金沙县高中2019-2020学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金沙县高中2019-2020学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 以过椭圆+
=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )
A .相交
B .相切
C .相离
D .不能确定
2. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )
A .(2,4)
B .(2,﹣4)
C .(4,﹣2)
D .(4,2)
3. 在正方体1111ABCD A B C D 中,,E F 分别为1,BC BB 的中点,则下列直线中与直线 EF 相交
的是( )
A .直线1AA
B .直线11A B C. 直线11A D D .直线11B C
4. 设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2
, =2

=2
,则

( )
A .互相垂直
B .同向平行
C .反向平行
D .既不平行也不垂直
5. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )
A .34种
B .35种
C .120种
D .140种
6. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )
A .
B .ln (x 2+1)>ln (y 2+1)
C .x 3>y 3
D .sinx >siny
7. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28
B .76
C .123
D .199
8. 已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )
A .﹣3
B .3
C .﹣1
D .1
9. 复数z=在复平面上对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
10.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )
A .(﹣1,0)∪(1,+∞)
B .(﹣∞,﹣1)∪(0,1)
C .(﹣∞,﹣1)∪(1,+∞)
D .(﹣1,0)∪(0,1)
11.己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )
A .
B .或
C .
D .

12.已知集合{| lg 0}A x x =≤,1
={|
3}2
B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]
C .(1,3]
D .1
[,1]2
【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.
二、填空题
13.已知函数21,0()1,0
x x f x x x ⎧-≤=⎨->⎩,()21x
g x =-,则((2))f g = ,[()]f g x 的值域为 .
【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力. 14.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 .
15.(x ﹣)6的展开式的常数项是 (应用数字作答).
16.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .
17.不等式()2
110ax a x +++≥恒成立,则实数的值是__________.
18.-23311
+
log 6-log 42()= .
三、解答题
19.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为等腰梯形,AD ∥BC ,PA=AB=BC=CD=2,PD=2,PA ⊥
PD ,Q 为PD 的中点. (Ⅰ)证明:CQ ∥平面PAB ;
(Ⅱ)若平面PAD ⊥底面ABCD ,求直线PD 与平面AQC 所成角的正弦值.
20.(本题满分15分)
正项数列}{n a 满足12
1223+++=+n n n n a a a a ,11=a . (1)证明:对任意的*
N n ∈,12+≤n n a a ;
(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*
N n ∈,32
121
<≤-
-n n S .
【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.
21.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*
n N ∈,p ,为常数),且145
x x x ,,成等差数列,求:
(1)p q ,的值;
(2)数列{}n x 前项和n S 的公式.
22.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.
(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.
23.已知等比数列{a n }中,a 1=,公比q=.
(Ⅰ)S n 为{a n }的前n 项和,证明:S n =
(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.
24.已知函数f (x )=|x ﹣a|.
(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
金沙县高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D
连接AC、BD,设AB的中点为M,作MN⊥l于N
根据圆锥曲线的统一定义,可得
==e,可得
∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,
∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)
∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离
故选:C
【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.
2.【答案】C
【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,
故在复平面内,z对应的点的坐标是(4,﹣2),
故选C.
【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.
3.【答案】D
【解析】
试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断. 4. 【答案】D
【解析】解:如图所示,
△ABC 中,
=2

=2

=2

根据定比分点的向量式,得
==+,
=
+

=+

以上三式相加,得
++
=﹣

所以,

反向共线.
【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.
5. 【答案】A
【解析】解:从7个人中选4人共种选法,只有男生的选法有
种,所以既有男生又有女生的选法有﹣
=34种. 故选:A .
【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题
6. 【答案】C
【解析】解:∵实数x 、y 满足a x <a y
(1>a >0),∴y <x .
对于A .取x=1,y=0,
不成立,因此不正确;
对于B .取y=﹣2,x=﹣1,ln (x 2+1)>ln (y 2
+1)不成立;
对于C.利用y=x3在R上单调递增,可得x3>y3,正确;
对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.
故选:C.
【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.
7.【答案】C
【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.
继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.
故选C.
8.【答案】D
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由z=ax+y,得y=﹣ax+z,
若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.
若a>0,则目标函数的斜率k=﹣a<0.
平移直线y=﹣ax+z,
由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,
此时﹣a=﹣1,即a=1.
若a<0,则目标函数的斜率k=﹣a>0.
平移直线y=﹣ax+z,
由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.
综上a=1.
故选:D.
【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.
9.【答案】A
【解析】解:∵z===+i,
∴复数z在复平面上对应的点位于第一象限.
故选A.
【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.
10.【答案】D
【解析】解:由奇函数f(x)可知,即x与f(x)异号,
而f(1)=0,则f(﹣1)=﹣f(1)=0,
又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,
当0<x<1时,f(x)<f(1)=0,得<0,满足;
当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;
当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;
当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;
所以x的取值范围是﹣1<x<0或0<x<1.
故选D.
【点评】本题综合考查奇函数定义与它的单调性.
11.【答案】B
【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,
当x<0时,f(x)=x+2,
代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,
解得x<﹣,则原不等式的解集为x<﹣;
当x≥0时,f(x)=x﹣2,
代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,
解得x<,则原不等式的解集为0≤x<,
综上,所求不等式的解集为{x|x<﹣或0≤x<}.
故选B
12.【答案】D
【解析】由已知得{}
=01
A x x
<?,故A B=
1
[,1]
2
,故选D.
二、填空题
13.【答案】2,[1,)
-+∞.
【解析】
14.【答案】3π.
【解析】解:将棱长均为3的三棱锥放入棱长为的正方体,如图
∵球与三棱锥各条棱都相切,
∴该球是正方体的内切球,切正方体的各个面切于中心,
而这个切点恰好是三棱锥各条棱与球的切点
由此可得该球的直径为,半径r=
∴该球的表面积为S=4πr2=3π
故答案为:3π
【点评】本题给出棱长为3的正四面体,求它的棱切球的表面积,着重考查了正多面体的性质、多面体内切球和球的表面积公式等知识,属于基础题.
15.【答案】﹣160
【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,
令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,
故答案为:﹣160.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
16.【答案】[﹣,].
【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,
∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),
即,即,得﹣≤m≤,
故答案为:[﹣,]
【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.
17.【答案】1a = 【解析】
试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;
当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2
(1)0
a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题. 18.【答案】332
【解析】
试题分析:原式=2333
31334log log 16log 16log 1622+=+=+=+=。

考点:指、对数运算。

三、解答题
19.【答案】
【解析】(Ⅰ)证明:取PA 的中点N ,连接QN ,BN . ∵Q ,N 是PD ,PA 的中点,
∴QN ∥AD ,且QN=AD . ∵PA=2,PD=2,PA ⊥PD ,
∴AD=4,
∴BC=AD .又BC ∥AD , ∴QN ∥BC ,且QN=BC , ∴四边形BCQN 为平行四边形,
∴BN ∥CQ .又BN ⊂平面PAB ,且CQ ⊄平面PAB , ∴CQ ∥平面PAB .
(Ⅱ)解:取AD 的中点M ,连接BM ;取BM 的中点O ,连接BO 、PO . 由(Ⅰ)知PA=AM=PM=2, ∴△APM 为等边三角形, ∴PO ⊥AM .同理:BO ⊥AM .
∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,PO ⊂平面PAD ,
∴PO⊥平面ABCD.
以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,
则D(0,3,0),A(0,﹣1,0),P(0,0,),C(,2,0),Q(0,,).
∴=(,3,0),=(0,3,﹣),=(0,,).
设平面AQC的法向量为=(x,y,z),
∴,令y=﹣得=(3,﹣,5).
∴cos<,>==﹣.
∴直线PD与平面AQC所成角正弦值为.
20.【答案】(1)详见解析;(2)详见解析.
21.【答案】(1)1,1==q p ;(2)2
)
1(22
1
++
-=-n n S n n . 考
点:等差,等比数列通项公式,数列求和.
22.【答案】(1)(8π+;(2)20
3
π. 【解析】

点:旋转体的概念;旋转体的表面积、体积. 23.【答案】
【解析】证明:(I )∵数列{a n }为等比数列,a 1=,q=
∴a n =×
=

S n =
又∵==S n
∴S n =
(II )∵a n =
∴b n =log 3a 1+log 3a 2+…+log 3a n =﹣log 33+(﹣2log 33)+…+(﹣nlog 33)
=﹣(1+2+…+n)
=﹣
∴数列{b n}的通项公式为:b n=﹣
【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.
24.【答案】
【解析】解:(1)由f(x)≤3得|x﹣a|≤3,
解得a﹣3≤x≤a+3.
又已知不等式f(x)≤3的解集为{x|﹣1≤x≤5},
所以解得a=2.
(2)当a=2时,f(x)=|x﹣2|.
设g(x)=f(x)+f(x+5),
于是
所以当x<﹣3时,g(x)>5;
当﹣3≤x≤2时,g(x)=5;
当x>2时,g(x)>5.
综上可得,g(x)的最小值为5.
从而,若f(x)+f(x+5)≥m
即g(x)≥m对一切实数x恒成立,则m的取值范围为(﹣∞,5].
【点评】本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题,。

相关文档
最新文档