【精选】小学六年级上册数学奥数题带答案一图文百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【精选】小学六年级上册数学奥数题带答案一图文百度文库
一、拓展提优试题
1.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).
2.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.
3.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a 相乘)
4.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结
果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.
5.已知自然数N的个位数字是0,且有8个约数,则N最小是.
6.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)
7.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.
8.若质数a,b满足5a+b=2027,则a+b=.
9.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.
10.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.
11.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.
12.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.
13.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).
14.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.
15.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.
【参考答案】
一、拓展提优试题
1.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,
=4+6+3,
=13(米);
阴影部分的面积:3×42÷4+3×22÷4﹣2×4,
=12+3﹣8,
=7(平方米);
答:阴影部分的周长是13米,面积是7平方米.
故答案为:13、7.
2.解:4=2×2,
2+2=4,
所以4是史密斯数;
32=2×2×2×2×2;
2+2+2+2+2=10,而3+2=5;
10≠5,32不是史密斯数;
58=2×29,
2+2+9=13=13;
所以58是史密斯数;
65=5×13;
5+1+3=9;
6+5=11;
9≠11,65不是史密斯数;
94=2×47
2+4+7=13=9+4;
所以94是史密斯数.
史密斯数有4,58,94一共是3个.
故答案为:3.
3.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,
多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,
所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15
所以12013+22013+32013+42013+52013的个位数字是5,
所以除以5的余数是0;
故答案为:0.
4.解:设计划用x天完成任务,
那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,
前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,
所以,+(185﹣)××=1,
+(185﹣)××﹣=1﹣,
(185﹣)××=,
(185﹣)×÷=÷,
185﹣+=x+,
x÷=185÷,
x=180,
答:工程队原计划180天完成任务.
故答案为:180.
5.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;
设这个自然数N=21×51×3a,根据约数和定理,可得:
(a+1)×(1+1)×(1+1)=8,
(a+1)×2×2=8,
a=1;
所以,N最小是:2×3×5=30;
答:N最小是30.
故答案为:30.
6.解:40÷2=20(厘米)
20÷2=10(厘米)
3.14×202﹣3.14×102÷2×4
=1256﹣628
=628(平方厘米)
答:阴影部分的面积是628平方厘米.
故答案为:628.
7.解:丙花钱是甲的×=
甲:乙:丙=1::=13:12:8
(13+12+8)÷3=11
每份:9÷(11﹣8)=3(元)
甲:(13﹣11)×3=6(元)
乙:(12﹣11)×3=3(元)
答:分给甲6元,分给乙3元.
故答案为:6,3.
8.解:依题意可知:
两数字和为奇数,那么一定有一个偶数.偶质数是2.
当b=2时,5a+2=2027,a=405不符合题意.
当a=2时,10+b=2027,b=2017符合题意,
a+b=2+2017=2019.
故答案为:2019.
9.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°
所以∠G=∠H=∠N=60°
所以△GHN,△GAB,△HCD,△EFN都是等边三角形
AB=BC=CD=3厘米,
△GHN边长是
3+3+3=9(厘米)
AN=9﹣3=6(厘米)
AN=AF+EF
DE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)
=16﹣3﹣3﹣3﹣6
=1(厘米)
EF=EN=9﹣3﹣1=5(厘米)
答:EF=5厘米.
故答案为:5.
10.解:依题意可知:
甲乙丙的工作效率分别为:,,;
甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);
共工作2+4+3=9
故答案为:9
11.解:第二次剪求的占全长的:
(1)×30%
=
=,
0.4÷[(1)]
=0.4÷[]
=
=0.4×15
=6(米);
答:这根绳子原来长6米.
故答案为:6.
12.解:
=
=,
答:这三个分数中最大的一个是.
故答案为:.
13.解:设所走的时间为x小时.
30x=360﹣360x
3x+360x=360﹣30x+360
390x=360
x=
小时=55分钟.
故答案为:55.
14.解:5÷()
=5
=45(张)
答:两人共有邮票 45张.
故答案为:45.
15.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,
△OCD是等边三角形,
所以∠DCO=60°,
∠OCB=90°﹣60°=30°;
由于是对折,所以CF平分∠OCB,
∠BCF=30°÷2=15°
∠BFC=180°﹣90°﹣15°=75°
所以∠EFO=180°﹣75°×2=30°.
故答案为:30.。