>0).∴x1=2×1+2=4.∴.∴.又0<k<1,∴.故选D.10、(5分) C解析:由题意知甲、乙所选的课程有一门相同的选法为种,甲、乙所选的课程都不相同的选法有种,所以甲、乙所选的课程中至少有一门不相同的选法共有24+6=30种.故选C.11、(5分) A解析:设A(x1,y1),B(x2,y2),F(c,0),由,得(c-x1,-y1)=4(x2-c,y2),∴y1=-4y2.设过F点斜率为的直线方程为,∴则有∴将y1=-4y2分别代入①②得化简得∴.化简得16c2=9(3a2-b2)=9(3a2-c2+a2).∴25c2=36a2.∴,即.12、(5分) B解析:如右图所示正方体,要展开成要求的平面图,必须剪开棱BC,剪开棱D1C1使正方形DCC1D1向北的方向展平.剪开棱A1B1,使正方形ABB1A1向南的方向展开,然后拉开展平,则标“Δ”的面的方位则为北.故选B.二、填空题( 本大题共4 题, 共计20 分)13、(5分) 6解析:设展开式中第r+1项为x3y3项,由展开式中的通项,得=.令,得r=2.∴系数为.14、(5分) 9解析:由a5=5a3,得,.15、(5分) 8π解析:如图所示,设球半径为R,球心O到截面圆的距离为d,在Rt△ONB中,d2=R2-BN2.①又∵π·BN2=,∴.在△ONM中,d=OM·sin45°=,②将②代入①得,∴R2=2.∴S球=4πR2=8π.16、(5分) 5解析:如图所示,设|ON|=d1,|OP|=d2,则d12+d22=|OM|2=12+()2=3.在△ONC中,d12=|OC|2-|CN|2=4-|CN|2,∴.同理在△OBP中,.S四边形=S△CAD+S△CAB====.当且仅当d1=d2时取等号,即d1=d2=时取等号.三、解答题( 本大题共6 题, 共计70 分)17、(10分) 解:由cos(A-C)+cosB=及B=π-(A+C)得cos(A-C)-cos(A+C)=,cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=,.又由b2=ac及正弦定理得sin2B=sinAsinC.故,或(舍去),于是或.又由b2=ac知b≤a或b≤c,所以.18、(12分) 解法一:(Ⅰ)取BC的中点F,连接EF,则EF,从而EF DA.连接AF,则ADEF为平行四边形,从而AF∥DE.又DE⊥平面BCC1,故AF⊥平面BCC1,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC,(Ⅱ)作AG⊥BD,垂足为G,连接CG.由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角.由题设知∠AGC=60°.设AC=2,则.又AB=2,,故.由AB·AD=AG·BD得,解得,故AD=AF.又AD⊥AF,所以四边形ADEF为正方形.因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF.连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD.连接CH,则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形,,故EH=1,又,所以∠ECH=30°,即B1C与平面BCD所成的角为30°.解法二:(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz,设B(1,0,0),C(0,b,0),D(0,0,c),则B1(1,0,2c),E(,,c).于是=(,,0),=(-1,b,0).由DE⊥平面BCC1知DE⊥BC,·=0,求得b=1,所以AB=AC.(Ⅱ)设平面BCD的法向量=(x,y,z),则·=0,·=0.又=(-1,1,0), =(-1,0,c).故令x=1,则y=1, , =(1,1,).又平面ABD的法向量=(0,1,0).由二面角A-BD-C为60°知,〈〉=60°,故·=||·||·cos60°,求得.于是=(1,1,), =(1,-1,),cos〈,〉=,〈,〉=60°,所以B1C与平面BCD所成的角为30°.19、(12分) 解:(Ⅰ)由已知有a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3,又a n+2=S n+2-S n+1=4a n+1+2-(4a n+2)=4a n+1-4a n;于是a n+2-2a n+1=2(a n+1-2a n),即b n+1=2b n.因此数列{b n}是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ)知等比数列{b n}中b1=3,公比q=2,所以a n+1-2a n=3×2n-1,于是,因此数列{}是首项为,公差为的等差数列,,所以a n=(3n-1)·2n-2.20、(12分) 解:(Ⅰ)由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人.(Ⅱ)记A表示事件:从甲组抽取的工人中恰有1名女工人,则.(Ⅲ)ξ的可能取值为0,1,2,3.A i表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.B表示事件:从乙组抽取的是1名男工人.A i与B独立,i=0,1,2.P(ξ=0)=P(A0·)=P(A0)·P()=,P(ξ=1)=P(A0·B+A1·)=P(A0)·P(B)+P(A1)·P()=,P(ξ=3)=P(A2B)=P(A2)·P(B)=,P(ξ=2)=1-[P(ξ=0)+P(ξ=1)+P(ξ=3)]=.故ξ的分布列为ξ0 1 2 3PEξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=.21、(12分) 解:(Ⅰ)设F(c,0),当l的斜率为1时,其方程为x-y-c=0,O到l的距离为,故,c=1.由,得,.(Ⅱ)C上存在点P,使得当l绕F转到某一位置时,有成立,由(Ⅰ)知C的方程为2x2+3y2=6,设A(x1,y1),B(x2,y2),(ⅰ)当l不垂直于x轴时,设l的方程为y=k(x-1).C上的点P使成立的充要条件是P点的坐标为(x1+x2,y1+y2),且2(x1+x2)2+3(y1+y2)2=6,整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在C上,即2x12+3y12=6,2x22+3y22=6.故2x1x2+3y1y2+3=0.①将y=k(x-1)代入2x2+3y2=6,并化简得(2+3k2)x2-6k2x+3k2-6=0,于是,,y1·y2=k2(x1-1)(x2-1)=.代入①解得k2=2,此时,于是y1+y2=k(x1+x2-2)=,即P(,).因此,当时,P(,),l的方程为;当时,P(,),l的方程为.(ⅱ)当l垂直于x轴时,由=(2,0)知,C上不存在点P使成立, 综上,C上存在点P(,)使成立,此时l的方程.22、(12分) 解:(Ⅰ)由题设知,函数的定义域是x>-1,,且f′(x)=0有两个不同的根x1,x2,故2x2+2x+a=0的判别式Δ=4-8a>0,即,且,.①又x1>-1,故a>0.因此a的取值范围是(0,).当x变化时,与f′(x)的变化情况如下表:x (-1,x1) x1(x1,x2) x2(x2,+∞)f′(x)+ 0 - 0 +极大值极小值因此在区间(-1,x1)和(x2,+∞)上是增函数,在区间(x1,x2)上是减函数.(Ⅱ)由题设和①知<x2<0,a=-2x2(1+x2),于是f(x2)=x22-2x2(1+x2)ln(1+x2).设函数g(t)=t2-2t(1+t)ln(1+t),则g′(t)=-2(1+2t)ln(1+t).当时,g′(t)=0;当t∈(,0)时,g′(t)>0,故g(t)在区间[,0)上是增函数.于是,当t∈(,0)时,. 因此.。
湖北省2009年高考试题教育考试院内部试题理科数学
![湖北省2009年高考试题教育考试院内部试题理科数学](https://img.taocdn.com/s3/m/44fa68d87f1922791688e8e7.png)
2009年高考试题教育考试院内部试题(湖北卷)数 学(理工农医类)本试卷共4页,满分150分。
考试时间120分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上无效。
3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内。
答在试题卷上无效。
4.考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2211(1)(1)i i i i -+-=+-A .iB .i -C .1D .1-2.已知全集2,{1,0,1,2},{|}U Z A B x x x ==-==,则U A C B 为 A .{1-,2) B .{1,2}C .{1-,0)D .{1-,0,2)3.正四面体A B C D 中,E 是A C 中点,B E 与A D 所成角的余弦值等于A.3-B.3C6D.6-4.设32121log 2,log 3,log 5a b c ===,则 A .a b c << B .a c b <<C .ba c<<D .b c a <<5.已知函数()sin cos ,()2sin f x x x g x x =+=,动直线x t =与()f x 、()g x 的图象分别交于点P 、Q ,||PQ 的取值范围是A .[0,1]B .[0,2]C .[0] D .[1]6.设1F 、2F 是椭圆22221(0)x y a b ab+=>>的两个焦点,以1F 为圆心,且过椭圆中心的圆与椭圆的一个交点为M ,若直线2F M 与圆1F 相切,则该椭圆的离心率是A.2- B.1 C.2D.27.已知等差数列}{n a 的前n 项和为n S ,且2S =10,555=S ,则过点P (n a n ,)和Q (2,2++n a n )(*N n ∈)的直线的一个方向向量的坐标可以是 A .(2,4) B .(1,21--) C .(34,31--) D .(1,1--)8.已知O ﹑A ﹑B ﹑C 是不共线的四点,若存在一组正实数1λ﹑2λ﹑3λ,使1λOA +2λOB +3λOC =0,则三个角∠AOB ﹑∠BOC ﹑∠COAA .都是锐角B .至多有两个钝角C .恰有两个钝角D .至少有两个钝角9.f (x)是定义在(0,+∞)上的非负可导函数 ,且满足()()'≤xf x f x ,对任意的正数a ﹑b ,若a < b ,则必有 A .a f (a)≤b f (b) B .a f (a)≥b f (b) C .a f (b)≤b f (a) D .a f (b)≥b f (a)10.若椭圆22221(0)x y a b ab+=>>的离心率12e =,右焦点为(,0)F c ,方程220ax bx c ++=的两个实数根分别是1x 和2x ,则点12(,)P x x 到原点的距离为A. B.2C .2D .74二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上。
2009年高考试题(全国新课标)数学(理科)试卷及答案
![2009年高考试题(全国新课标)数学(理科)试卷及答案](https://img.taocdn.com/s3/m/8619a86da26925c52cc5bfb2.png)
(新课标)2009年高考理科数学试题一、选择题(1)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B =I ( )(A) }{1,5,7 (B) }{3,5,7 (C) }{1,3,9 (D) }{1,2,3 (2) 复数32322323i ii i+--=-+( ) (A )0 (B )2 (C )-2i (D)2(3)对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。
(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关(4)双曲线24x -212y =1的焦点到渐近线的距离为( )(A)(B )2 (C(D )1 (5)有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ∃x 、y ∈R, sin(x-y)=sinx-siny 3p : ∀x ∈[]0,π4p : sinx=cosy ⇒x+y=2π其中假命题的是( )(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,4p(6)设x,y 满足241,22x y x y z x y x y +≥⎧⎪-≥-=+⎨⎪-≤⎩则( )(A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值(7)等比数列{}n a 的前n 项和为n s ,且41a ,22a ,3a 成等差数列。
若1a =1,则4s =( ) (A )7 (B )8 (3)15 (4)16(8) 如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且2EF =,则下列结论中错误的是( ) (A )AC BE ⊥ (B )//EF ABCD 平面(C )三棱锥A BEF -的体积为定值 (D )异面直线,AE BF 所成的角为定值(9)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且P A P B P B P C P C P A ∙=∙=∙,则点O ,N ,P 依次是ABC ∆的( )(A )重心 外心 垂心 (B )重心 外心 内心 (C )外心 重心 垂心 (D )外心 重心 内心(10)如果执行右边的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于( ) (A )3 (B ) 3.5 (C ) 4 (D )4.5(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( )(A )(B )(C )(D )(12)用min{a,b,c}表示a,b,c 三个数中的最小值,设f (x )=min{2x, x+2,10-x} (x ≥ 0), 则f (x )的最大值为(A )4 (B )5 (C )6 (D )7 二、填空题(13)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。
2009年高考文科数学(湖北)卷
![2009年高考文科数学(湖北)卷](https://img.taocdn.com/s3/m/3f76fd7ba8956bec0975e3cc.png)
面 ABCD 所成的角为 ,若
tan gtan 1 ,求
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,过力根管保据线护生0高不产中仅工资可艺料以高试解中卷决资配吊料置顶试技层卷术配要是置求指不,机规对组范电在高气进中设行资备继料进电试行保卷空护问载高题与中2带2资,负料而荷试且下卷可高总保中体障资配2料3置2试3时各卷,类调需管控要路试在习验最2;3大2对3限2设题度备到内进位来行。确调在保整管机使路组其敷高在设中正过资常程料工1试中况卷,下安要与全加过,强度并看工且2作5尽5下2可2都2能护可地1以关缩正于小常管故工路障作高高;中中对资资于料料继试试电卷卷保连破护接坏进管范行口围整处,核理或对高者定中对值资某,料些审试异核卷常与弯高校扁中对度资图固料纸定试,盒卷编位工写置况复.进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
09年全国高考理科数学试题及答案
![09年全国高考理科数学试题及答案](https://img.taocdn.com/s3/m/f5dafe04e2bd960590c67765.png)
2009年全国高考理科数学试题及答案2009年普通高等学校招生全国统一考试数学第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A,B互斥,那么球的表面积公式S?4πR 其中R表示球的半径2P(A?B)?P(A)?P(B) 如果事件A,B相互独立,那么球的体积公式V?43πR 3P(AB)?P(A)P(B) 一、选择题:其中R表示球的半径21. 设集合S?x|x?5,T?x|x?4x?21?0,则S????T? A.?x|?7?x??5?B.?x|3?x?5? C.?x|?5?x?3?D.?x|?7?x?5? ?a?log2x(当x?2时)?2.已知函数f(x)??x2?4在点x?2处连续,则常数a的值是(当x?2时)??x?2A.2B.3C.4D.5(1?2i)23.复数的值是3?4iA.-1B.1C.-iD.i 4.已知函数f(x)?sin(x??2)(x?R),下面结论错误的是.. A.函数f(x)的最小正周期为2? B.函数f(x)在区间?0,???上是增函数??2?1 C.函数f(x)的图像关于直线x?0对称D.函数f(x)是奇函数 5.如图,已知六棱锥P?ABCDEF的底面是正六边形,PA?平面ABC,PA?2AB,则下列结论正确的是 A. PB?AD B. 平面PAB?平面PBC C. 直线BC∥平面PAE D. 直线PD与平面ABC所称的角为45 6.已知a,b,c,d为实数,且c?d。
则“a?b”是“a?c?b?d”的 A. 充分而不必要条件 B. 必要而不充分条件C.充要条件 D. 既不充分也不必要条件?x2y2?2?1(b?0)的左右焦点分别为F1,F2,其一条渐近线方程为y?x,7. 已知双曲线2b点P(3,y0)在该双曲线上,则PF1?PF2= A. -12 B. -2C. 0D. 4 8. 如图,在半径为3的球面上有A,B,C三点,?ABC?90,BA?BC,?球心O到平面ABC的距离是32,则B、C两点的球面距离是2A.?4? B.?C.? 3329. 已知直线l1:4x?3y?6?0和直线l2:x??1,抛物线y?4x 上一动点P到直线l1和直线l2的距离之和的最小值是 C. 1137D. 51610. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
2009年高考湖北卷数学(理科)试题及参考答案
![2009年高考湖北卷数学(理科)试题及参考答案](https://img.taocdn.com/s3/m/652d7b777fd5360cba1adb96.png)
2009年高考湖北卷数学(理科)试题及参考答案第I卷一,选择题:(本大题共12 题,每小题5 分,在每小题给出的四个选项中,中有一项是符合题目要求的。
(1)已知集合A 13579 B 03 6912 则A B A 35 B 3 6 C 3 7 D 39 3 2i(2)复数2 3i(A)1 (B)1 (C)i D i(3)对变量x y 有观测数据(x1 ,y1 )i 1 2...10 )(,得散点图1;对变量u v 有观测数据(u1 ,v1 )(i12…,10)得散点图2. 由这两个散点图可以判断。
(A)变量x 与y 正相关,u 与v 正相关(B)变量x 与y 正相关,u 与v 负相关欢迎各位老师踊跃投稿,稿酬丰厚邮箱: 第 1 页共12 页知识改变命运,学习成就未来(C)变量x 与y 负相关,u 与v 正相关(D)变量x 与y 负相关,u 与v 负相关(4)有四个关于三角函数的命题:x 2 x 1p1 :x R sin 2 cos p2 : x y R sin x y sin x sin y 2 2 2 1 cos 2 xp3 : x 0 sin x p4 : sin x cos y x y 2 2其中假命题的是(A)p1 ,p4 (B)p2 ,p4 (3)p1 ,p3 (4)p2 ,p3(5)已知圆C1 :x 1 2 y 1 2 1,C2 与圆C1 关于直线x y 1 0 对称,圆则圆C2 的方程为(A)x 2 2 y 2 2 1 (B)x 2 y 2 1 2 2(C)x 2 2 y 2 2 1 (D)x 2 2 y 2 2 1 2 x y 4(6)设x y 满足x y 1 则z x y x 2 y 2(A)有最小值2,最大值3 (B)有最小值2,无最大值(C)有最大值3,无最小值(D)既无最小值,也无最大值(7)已知a 3 2 b 1 0 ,向量a b 与a 2b 垂直,则实数的值为1 1 1 1(A)(B)(C)(D)7 7 6 6(8)等比数列an 的前n 项和为Sn ,已知am 1 am 1 am 0 ,2S2 m 1 38 则m(A)38 (B)20 (C)10 (D)9(9)如图,正方体ABCD A1 B1C1 D1 的棱线长为1,线段B1 D1 上1 有两个动点E,F,且EF ,则下列结论中错误的是2 (A)AC BE (B)EF // 平面ABCD (C)三棱锥A BEF 的体积为定值欢迎各位老师踊跃投稿,稿酬丰厚邮箱: 第2 页共12 页知识改变命运,学习成就未来(D)AEF的面积与BEF的面积相等(10)如果执行右边的程序框图,输入x 2 h 0.5 ,那么输出的各个数的和等于(A)3 (B)3.5 (C)4 (D)4.5 2(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:cm )为(A)48 12 2 (B)48 24 2 (C)36 12 2 (D)36 24 2(12)用minabc表示abc 三个数中的最小值。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)(1)
![2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)(1)](https://img.taocdn.com/s3/m/3747c2e1964bcf84b8d57b06.png)
2009 年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分) A .﹣2+4i=( )B .﹣2﹣4iC .2+4iD .2﹣4i2.(5 分)设集合 A={x ||x |>3},B={x | A .φB .(3,4)3.(5 分)已知△ABC 中,cotA=﹣ ,则 cosA=( ) <0},则 A ∩B=( )C .(﹣2,1)D .(4,+∞)D .A .B .在点(1,1)处的切线方程为( ) B .x +y ﹣2=0C .x +4y ﹣5=0D .x ﹣4y +3=0C .4.(5 分)函数 A .x ﹣y ﹣2=05.(5 分)已知正四棱柱 ABCD ﹣A B C D 中,AA =2AB ,E 为 AA 中点,则异面 1 1 1 1 1 1 直线 BE 与 CD 所形成角的余弦值为( ) 1 A .B .C .D .6.(5 分)已知向量 =(2,1), =10,| + |= ,则| |=( )D .25A .B .C .57.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a8.(5 分)若将函数 y=tan (ωx + )(ω>0)的图象向右平移个单位长度 后,与函数 y=tan (ωx + )的图象重合,则 ω 的最小值为( )A .B .C .D .9.(5 分)已知直线 y=k (x +2)(k >0)与抛物线 C :y 2=8x 相交于 A 、B 两点, F 为 C 的焦点,若|FA |=2|FB |,则 k=( ) A .B .C .D .10.(5 分)甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A.B.C.D.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为.14.(5 分)设等差数列{a }的前n 项和为S ,若a =5a ,则=.n n 5 315.(5 分)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.119.(12 分)设数列{a }的前n 项和为S ,已知a =1,S =4a +2(n∈N*).n n 1 n+1 n(1)设b =a ﹣2a ,证明数列{b }是等比数列;n n+1 n n(2)求数列{a }的通项公式.n20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.22009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5 分)A.﹣2+4i =()B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=故选:A.,【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5 分)设集合A={x||x|>3},B={x| A.φB.(3,4)<0},则A∩B=()C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A 和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3 或x<﹣3},B={x| <0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5 分)已知△ABC 中,cotA=﹣,则cosA=()A.B.C.D.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA 转化成正弦和余弦,求得sinA 和cosA 的关系式,进而与sin2A+cos2A=1 联立方程求得cosA 的值.【解答】解:∵cotA=∴A 为钝角,cosA<0 排除A 和B,再由cotA=故选:D.= ,和sin2A+cos2A=1 求得cosA= ,【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5 分)函数A.x﹣y﹣2=0在点(1,1)处的切线方程为()B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5 分)已知正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,则异面1 1 1 1 1 1直线BE 与CD 所形成角的余弦值为()1A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA ∥CD ,知∠A BE 是异面直线BE 与CD 所形成角,由此能求出异1 1 1 1面直线BE 与CD 所形成角的余弦值.1【解答】解:∵正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,1 1 1 1 1 1∴BA ∥CD ,∴∠A BE 是异面直线BE 与CD 所形成角,1 1 1 1设AA =2AB=2,1则A E=1,BE= = ,1= ,A B=1∴cos∠A BE=1== .∴异面直线BE 与CD 所形成角的余弦值为.1故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真 审题,注意空间思维能力的培养.6.(5 分)已知向量 =(2,1), A .B .=10,| + |= C .5,则| |=( )D .25【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算.【专题】5A :平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a +b |=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方 程,解方程即可. 【解答】解:∵| + |= ∴( + )2= 2+ 2+2 ,| |= =50,得| |=5 故选:C .【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模 的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注 意对于变量的应用.7.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log x 的单调性进行求解.当a>1 时函数为增函数当0a<a<1 时函数为减函数,如果底a 不相同时可利用1 做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1 做为中介值.8.(5 分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣]=tan(ωx+ω+kπ=)+ )∴﹣∴ω=k+(k∈Z),又∵ω>0∴ωmin= .故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5 分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x 相交于A、B 两点,F 为C 的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B 分别作AM⊥l 于M,BN ⊥l 于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B 为AP 的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B 的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x 的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B 分别作AM⊥l 于M,BN⊥l 于N,由|FA|=2|FB|,则|AM|=2|BN|,点B 为AP 的中点、连接OB,则,∴|OB|=|BF|,点B 的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5 分)甲、乙两人从4 门课程中各选修2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2 门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2 门的种数C 2C 2=36,4 4②两人所选两门都相同的有为C 2=6 种,都不同的种数为C 2=6,4 4故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA :双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为 l ,过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥ AM 于 D ,由直线 AB 的斜率可知直线 AB 的倾斜角,进而推,由双曲线的第二定义|AM |﹣|BN |=|AD |,进而根据【解答】解:设双曲线的右准线为 l , ,求得离心率. 过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥AM 于 D ,由直线 AB 的斜率为, 知直线 AB 的倾斜角为 60°∴∠BAD=60°,由双曲线的第二定义有: =∴,∴故选:A .【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x,y 的指数都为1 求出x3y3 的系数【解答】解:只需求, 展开式中的含 xy 项的系数. 的展开式的通项为 得 r=2∵令 ∴展开式中 x 3y 3 的系数为 C 2=6 4故答案为 6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工 具.14.(5 分)设等差数列{a }的前 n 项和为 S ,若 a =5a ,则 = 9 .n n 5 3 【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知 S =9a ,S =5a ,根据 a =5a ,进 9 5 5 3 5 3 而可得则 的值.【解答】解:∵{a }为等差数列,n S =a +a +…+a =9a ,S =a +a +…+a =5a ,9 1 2 9 5 5 1 2 5 3 ∴故答案为 9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5 分)设 OA 是球 O 的半径,M 是 OA 的中点,过 M 且与 OA 成 45°角的 平面截球 O 的表面得到圆 C .若圆 C 的面积等于8π . ,则球 O 的表面积等于【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C 的半径为r,.因为由.得R2=2故球O 的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD 的对角线AC 和BD 相交于点O,菱形ABCD 各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA ,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ= AB ,得到M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.【解答】已知:如图,菱形ABCD 的对角线AC 和BD 相交于点O.求证:菱形ABCD 各边中点M、N、P、Q 在以O 为圆心的同一个圆上.证明:∵四边形ABCD 是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q 分别是边AB、BC、CD、DA 的中点,∴OM=ON=OP=OQ= AB,∴M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB= (负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB= 及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)= ,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)= ,∴sinAsinC= .又由b2=ac 及正弦定理得sin2B=sinAsinC,故∴,或(舍去),于是B= 或B= .又由b2=ac知b≤a 或b≤c所以B= .【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.1【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B C 与平面BCD 所成的线面角,只需求点B 到面BDC 的距离即可,作AG1 1⊥BD 于G,连GC,∠AGC 为二面角A﹣BD﹣C 的平面角,在三角形AGC 中求出GC 即可.【解答】解:如图(I )连接 BE ,∵ABC ﹣A B C 为直三棱柱,1 1 1 ∴∠B BC=90°, 1∵E 为 B C 的中点,∴BE=EC .1 又 DE ⊥平面 BCC , 1∴BD=DC (射影相等的两条斜线段相等)而 DA ⊥平面 ABC ,∴AB=AC (相等的斜线段的射影相等).(II )求 B C 与平面 BCD 所成的线面角,1 只需求点 B 到面 BDC 的距离即可.1 作 AG ⊥BD 于 G ,连 GC ,∵AB ⊥AC ,∴GC ⊥BD ,∠AGC 为二面角 A ﹣BD ﹣C 的平面角,∠AGC=60°不妨设 ,则 AG=2,GC=4在 RT △ABD 中,由 AD•AB=BD•AG ,易得设点 B 到面 BDC 的距离为 h ,B C 与平面 BCD 所成的角为 α.1 1 利用可求得 h= 即 B C 与平面 BCD 所成的角为 30°. , ,又可求得 ,∴α=30°.1 【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运 算能力和推理论证能力,属于基础题.19.(12 分)设数列{a }的前 n 项和为 S ,已知 a =1,S =4a +2(n ∈N *).n n 1 n +1 n (1)设 b =a ﹣2a ,证明数列{b }是等比数列;n n +1 n n(2)求数列{a }的通项公式.n【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b =a ﹣2a =3.由S =4a +2 和S =4a n﹣1+2 相减得1 2 1 n+1 n na =4a ﹣4a ,即a ﹣2a =2(a ﹣2a ),所以b =2b ,由此可知{b }n+1 n n﹣1 n+1 n n n﹣1 n n﹣1 n是以b =3 为首项、以2 为公比的等比数列.1(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a }的通项公式.n【解答】解:(1)由a =1,及S =4a +2,1 n+1 n得a +a =4a +2,a =3a +2=5,所以b =a ﹣2a =3.1 2 1 2 1 1 2 1由S =4a +2,①n+1 n则当n≥2 时,有S =4a n﹣1+2,②n①﹣②得a =4a ﹣4a ,所以a ﹣2a =2(a ﹣2a n﹣1),n+1 n n﹣1 n+1 n n又b =a ﹣2a ,所以b =2b (b ≠0),所以{b }是以b =3 为首项、以2 为n n+1 n n n﹣1 n n 1公比的等比数列.(6 分)(2)由(I)可得b =a ﹣2a =3•2n﹣1,等式两边同时除以2n+1,得n n+1 n.所以数列是首项为,公差为的等差数列.所以,即a =(3n﹣1)•2n﹣2(n∈N*).(13 分)n【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2 人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10 名工人,乙组有5 名工人,从甲、乙两组中共抽取3 名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2 名,乙中抽取1 名.(Ⅱ)因为由上问求得;在甲中抽取2 名工人,故从甲组抽取的工人中恰有1 名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ0 1 2 3P故Eξ== .【点评】本题较常规,比08 年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l 的方程为x﹣y﹣c=0,由坐标原点O 到l 的距离求得c,进而根据离心率求得a 和b.(II)由(I)可得椭圆的方程,设A(x ,y )、B(x ,y ),l:x=my+1 代入1 12 2椭圆的方程中整理得方程△>0.由韦达定理可求得y +y 和y y 的表达式,1 2 1 2假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,1 2y +y ),代入椭圆方程;把A,B 两点代入椭圆方程,最后联立方程求得c,1 2进而求得P 点坐标,求出m 的值得出直线l 的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O 到l 的距离为则又,解得c=1 ,∴(II)由(I)知椭圆的方程为设A(x ,y )、B(x ,y )1 12 2由题意知l 的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,y +y ),1 2 1 2点P 在椭圆上,即.整理得2x 2+3y 2+2x 2+3y 2+4x x +6y y =6.1 12 2 1 2 1 2又A、B 在椭圆上,即2x 2+3y 2=6,2x 2+3y 2=6、1 12 2故2x x +3y y +3=0②1 2 1 2将x x =(my +1)(my +1)=m2y y +m(y +y )+1 及①代入②解得1 2 1 2 1 2 1 2∴,x +x = ,即1 2当当;【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.2【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,建立不1 2等关系解之即可,在函数的定义域内解不等式fˊ(x)>0 和fˊ(x)<0,求出单调区间;(2)x 是方程g(x)=0 的根,将a 用x 表示,消去a 得到关于x 的函数,研2 2 2究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,1 2其充要条件为,得(1)当x∈(﹣1,x )时,f'(x)>0,∴f(x)在(﹣1,x )内为增函数;1 1(2)当x∈(x ,x )时,f'(x)<0,∴f(x)在(x ,x )内为减函数;1 2 1 2(3)当x∈(x ,+∞)时,f'(x)>0,∴f(x)在(x ,+∞)内为增函数;2 2(II)由(I)g(0)=a>0,∴,a=﹣(2x2 +2x )2 2∴f(x )=x 2+aln(1+x )=x 2﹣(2x2 +2x )ln(1+x )2 2 2 2 2 2 2设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当故时,h'(x)>0,∴h(x)在单调递增,.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
2009年湖北省高考数学试题(理数)
![2009年湖北省高考数学试题(理数)](https://img.taocdn.com/s3/m/71d8c7dd6f1aff00bed51ed5.png)
2009年湖北省高考数学试题(理数)数学试题(理科)一、填空题(56分) 1、函数1()2f x x =-的反函数为1()fx -= 。
2、若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。
3、设m 为常数,若点(0,5)F 是双曲线2219yxm-=的一个焦点,则m = 。
4、不等式13x x+<的解为 。
5、在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6、在相距2千米的A 、B 两点处测量目标C ,若0075,60C AB C BA ∠=∠=,则A 、C 两点之间的距离是 千米。
7、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8、函数sin()cos()26y x x ππ=+-的最大值为 。
9、马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10、行列式a b cd(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11、在正三角形ABC 中,D 是B C 上的点,3,1AB BD ==,则AB AD ⋅=。
12、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
14、已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10P R 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0O Q O R --<;记11Q R 的中点为2P ,取12Q P 和21P R 中?!?321P(ε=x )x的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0O Q O R --<;依次下去,得到点12,,,,n P P P ,则0lim ||n n Q P →∞= 。
2009高考数学全国卷及答案理
![2009高考数学全国卷及答案理](https://img.taocdn.com/s3/m/414c1522581b6bd97f19ead7.png)
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B =,{4,7,9}(){3,5,8}U A B C A B =∴=故选A 。
也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈解:验x=-1即可。
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)
![2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)](https://img.taocdn.com/s3/m/0622a341580216fc710afd1a.png)
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个2.(5分)已知=2+i,则复数z=( )A.﹣1+3i B.1﹣3i C.3+i D.3﹣i3.(5分)不等式<1的解集为( )A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为( )A.B.2C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则•的最小值为( )A.﹣2B.﹣2C.﹣1D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为( )A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为( )A.1B.2C.﹣1D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( )A.1B.2C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则( )A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=( )A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 .14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8= .15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于 .16.(5分)若,则函数y=tan2xtan3x的最大值为 .三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b ,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:. 2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选:A.【点评】本题考查集合的基本运算,较简单.2.(5分)已知=2+i,则复数z=( )A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴z=1﹣3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.3.(5分)不等式<1的解集为( )A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为( )A.B.2C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C .【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题. 5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O :排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C 51•C 31•C 62=225种选法;(2)乙组中选出一名女生有C 52•C 61•C 21=120种选法.故共有345种选法.故选:D .【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步! 6.(5分)设、、是单位向量,且,则•的最小值为( )A .﹣2B .﹣2C .﹣1D .1﹣【考点】9O :平面向量数量积的性质及其运算.【专题】16:压轴题.【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴•=﹣()•+=0﹣()•+1=1﹣cos=1﹣cos≥.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为( )A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为( )A.1B.2C.﹣1D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选:B.【点评】本题考查导数的几何意义,常利用它求曲线的切线10.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( )A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题. 11.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则( )A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数【考点】3I:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法.12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=( )A.B.2C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 ﹣240 .【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r+1=C n r a n﹣r b r.然后根据题目已知求解即可.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8= 27 .【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是27【点评】本题考查前n项和公式和等差数列的性质.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于 20π .【考点】LR:球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.(5分)若,则函数y=tan2xtan3x的最大值为 ﹣8 .【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b ,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz ,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z 1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题.另外,还要注意表述,这也是考生较薄弱的环节.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;15:综合题.【分析】(1)由已知得=+,即b n+1=b n+,由此能够推导出所求的通项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n+1=b n+,从而b2=b1+,b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.【点评】本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22.(12分)设函数f(x)=x3+3bx2+3cx有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.。
高中_2009年湖北省高考理科数学试题
![高中_2009年湖北省高考理科数学试题](https://img.taocdn.com/s3/m/8db73d056294dd88d1d26b56.png)
2021年普通高等学校招生全国统一考试(湖北卷)数学〔理工农医类〕本试卷共4页,总分值150分,考试时间120分钟。
祝考试顺利 考前须知:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试完毕,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项满足题目要求的。
1、是两个向量集合,那么P Q =A .{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕}2.设a 为非零实数,函数的反函数是A 、B 、C 、D 、3、投掷两颗骰子,得到其向上的点数分别为m 和n,那么复数〔m+ni 〕(n-mi)为实数的概率为A 、13 B 、14C 、16D 、112 cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当22D 为奇函数时,向量a 可以等于.(,2)6A π-- .(,2)6B π- .(,2)6C π- .(,2)6D π5.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,那么不同分法的种数为.18A .24B .30C .36D22221201212)...2n n nn n x a a x a x a x a x --+=+++++(,那么2024213521lim[(...)(...)]n n n a a a a a a a a -→∞++++-++++=.1A - .0B .1C 2D 22122x y -=的准线过椭圆22214x y b+=的焦点,那么直线2y kx =+与椭圆至多有一个交点的充要条件是A. 11,22K ⎡⎤∈-⎢⎥⎣⎦B. 11,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭C. 22K ⎡∈-⎢⎣⎦D. 2,,22K ⎛⎡⎫∈-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭“家电下乡〞活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用。
09年高考试题精选2009年高考试题湖北卷(理)
![09年高考试题精选2009年高考试题湖北卷(理)](https://img.taocdn.com/s3/m/946bf056763231126fdb1101.png)
09年高考试题精选2009年高考试题湖北卷(理) 测试题 2019.91,如图,四棱锥中,底面为矩形,底面,,点M 在侧棱上,=60°(I )证明:M 在侧棱的中点(II )求二面角的大小。
2, 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局。
(I )求甲获得这次比赛胜利的概率;(II )设表示从第3局开始到比赛结束所进行的局数,求得分布列及数学期望。
S ABCD -ABCD SD ⊥ABCD AD =2DC SD ==SC ABM ∠SC S AM B --ξξ3,在数列中,(I )设,求数列的通项公式 (II )求数列的前项和4,如图,已知抛物线与圆相交于、、、四个点。
(I )求得取值范围;(II )当四边形的面积最大时,求对角线、的交点坐标5,设函数在两个极值点,且(I )求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域;(II)证明:{}n a 11111,(1)2n n n n a a a n ++==++nn a b n ={}n b {}n a n nS 2:E y x =222:(4)(0)M x y r r -+=>A B C D r ABCD AC BD P ()3233f x x bx cx =++12x x 、11[10],[1,2].x x ∈-∈,b c 、(),b c ()21102f x -≤≤-6, 的展开式中,的系数与的系数之和等于 。
7,设等差数列的前项和为,若,则= 。
8,直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于 。
9,若,则函数的最大值为 。
10,已知是两个向量集合,则 A .{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕}测试题答案()10x y -73x y 37x y {}n a n n S 972S =249a a a ++111ABC A B C -12AB AC AA ===120BAC ∠=︒42x ππ<<3tan 2tan y x x ={|(1,0)(0,1),},{|(1,1)(1,1),}P a a m m R Q b b n n R ==+∈==+-∈P Q =I1,2, 3,4,5,6, 7,8, 9, 10, A。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)
![2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)](https://img.taocdn.com/s3/m/b9b0cab05727a5e9846a6189.png)
3.(5 分)已知△ABC 中,cotA=﹣ ,则 cosA=(
A.
B.
C.
) D.
一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分) =( )
【考点】GG:同角三角函数间的基本关系. 菁优网版权 所有
【专题】11:计算题.
A.﹣2+4i
B.﹣2﹣4i
C.2+4i
则 k=( )
13.(5 分)(x ﹣y )4 的展开式中 x3y3 的系数为
.
A.
B.
C.
D.
14.(5 分)设等差数列{an}的前 n 项和为 Sn,若 a5=5a3,则 =
.
10.(5 分)甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有 1 门相同的选法有 15.(5 分)设 OA 是球 O 的半径,M 是 OA 的中点,过 M 且与 OA 成 45°角的平面截球 O 的表面得
D.2﹣4i
【分析】利用同角三角函数的基本关系 cosA 转化成正弦和余弦,求得 sinA 和 cosA 的关系式,进而 与 sin2A+cos2A=1 联立方程求得 cosA 的值.
【考点】A5:复数的运算. 菁优网版权所有
【专题】11:计算题. 【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,
关系.
目是一个必考的问题,通常出现在试卷的前几个题目中.
4.(5 分)函数
在点(1,1)处的切线方程为( )
2.(5 分)设集合 A={x||x|>3},B={x| <0},则 A∩B=( )
A.x﹣y﹣2=0 B.x+y﹣2=0
2009年高考湖北卷数学(理科)试题及参考答案
![2009年高考湖北卷数学(理科)试题及参考答案](https://img.taocdn.com/s3/m/d381dc2be2bd960590c67771.png)
2009年普通高等学校招生全国统一考试(湖北卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
参考公式:柱体的体积公式V=Sh ,其中S 是柱体的底面积,h 是锥体的高。
锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
第一部一、填空题:(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.已知集合21{|340},{|0}A x x x B x x=+-==>,则A B = .2.复数512i-的实部为 .3.已知1sin ,3α=且(,)2παπ∈,则tan α= .4.执行右边的流程图,得到的结果是 .5.已知,x y 满足不等式组0,40y y x x y ≥⎧⎪≤⎨⎪+-≤⎩则2x y -的最大值是 .6.为了解某校男生体重情况,将样本数据整理后,画出其频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第3小组的频数为12,则样本容量是 . 7.设,l m 为两条不同的直线,,αβ为两个不同的平面,下列命题中正确的是 .(填序号) ①若,//,,l m αβαβ⊥⊥则l m ⊥; ②若//,,,l m m l αβ⊥⊥则//αβ; ③若//,//,//,l m αβαβ则//l m ;④若,,,,m l l m αβαββ⊥=⊂⊥ 则l α⊥.8.设直线2310x y ++=和圆22230x y x +--=相交于A ,B 两点,则弦AB 的垂直平分线方程是 .9.先后掷两次正方体骰子(骰子的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为,m n ,则mn 是奇数的概率是 .10.已知等比数列{}n a 中,公比1q >,且14239,8a a a a +==,则2011201220092010a a a a +=+ .11.在边长为6的等边△ABC 中,点M 满足2BM MA =,则CM CB ⋅ 等于 .12.已知椭圆2222:1(0)x y E a b ab+=>>过点P (3,1),其左、右焦点分别为12,F F ,且126F P F P ⋅=-,则椭圆E 的离心率是 . 13.若关于x 的方程2||1x kx x =-有四个不同的实数根,则实数k 的取值范围是 .14.已知,,x y z R ∈,且2221,3x y z x y z ++=++=,则xyz 的最大值是 . 二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知())cos 3f x x x π=+-.(I )求()f x 在[0,]π上的最小值;(II )已知,,a b c 分别为△ABC 内角A 、B 、C的对边,3cos 5b A ==,且()1f B =,求边a 的长.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,底面△ABC 是等边三角形,D 为AB 中点. (I )求证:1//BC 平面1A C D ;17.(本小题满分15分)某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35k p x x =≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (I )求()f x 的表达式;(II )宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值.18.(本小题满分15分) 如图,正方形ABCD 内接于椭圆22221(0)x y a b ab+=>>,且它的四条边与坐标轴平行,正方形MNPQ 的顶点M ,N 在椭圆上,顶点P ,Q 在正方形的边AB 上,且A ,M 都在第一象限.(I )若正方形ABCD 的边长为4,且与y 轴交于E ,F 两点,正方形MNPQ 的边长为2. ①求证:直线AM 与△ABE 的外接圆相切; ②求椭圆的标准方程.(II )设椭圆的离心率为e ,直线AM 的斜率为k ,求证:22e k -是定值.19.(本小题满分16分) 已知函数()ln f x x x =.(I )求函数()f x 的单调递减区间;(II )若2()6f x x ax ≥-+-在(0,)+∞上恒成立,求实数a 的取值范围; (III )过点2(,0)A e --作函数()y f x =图像的切线,求切线方程.20.(本小题满分16分)设数列{}n b 满足*2121(),2n n n b b b n N b b ++=--∈=. (I )若33b =,求1b 的值;(II )求证数列12{}n n n b b b n +++是等差数列;(III )设数列{}n T 满足:*11()n n n T T b n N ++=∈,且1112T b ==-,若存在实数,p q ,对任意*n N ∈都有123n p T T T T q ≤++++< 成立,试求q p -的最小值.第二部分(加试部分)21.选修4-2:矩阵与变换(本小题满分10分) 求矩阵1426M -⎡⎤=⎢⎥⎣⎦的特征值和特征向量.22.选修4-4:坐标系与参数方程(本小题满分10分) 已知(,)P x y 是椭圆2214xy +=上的点,求2M x y =+的取值范围.23.(本小题满分10分)口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X .(I )若取到红球再放回,求X 不大于2的概率;(II )若取出的红球不放回,求X 的概率分布与数学期望.24.(本小题满分10分)已知(2)p p ≥是给定的某个正整数,数列{}n a 满足:111,(1)()k k a k a p k p a +=+=-,其中1,2,3,,k p =- .(I )设4p =,求234,,a a a ; (II )求123p a a a a ++++ .数 学 参 考 答 案第一部分一、填空题:1. )1,0( 2.1 3. 42-4.785. 86. 327. ②④8. 0323=--y x9.1410. 4 11. 24 12.32213. 4k <- 14. 527二、解答题: 15.(Ⅰ)sin ()cos 22x f x x x ⎫=+-⎪⎪⎝⎭1cos sin 226x x x π⎛⎫=+=+ ⎪⎝⎭ 4分 6766πππ≤+≤x ∴当π=x 时m in 1()2f x =-; 7分(Ⅱ)∵2,62x k k Z πππ+=+∈时()f x 有最大值,B 是三角形内角∴3B π=10分∵3cos 5A = ∴4sin 5A = ∵正弦定理sin sin a b AB=∴8a =. 14分16.(Ⅰ)连1AC ,设1AC 与1A C 相交于点O ,连D O ,则O 为1AC 中点,∵D 为AB 的中点 ∴1//D O BC 4分(Ⅱ)∵等边A B C ∆,D 为AB 的中点 ∴C D A B ⊥∵1CD DA ⊥,1D A AB D = ∴C D ⊥平面11ABB A∵1B B ⊂平面11ABB A ∴1BB CD ⊥ ∵矩形11BCC B ∴1BB BC ⊥ 11分 ∵BC CD C = ∴1B B ⊥平面ABC∵底面A B C ∆是等边三角形 ∴三棱柱111ABC A B C -是正三棱柱. 14分 17.(Ⅰ)根据题意得100800315k k =∴=⨯+ 3分800()56,0835f x x x x ∴=++≤≤+ 7分 (Ⅱ)800()2(35)580535f x x x =++-≥-+ 11分 当且仅当8002(35)35x x =++即5x =时m in ()75f x =. 14分答:宿舍应建在离厂5km 处可使总费用()f x 最小为75万元. 15分 18.(Ⅰ)①依题意:(2,2)A ,(4,1)M ,(0,2)E -(2,1),(2,4)AM AE ∴=-=--0A M A E A M A E ∴∙=∴⊥3分 AE 为Rt ABE ∆外接圆直径∴直线A M 与ABE ∆的外接圆相切; 5分②由⎧⎪⎨⎪⎩22224411611a b ab+=+=解得椭圆标准方程为221205xy+=. 10分(Ⅱ)设正方形A B C D 的边长为2s ,正方形M NPQ 的边长为2t ,则(,)A s s ,(2,)M s t t +,代入椭圆方程22221x y ab+=得⎧⎪⎨⎪⎩222222221(2)1s s abs t t ab+=++=⇒⎧⎪⎨⎪⎩22221(3)14(3)s t a s s t t bs s t -=+=+222514b t se at-∴=-=14分 (2)2t st s k s t st--==+- 222e k ∴-=为定值. 15分19.(Ⅰ)'()ln 1f x x =+ '()0f x ∴<得ln 1x <- 2分 10x e ∴<<∴函数()f x 的单调递减区间是1(0,)e; 4分(Ⅱ) 2()6f x x ax ≥-+-即6ln a x x x≤++设6()ln g x x x x=++则2226(3)(2)'()x x x x g x xx+-+-== 7分当(0,2)x ∈时'()0g x <,函数()g x 单调递减; 当(2,)x ∈+∞时'()0g x >,函数()g x 单调递增;∴()g x 最小值(2)5ln 2g =+∴实数a 的取值范围是(,5ln 2]-∞+; 10分 (Ⅲ)设切点00(,)T x y 则0'()AT k f x =∴00002ln ln 11x x x x e=++即200ln 10e x x ++=设2()ln 1h x e x x =++,当0x >时'()0h x >∴()h x 是单调递增函数 13分 ∴()0h x =最多只有一个根,又2222111()ln10h e eee=⨯++=∴021x e=由0'()1f x =-得切线方程是210x y e++=. 16分20.(Ⅰ)∵21n n n b b b ++=--∴32113b b b b =--=-=3∴1b =-1; 3分 (Ⅱ)∵21n n n b b b ++=--①∴321n n n b b b +++=--②,②-①得3n n b b += 5分 ∴(1231n n n b b b n +++++)-(12n n n b b b n +++)=123()1n n n n b b b b +++-+=1为常数 ∴数列{12n n n b b b n +++}是等差数列. 7分 (Ⅲ)∵11n n n T T b ++=⋅=11n n n T b b -+=211n n n n T b b b --+=……=1231n b b b b + 当2n ≥时123n n T b b b b = (*),当1n =时11T b =适合(*)式∴123n n T b b b b = (*n N ∈). 9分∵112b =-,2121b b ==-,31332b b =-=,3n n b b +=,∴1112T b ==-,21212T T b ==,32334T T b ==,43431134T T b T b T ===,54523452123234T T b T b b bT b b b T ====,65634563123334T T b T b b b T b b b T ====, ……3132333231331313313233n n n n n nn n n n nn nn nT T T T b bb T b bb T b b b +++--+-+++++++=++ =32123311233123n n n T b b b T b b b T b b b --++=323133()4n n n T T T --++,*首项12334T T T ++=且公比34q =11分记123n n S T T T T =++++①当*3()n k k N =∈时1234563231()()()n k kkS T T T T T T T T T --=++++++++ =33[1()]44314k--=33[1()]4k- ∴334n S ≤<; 13分②当*31()n k k N =-∈时 1234563231()()()n k kkS T T T T T T T T T --=++++++++ -3k T=33[1()]4k--123()k b b b =334()4k-⋅∴03n S ≤<; 14分 ③当*32()n k k N =-∈时1234563231()()()n k kkS T T T T T T T T --=++++++++ -31k T --3k T=33[1()]4k--112312()k b b b b b --123()kb b b =33[1()]4k--113()24k --3()4k =1433()34k -⋅ ∴132n S -≤< 15分 综上得132n S -≤<则12p ≤-且3q ≥∴q p -的最小值为72. 16分第二部分(加试部分)21.2()(1)(6)8514(7)(2)f λλλλλλλ=+--=--=-+由()0f λ=可得:17λ=,22λ=-. 4分由⎧⎨⎩(71)402(76)0x y x y +-=-+-=可得属于17λ=的一个特征向量为12⎡⎤⎢⎥⎣⎦7分由⎧⎨⎩(21)402(26)0x y x y -+-=-+--=可得属于12λ=-的一个特征向量为41⎡⎤⎢⎥-⎣⎦. 10分 22.∵2212xy +=的参数方程⎧⎨⎩2cos sin x x θθ==(θ是参数)∴设P (2cos ,sin )θθ 4分∴22cos 2sin M x y θθ=+=+)4πθ=+ 7分∴2M x y =+的取值范围是[-. 10分 23.(Ⅰ)∵3(1)7P X ==,23412(2)749P X ⨯===∴33(1)(2)49P P X P X ==+==; 4分(Ⅱ)∵X 可能取值为1,2,3,4,5,∴13173(1)7A P X A===,1143272(2)7A A P X A===,2143376(3)35A A P X A ===,3143473(4)35A A P X A ===,4143571(4)35A A P X A ===7分 ∴32631()12345277353535E X =⨯+⨯+⨯+⨯+⨯=答:X 的数学期望是2. 10分24.(Ⅰ)由1(1)()k k k a p k p a ++=-得11k ka k p p a k +-=⨯+,1231k p =- ,,,,即2141462a a -=-⨯=-,2166a a =-=-;32428433a a -=-⨯=-,316a =4343414a a -=-⨯=-,416a =-; 3分(Ⅱ)由1(1)()k k k a p k p a ++=-得:11k ka k p p a k +-=⨯+,1231k p =- ,,,,即2112a p p a -=-⨯,3223a p p a -=-⨯,…,1(1)kk a p k p a k---=-⨯,以上各式相乘得11(1)(2)(3)(1)()!k k a p p p p k p a k -----+=-⨯5分∴1(1)(2)(3)(1)()!k k p p p p k a p k -----+=-⨯11(1)!()!()!()!!()!k k p p p p k p k pk p k ----=-⨯=⨯--221()()k k k kp p p C C p p-=--⨯=--,123k p = ,,,, 7分∴123p a a a a ++++ 11223321[()()()()]p pp p p p C p C pC p C p p=--+-+-++- 21[(1)1]pp p=--- 10分。
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)
![2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)](https://img.taocdn.com/s3/m/1d6138204b7302768e9951e79b89680203d86b92.png)
、 、 A .B .2009 年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共 12 小题,每小题 5 分,满分 60 分)1.(5 分)设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3 个B .4 个C .5 个D .6 个2.(5 分)已知=2+i ,则复数 z=( ) A .﹣1+3i B .1﹣3iC .3+iD .3﹣i 3.(5 分)不等式<1 的解集为( )A .{x |0<x <1}∪{x |x >1}B .{x |0<x <1}C .{x |﹣1<x <0}D .{x |x <0}4.(5 分)已知双曲线﹣=1(a >0,b >0)的渐近线与抛物线 y=x 2+1 相切,则该双曲线的离心率为( )A .B .2C .D .5.(5 分)甲组有 5 名男同学,3 名女同学;乙组有 6 名男同学、2 名女同学.若 从甲、乙两组中各选出 2 名同学,则选出的 4 人中恰有 1 名女同学的不同选法共有( )A .150 种B .180 种C .300 种D .345 种 6.(5 分)设 是单位向量,且,则•的最小值为( )A .﹣2B .﹣2C .﹣1D .1﹣7.(5 分)已知三棱柱 ABC ﹣A 1B 1C 1 的侧棱与底面边长都相等,A 1 在底面 ABC 上的射影 D 为 BC 的中点,则异面直线 AB 与 CC 1 所成的角的余弦值为()C .D .8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5 分)已知直线y=x+1 与曲线y=ln(x+a)相切,则a 的值为()A.1 B.2 C.﹣1 D.﹣210.(5 分)已知二面角α﹣l﹣β为60°,动点P、Q 分别在面α、β内,P 到β的距离为,Q 到α的距离为,则P、Q 两点之间距离的最小值为()A.1 B.2 C.D.411.(5 分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数12.(5 分)已知椭圆C:+y2=1 的右焦点为F,右准线为l,点A∈l,线段AF 交C 于点B,若=3,则||=()A.B.2 C.D.3二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5 分)设等差数列{a n}的前n 项和为S n,若S9=81,则a2+a5+a8=.15.(5 分)直三棱柱ABC﹣A1B1C1 的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5 分)若,则函数y=tan2xtan3x 的最大值为.三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,内角A、B、C 的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12 分)如图,四棱锥S﹣ABCD 中,底面ABCD 为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M 在侧棱SC 上,∠ABM=60°(I)证明:M 是侧棱SC 的中点;(II)求二面角S﹣AM﹣B 的大小.19.(12 分)甲、乙二人进行一次围棋比赛,约定先胜3 局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2 局中,甲、乙各胜1 局.(I)求甲获得这次比赛胜利的概率;(II)设ξ表示从第3 局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12 分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n 项和S n.21.(12 分)如图,已知抛物线E:y2=x 与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D 四个点.(I)求r 的取值范围;(II)当四边形ABCD 的面积最大时,求对角线AC、BD 的交点P 的坐标.22.(12 分)设函数f(x)=x3+3bx2+3cx 有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009 年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3 个B.4 个C.5 个D.6 个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B 的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选:A.【点评】本题考查集合的基本运算,较简单.2.(5 分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴z=1﹣3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.3.(5 分)不等式<1 的解集为()A.{x|0<x<1}∪{x|x>1} B.{x|0<x<1} C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1 相切,则该双曲线的离心率为()A.B.2 C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a 和b 的关系,从而推断出a 和c 的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.、 、 【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.5.(5 分)甲组有 5 名男同学,3 名女同学;乙组有 6 名男同学、2 名女同学.若 从甲、乙两组中各选出 2 名同学,则选出的 4 人中恰有 1 名女同学的不同选法共有( )A .150 种B .180 种C .300 种D .345 种【考点】D1:分类加法计数原理;D2:分步乘法计数原理. 【专题】5O :排列组合.【分析】选出的 4 人中恰有 1 名女同学的不同选法,1 名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有 C 51•C 31•C 62=225 种选法; (2)乙组中选出一名女生有 C 52•C 61•C 21=120 种选法.故共有 345 种选法.故选:D .【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!6.(5 分)设 是单位向量,且,则• 的最小值为( )A .﹣2B .﹣2C .﹣1D .1﹣【考点】9O :平面向量数量积的性质及其运算. 【专题】16:压轴题. 【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值. 【解答】解:∵、、 是单位向量,,∴, =.∴•=﹣()•+ =0﹣()•+1=1﹣cos=1﹣cos ≥.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7.(5分)已知三棱柱ABC﹣A1B1C1 的侧棱与底面边长都相等,A1 在底面ABC 上的射影D 为BC 的中点,则异面直线AB 与CC1 所成的角的余弦值为()C.D.A.B.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB 与CC1 所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B 的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC 的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB 即为异面直线AB 与CC1 所成的角;并设三棱柱ABC﹣A1B1C1 的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9.(5 分)已知直线y=x+1 与曲线y=ln(x+a)相切,则a 的值为()A.1 B.2 C.﹣1 D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选:B.【点评】本题考查导数的几何意义,常利用它求曲线的切线10.(5 分)已知二面角α﹣l﹣β为60°,动点P、Q 分别在面α、β内,P 到β的距离为,Q 到α的距离为,则P、Q 两点之间距离的最小值为()A.1 B.2 C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l 于C,PB⊥β于B,PD⊥l 于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ 中将PQ 表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l 于C,PB⊥β 于B,PD⊥l 于D,连CQ,BD 则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A 与点P 重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.11.(5 分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数【考点】3I:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4 的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法.12.(5 分)已知椭圆C:+y2=1 的右焦点为F,右准线为l,点A∈l,线段AF 交C 于点B,若=3,则||=()A.B.2 C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B 作BM⊥x 轴于M,设右准线l 与x 轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B 作BM⊥x 轴于M,n n n nn r +1 n 10 10 10 10 10 10并设右准线 l 与 x 轴的交点为 N ,易知 FN=1.由题意,故 FM=,故 B 点的横坐标为,纵坐标为±即 BM=, 故 AN=1, ∴.故选:A .【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共 4 小题,每小题 5 分,满分 20 分)13.(5 分)(x ﹣y )10 的展开式中,x 7y 3 的系数与 x 3y 7的系数之和等于 ﹣240 .【考点】DA :二项式定理. 【专题】11:计算题.【分析】首先要了解二项式定理:(a +b )n =C 0a n b 0+C 1a n ﹣1b 1+C 2a n ﹣2b 2++C r a n ﹣ r b r ++C n a 0b n ,各项的通项公式为:T =C r a n ﹣r b r .然后根据题目已知求解即可. 【解答】解:因为(x ﹣y )10 的展开式中含 x 7y 3 的项为 C 3x 10﹣3y (3 含 x 3y 7 的项为 C 7x 10﹣7y 7(﹣1)7=﹣C 7x 3y 7. 由 C 3=C 7=120 知,x 7y 3 与 x 3y 7 的系数之和为﹣240.故答案为﹣240.﹣1)3=﹣C 3x 7y 3, 【点评】此题主要考查二项式定理的应用问题,对于公式:(a +b )n =C n 0a n b 0+C n 1a n﹣1b1+C 2a n﹣2b2++C r a n﹣r b r++C n a0b n,属于重点考点,同学们需要理解记忆.n n n14.(5 分)设等差数列{a n}的前n 项和为S n,若S9=81,则a2+a5+a8= 27 .【考点】83:等差数列的性质;85:等差数列的前n 项和.【分析】由s9 解得a5 即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是27【点评】本题考查前n 项和公式和等差数列的性质.15.(5 分)直三棱柱ABC﹣A1B1C1 的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【考点】LR:球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC 中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC 外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.(5 分)若,则函数y=tan2xtan3x 的最大值为﹣8 .【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx 的函数,将tanx 看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,内角A、B、C 的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC 化成边的关系,再根据a2﹣c2=2b 即可得到答案.【解答】解:法一:在△ABC 中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4 或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC 由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18.(12 分)如图,四棱锥S﹣ABCD 中,底面ABCD 为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M 在侧棱SC 上,∠ABM=60°(I)证明:M 是侧棱SC 的中点;(II)求二面角S﹣AM﹣B 的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M 是侧棱SC 的中点,作MN∥SD 交CD 于N,作NE⊥AB 交AB 于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE 即可得x 的值,进而得到M 为侧棱SC 的中点;法二:分别以DA、DC、DS 为x、y、z 轴如图建立空间直角坐标系D﹣xyz,并求出S 点的坐标、C 点的坐标和M 点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS 为x、y、z 轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D 为坐标原点,分别以DA、DC、DS 为x、y、z 轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B 的大小.【解答】证明:(Ⅰ)作MN∥SD 交CD 于N,作NE⊥AB 交AB 于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB 中,∵∠MBE=60°∴.在RT△MNE 中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M 为侧棱SC 的中点M.(Ⅰ)证法二:分别以DA、DC、DS 为x、y、z 轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1 即M(0,1,1)所以M 是侧棱SC 的中点.(I)证法三:设,则又故,即,解得λ=1,所以M 是侧棱SC 的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB 的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B 的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;19.(12 分)甲、乙二人进行一次围棋比赛,约定先胜3 局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2 局中,甲、乙各胜1 局.(I)求甲获得这次比赛胜利的概率;(II)设ξ表示从第3 局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知前2 局中,甲、乙各胜1 局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3 局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i 表示事件:第i 局甲获胜,(i=3、4、5)B i 表示第j 局乙获胜,j=3、4(1)记B 表示事件:甲获得这次比赛的胜利,∵前2 局中,甲、乙各胜1 局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3 局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52 P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题.另外,还要注意表述,这也是考生较薄弱的环节.20.(12 分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n 项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;15:综合题.=b n+,由此能够推导出所求的通【分析】(1)由已知得=+,即b n+1项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n 项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n=b n+,从而b2=b1+,+1b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣= ﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.【点评】本题考查数列的通项公式和前n 项和的求法,解题时要注意错位相减法的合理运用.21.(12 分)如图,已知抛物线E:y2=x 与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D 四个点.(I)求r 的取值范围;(II)当四边形ABCD 的面积最大时,求对角线AC、BD 的交点P 的坐标.【考点】IR :两点间的距离公式;JF :圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去 y ,得到 x 的二次方程,根据抛物线E :y 2=x 与圆 M :(x ﹣4)2+y 2=r 2(r >0)相交于 A 、B 、C 、D 四个点的充要条件是此方程有两个不相等的正根,可求出 r 的范围.(2)先设出四点 A ,B ,C ,D 的坐标再由(1)中的 x 二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点 P 的坐标.【解答】解:(Ⅰ)将抛物线 E :y 2=x 代入圆 M :(x ﹣4)2+y 2=r 2(r >0)的方程,消去 y 2,整理得 x 2﹣7x +16﹣r 2=0(1)抛物线 E :y 2=x 与圆 M :(x ﹣4)2+y 2=r 2(r >0)相交于 A 、B 、C 、D 四个点的充要条件是:方程(1)有两个不相等的正根.(II ) 设四个交点的坐标分别为、 、 、 .∴ 即 .解这个方程组得,则直线AC、BD 的方程分别为y﹣= •(x﹣x1),y+=(x﹣x1),解得点P 的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P 的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22.(12 分)设函数f(x)=x3+3bx2+3cx 有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)根据极值的意义可知,极值点x1、x2 是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c 表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0 有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c 满足的约束条件为(4 分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8 分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10 分)所以.【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年高考理科数学(湖北卷)
一、选择题:本大题共10小题,每小题5分,共50分。
1、已知{|(1,0)(0,1),},{|(1,1)(1,1P a a m m R
Q b b n n R ==+∈==+-∈是两个向量集合,则
P Q =I ( ) A .{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕} 2.设a 为非零实数,函数11
(,)1ax y x R x ax a
-=
∈≠-+且的反函数是( ) A 、11(,)1ax y x R x ax a -=
∈≠-+且 B 、11
(,)1ax y x R x ax a
+=∈≠--且 C 、1(,1)(1)x y x R x a x +=
∈≠-且 D 、1(,1)(1)
x
y x R x a x -=∈≠-+且
3、投掷两颗骰子,得到其向上的点数分别为m 和n,则复数(m+ni )(n-mi)为实数的概率为( )
A 、
13 B 、14 C 、16 D 、112
4. 函数cos(2)26
y x π
=+
-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为
奇函数时,向量a 可以等于( )
.(,2)6
A π
-
- .(,2)6B π
-
.(,2)6
C π- .(,2)6
D π
5. 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分
到同一个班,则不同分法的种数为( )
.18A .24B .30C .36D
6.设22212012212) (2)
n n n n n x a a x a x a x a x --+=+++++(
,则 22024213521lim[(...)(...)]n n n a a a a a a a a -→∞
++++-++++=( )
A. -1
B. 0
C. 1
D.
2
7. 已知双曲线22122x y -=的准线过椭圆22
214x y b
+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是( )
A. 11,22K ⎡⎤∈-⎢⎥⎣⎦
B. 11,,22K ⎛
⎤
⎡⎫∈-∞-+∞ ⎪⎥⎢⎝
⎦⎣⎭
C. K ⎡∈⎢⎣
⎦ D. ,K ⎛⎫∈-∞+∞ ⎪ ⎪⎝⎦⎣⎭
8. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车
可供使用。
每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台。
若每辆车至多只运一次,则该厂所花的最少运输费用为()
A.2000元
B.2200元
C.2400元
D.2800元
9. 设球的半径为时间t的函数()
R t。
若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()
A.成正比,比例系数为C
B. 成正比,比例系数为2C
C.成反比,比例系数为C
D. 成反比,比例系数为2C
10. 古希腊人常用小石子在沙滩上摆成各种形状来研究数。
比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是()
A.289
B.1024
C.1225
D.1378
二、填空题:本大题共5小题,每小题5分,共25分.
11. 已知关于x的不等式
1
1
ax
x
-
+
<0的解集是
1
(,1)(,)
2
-∞--+∞
.则a= .
12. 样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内
的频数为,数据落在[2,10)内的概率约为 .
13.如图,卫星和地面之间的电视信号沿直线传播,电视信号能够传送到达的地面区域,称为这个卫星的覆
盖区域.为了转播2008年北京奥运会,我国发射了“中星九号”广播电视直播卫星,它离地球表面的距离约为36000km.已知地球半径约为6400km,则“中星九号”覆盖区域内的任意两点的球面距离的最大值约为 km.(结果中保留反余弦的符号).
14.已知函数()'()cos sin ,4f x f x x π=+则()4
f π
的值为 .
15.已知数列{}n a 满足:1a =m (m 为正整数),1,231,n
n n n n a a a a a +⎧⎪=⎨⎪+⎩
当为偶数时,
当为奇数时。
若6a =1,则m 所有可能
的取值为__________。
三、解答题:本大题共6小题,共75分。
16.(本小题满分10分)
一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。
现从一个盒子中任取一张卡片,其上面的数记为x ;再从另一盒子里任取一张卡片,其上面的数记为y ,记随机变量η=x +y ,求η的分布列和数学期望。
17.(本小题满分12分)
已知向量(cos ,sin ),(cos ,sin ),(1,0)a a a b c ββ===- (Ⅰ)求向量b c +的长度的最大值;(Ⅱ)设a 4
π
=,且()a b c ⊥+,求cos β的值。
18.(本小题满分12分)
如图,四棱锥S —ABCD 的底面是正方形,SD ⊥平面ABCD ,SD=2a
,AD =
点E 是SD 上的点,且
(02)DE a λλ=<≤
(Ⅰ)求证:对任意的(0,2]λ∈,都有AC BE ⊥ (Ⅱ)设二面角C —AE —D 的大小为θ,直
BE 与平面ABCD 所成的角为ϕ,
若tan tan 1θϕ=g ,求λ的值
19、(本小题满分13分)
已知数列{}n a 的前n 项和1
1
()22
n n n S a -=--+(n 为正整数)。
(Ⅰ)令2n n n b a =,求证数列{}n b 是等差数列,并求数列{}n a 的通项公式; (Ⅱ)令1n n n c a n +=
,12........n n T c c c =+++试比较n T 与521
n
n +的大小,并予以证明。
20、(本小题满分14分)
过抛物线2
2(0)y px p =>的对称轴上一点()(),00A a a >的直线与抛物线相交于M 、N 两点,自M 、
N 向直线:l x a =-作垂线,垂足分别为1M 、1N 。
(Ⅰ)当2
p
a =时,求证:1AM ⊥1AN ; (Ⅱ)记
1AMM ∆、11AM N ∆ 、1ANN ∆的面积分别为1S 、2S 、3S ,是否存在λ,使得对任意的
0a >,都有2
212S S S λ=成立。
若存在,求出λ的值;若不存在,说明理由。
21.(本小题满分14分)
在R 上定义运算()()1:43
p q p c q b bc ⊗⊗=-
--+(b 、c 为实常数)。
记()2
12f c χχ=-,()22f b χχ=-,R χ∈.令()()()21f f f χχχ=⊗.
(Ⅰ)如果函数()f
χ在1χ=处有极什43
-,试确定b 、c 的值; (Ⅱ)求曲线()y f
χ=上斜率为c 的切线与该曲线的公共点;
(Ⅲ)记()()()|11g x f x x '=-≤≤的最大值为M .若M k ≥对任意的b 、c 恒成立,试示k 的最大
值。