高中物理带电粒子在磁场中的运动试题类型及其解题技巧含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理带电粒子在磁场中的运动试题类型及其解题技巧含解析
一、带电粒子在磁场中的运动专项训练
1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A
,一比荷
q
m
=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;
(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】
(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t
2
122L qE t m = 解得E=16N/C
(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0
tan v qE t m
θ=
可得θ=450粒子射入磁场时的速度大小为2v 0
粒子在磁场中做匀速圆周运动:2
v qvB m r
=
由几何关系可知2r L = 解得B=1.6×10-2T
(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为
32π
,带负电的粒子转过的圆心角为2
π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r m
T v qB
ππ==; 带正电的粒子在磁场中运动的时间为:413
5.910s 4
t T -==⨯; 带负电的粒子在磁场中运动的时间为:421
2.010s 4
t T -=
=⨯ 带电粒子在AC 两点射入电场的时间差为4
12 3.910t t t s -∆=-=⨯
2.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).
(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;
(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);
(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .
【答案】(1)0152mv B ql = (2)2
058mv l Q kq = (3)02
53mv B ql π= 2
20(23)9mv E ql
ππ-=
【解析】
【分析】
【详解】
(1)粒子从P到A的轨迹如图所示:
粒子在磁场中做匀速圆周运动,设半径为r1
由几何关系得
112 cos
25
r l l
α
==
由洛伦兹力提供向心力可得
2
01
1
v
qv B m
r
=
解得:0
1
5
2
mv
B
ql
=
(2)粒子从P到A的轨迹如图所示:
粒子绕负点电荷Q做匀速圆周运动,设半径为r2
由几何关系得
2
5
2cos8
l
r l
α
==
由库仑力提供向心力得
2
2
22
v
Qq
k m
r r
=
解得:
2
5
8
mv l
Q
kq
=
(3)粒子从P到A的轨迹如图所示:
粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00
sin 35l l
t v v α=
= 根据题意得,粒子在磁场中运动时间也为t ,则2
T
t = 又2
2m
T qB π=
解得0
253mv B ql
π=
设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π
=
粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t m
α-=
⋅ 解得:2
20(23)9mv E ql
ππ-=
3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(3a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;
(2)求粒子束射入电场的纵坐标范围;
(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.
【答案】(1)0v Ba
(2)0≤y≤2a (3)78y a =,94a
【解析】 【详解】
(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得
Bqv 0=m 2
v r
故粒子的比荷
v q m Ba
= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.
由几何关系知
O ′A =r ·
AB
BC
=2a 则
OO ′=OA -O ′A =a
即粒子离开磁场进入电场时,离O 点上方最远距离为
OD =y m =2a
所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有
3a =v 0·t 0
2019
222
qE y t a a m =
=>,
所以,粒子应射出电场后打到荧光屏上
粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有
x =v 0·t
竖直方向有
2
12qE y t m
=
代入数据得
x
=2ay
设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则
002tan y x qE x v m v y v v a
θ⋅
===
有
H =(3a -x )·tan θ=(32)2a y y -
当322a y y -=时,即y =9
8
a 时,H 有最大值 由于
9
8
a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为
y =
98
a -2a =-78a
4.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场
(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰
好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.
()1求粒子运动的速度大小;
()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之
后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?
()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?
【答案】(1)EqR
m
;(2)212R ;11n +;(3)2πmR Eq 。
【解析】 【分析】 【详解】
(1)由题可知,粒子进入静电分析器做圆周运动,则有:
2
mv Eq R
= 解得:EqR
v m
=
(2)粒子从D 到A 匀速圆周运动,轨迹如图所示:
由图示三角形区域面积最小值为:
2
2
R S = 在磁场中洛伦兹力提供向心力,则有:
2
mv Bqv R
= 得:
mv R Bq
=
设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:
若只碰撞一次,则有:
112R mv R B q
=
= 22mv
R R B q
==
故
2112
B B = 若碰撞n 次,则有:
111R mv R n B q
=
=+ 22mv
R R B q
==
故
2111
B B n =+ (3)粒子在电场中运动时间:
1242R mR
t v Eq
ππ
=
= 在MN 下方的磁场中运动时间:
211122n m mR
t R v EqR Eq
ππ+=
⨯⨯== 在MN 上方的磁场中运动时间:
232142
R mR
t v Eq ππ=⨯=
总时间:
1232mR
t t t t Eq
=++=
5.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。
P 是圆外一点,OP =3r 。
一质量为m 、电荷量为q (q >0)的粒子从P 点在
纸面内垂直于OP射出。
己知粒子运动轨迹经过圆心O,不计重力。
求
(1)粒子在磁场中做圆周运动的半径;
(2)粒子第一次在圆形区域内运动所用的时间。
【答案】(1)(2)
【解析】
【分析】
本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。
【详解】
(1)找圆心,画轨迹,求半径。
设粒子在磁场中运动半径为R,由几何关系得:①
易得:②
(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有
③
进入圆形区域,带电粒子做匀速直线运动,则
④
联立②③④解得
6.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R23,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d3,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过
右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷
4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:
(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?
(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?
(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.
【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)
【解析】
【分析】
(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;
(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;
(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.
【详解】
(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2
代入数据解得r1=1m
粒子不能进入中间磁场,所以轨道半径r1<1m.
(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛
伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m
2 v r
得r=mv qB
易知r3=4r2
且满足(r2+r3)2=(R2-r2)2+r32
解得r2
=
3
4
m,r3
=3m
又由动能定理有qU=
1
2
mv2
代入数据解得U=3×107V.
(3)带电粒子从P到Q的运动时间为t1,则t1满足
1
2
v t1=d
得t1=10-9s
令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)
圆周运动的周期T=
2m
qB
π
故粒子从Q孔进入磁场到第一次到O点所用的时间为
8
2
21
372180532
610
360360
m m
t s
qB qB
ππ
-
⨯⨯⨯-
=+=
考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-
8k)s(k=0,1,2,3,…).
7.如图所示,在直角坐标系x0y平面的一、四个象限内各有一个边长为L的正方向区域,二三像限区域内各有一个高L,宽2L的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L,L<y<2L的区域内,有沿y轴正方向的匀强电场.现有一质
量为四电荷量为q的带负电粒子从坐标(L,3L/2)处以初速度
v沿x轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.
(1)求电场强度大小E;
(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;
(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.
【答案】(1)
2
mv
E
qL
=(2)
4nmv
B
qL
=n=1、2、3 (3)
2
L
t
v
π
=
【解析】
本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.
(1)带电粒子在电场中做类平抛运动有:0
L v t
=,2
1
22
L
at
=,qE ma
=
联立解得:
2
mv
E
qL
=
(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan x
y
v
v
θ==l
速度大小0
2
sin
v
v v
θ
==
设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足
L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为
2
π
;当满足
L=(2n+1)x时,粒子轨迹如图乙所示.
若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为
2
π
.则有2R,此时满足L=2nx
联立可得:
22
R
n
=
由牛顿第二定律,洛伦兹力提供向心力,则有:
2
v
qvB m
R
=
得:0
4nmv
B
qL
=,n=1、2、3....
轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为
2
π
.则有222x R =,此时满足()2
21L n x =+
联立可得:()2212
R n =
+
由牛顿第二定律,洛伦兹力提供向心力,则有:2
22
v qvB m R =
得:()0
2221n mv B qL
+=
,n=1、2、3....
所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =
,n=1、2、3....或()0
2221n mv B qL
+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×
2
π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==
若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220
(42)(42)2n n m L
t T qB v ππππ++=⨯
== 粒子从进入磁场到坐标(-L ,0)点所用的时间为0
2222n n m L
t T qB v ππππ=⨯
==或2220
(42)(42)2n n m L
t T qB v ππππ++=⨯
==
8.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
现使一个电量大小为q 、质量为m 的带正电粒子从坐标(﹣2a ,a )处以沿+x 方向的初速度v 0出发,该粒子恰好能经原点进入y 轴右侧并在随后经过了点P ,不计粒子的重力。
(1)求粒子经过原点时的速度; (2)求磁感应强度B 的所有可能取值
(3)求粒子从出发直至到达P 点经历时间的所有可能取值。
【答案】(1
v 0,方向:与x 轴正方向夹45°斜向下; (2)磁感应强度B 的所有可能取值:0
nmv B qL
=
n =1、2、3……; (3)粒子从出发直至到达P 点经历时间的所有可能取值:023(1)24a m m t k k v qB qB
ππ=++- k =1、2、3……或02324a m m
t n n v qB qB
ππ=++ n =1、2、3……。
【解析】 【详解】
(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2
y v a t =
,
解得:v y =v 0,tan θ=
y v v =1,θ=45°,
粒子穿过O
点时的速度:0v ==;
(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:
2
v qvB m r
= ,
粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0
nmv B qL
=
n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=
2a v ; 粒子在第四、第一象限内做圆周运动的周期:12m T qB π=
,2m
T qB
π=, 粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧, 若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=
1
4
T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=1
4T 1+34
T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×
1
4T 1+34T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1
4T 1+2×34
T 2, …………
则2
3(1)24m
m
t k
k qB
qB
ππ=+- k =1、2、3 (2324)
m
t n
n
qB qB
ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2, 解得:023(1)24a m m t k k v qB qB
ππ=++- k =1、2、3…… 或02324a m m t n n v qB qB
ππ=
++ n =1、2、3……;
9.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为
2
R
,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:
(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqR
v m
=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
【答案】(1)4BqR v m ≤(2)1523
4
R ++ 【解析】 【详解】
(1)粒子在磁场中做匀速圆周运动,有:2
v Bqv m r
=
如图所示,若所有离子均不能射出圆形磁场区域,则4
R r ≤ 故4BqR
v m
≤
(2)当离子速率大小02BqR v m =
时,由(1)式可知此时离子圆周运动的轨道半径2
R
r = 离子经过最高点和最低点的运动轨迹如图,
由几何关系知:2
2214R h R ⎛⎫+= ⎪⎝⎭
得115h R = 由几何关系知:223
sin 6022R R h ︒+=
+= 故最高点与最低点的高度差121523
h h h ++=+=
10.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.
(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B
②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2
010U e y y t dm
∆=∆= 【解析】 【详解】
(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:
2222
000max 00000311222y U e U e U e y at v t t t t dm dm dm
=
+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:
220min 001122U e y at t dm
=
= 最远位置和最近位置之间的距离:1max min y y y ∆=-,
2
010U e y t dm
∆=
(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:
sin L R θ
=
设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1
sin y v v θ=,
式中00y U e
v t dm = 又:1
mv R Be
=
解得:00
U t B dL
=
②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.
由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2
010U e y y t dm
∆=∆=
11.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线
y =x 垂直.粒子速度大小5
0 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重
力不计.求:
(1)粒子在匀强磁场2B 中运动的半径r ; (2)坐标d 的值;
(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件; (4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).
【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯ 【解析】 【详解】
解:(1) 由带电粒子在匀强磁场中运动可得:20
20v B qv m r
= 解得粒子运动的半径:1r m =
(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212
y at =
Eq
a
m
=
tan45
v
at
︒=
联立解得:2
x m
=,1
y m
=
由图示几何关系得:d x y R
=++
解得:4
d m
=
(3)若所加磁场的磁感应强度为
1
B',粒子恰好垂直打在y轴上,粒子在磁场运动半径为1r
由如图所示几何关系得:()
1
2
r y R
=+
2
v v
=
由带电粒子在匀强磁场中运动可得:
2
1
1
v
B qv m
r
'=
解得:
1
0.1
B T
'=
若所加磁场的磁感应强度为
1
B'',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r
由如图所示几何关系得:()
22
22
r r y R
+=+
由带电粒子在匀强磁场中运动可得:
2
1
2
v
B qv m
r
''=
解得
1
21
0.24
10
B T T
+
''=≈
综上,磁感应强度应满足的条件为10.1
B T
≤或
1
0.24
B T
≥
(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:
1114t T =
102R
T v π= 20
x t v =
3212t T =
2
22r T v
π=
解得:()
55
1232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯
12.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:
(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)
3E
B
(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603
d d d
r sin sin α=
==︒ 根据2
00mv qv B r =得023qBd
v =
粒子在第一象限中做类平抛运动,则有2
1602qE r cos
t m -︒=(); 00
y v qEt tan v mv α==
联立解得03E
v B
=
(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.
则有:x=v 0t , 2
y v y t =
得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 13
2r = 则得2
3
x d =
所以粒子在第三、四象限圆周运动的半径为1253
23d d R sin α⎛⎫+ ⎪⎝⎭==
粒子进入第三、四象限运动的速度00432v qBd
v v cos α=
==
根据2
'v qvB m R
=
得:B′=2.4B
考点:带电粒子在电场及磁场中的运动
13.如图所示,三块挡板围成截面边长L =1.2m 的等边三角形区域,C 、P 、Q 分别是MN 、AM 和AN 中点处的小孔,三个小孔处于同一竖直面内,MN 水平,MN 上方是竖直向下的匀强电场,场强E =4×10-4N /C .三角形区域内有垂直纸面向里的匀强磁场,磁感应强
度为B 1;AMN 以外区域有垂直纸面向外, 磁感应强度大小为B 2=3B 1的匀强磁场.现将一比荷q/m =105C/kg 的帯正电的粒子,从O 点由静止释放,粒子从MN 小孔C 进入内部匀强磁场,经内部磁场偏转后直接垂直AN 经过Q 点进入外部磁场.已知粒子最终回到了O 点,OC 相距2m .设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:
(1) 磁感应强度B 1的大小;
(2) 粒子从O 点出发,到再次回到O 点经历的时间;
(3) 若仅改变B 2的大小,当B 2满足什么条件时,粒子可以垂直于MA 经孔P 回到O 点(若粒子经过A 点立即被吸收). 【答案】(1)51210
T 3
B -=⨯;(2)-22.8510s t =⨯;(3)52
42
10T 3k B -+=⨯' 【解析】 【详解】
(1) 粒子从O 到C 即为在电场中加速,则由动能定理得:212
Eqx mv = 解得v =400 m/s
带电粒子在磁场中运动轨迹如图所示.
由几何关系可知 10.6m 2
L
R =
= 由2
11
v qvB m R =
代入数据得 512
10T 3
B -=
⨯ (2)由题可知 B 2=3B 1=2×10-5 T
2
11
v qvB m R =
则 1
20.2m 3
R R =
= 由运动轨迹可知:进入电场阶段做匀加速运动,则112
x vt = 得到 t 1=0.01 s
粒子在磁场B 1中的周期为 11
2m
T qB π=
则在磁场B 1中的运动时间为 3211
310s 3
t T -==⨯ 在磁场B 2中的运动周期为 22
2m
T qB π= 在磁场B 2中的运动时间为
3-3321803001801110s 5.510s 3606
t T π
-︒+︒+︒=
=⨯=⨯︒
则粒子在复合场中总时间为:3-21231722010s 2.8510s 6
t t t t π-⎛
⎫=++=+
⨯=⨯ ⎪⎝
⎭
(3)设挡板外磁场变为'
2B ,粒子在磁场中的轨迹半径为r ,则有 2
'
2v qvB m r
=
根据已知条件分析知,粒子可以垂直于MA 经孔P 回到O 点,需满足条件
()212L
k r =+其中 k =0、1、2、3…… 解得52
42
10T 3
k B -+=⨯'
14.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为
.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.
【答案】2
145qRB E m
=
【解析】 【分析】 【详解】
解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得
2
v qvB m r
=①
式中v 为粒子在a 点的速度.
过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.
因此ac bc r ==② 设,cd x =有几何关系得4
5
ac R x =
+③ 223
5
bc R R x =
+- 联立②③④式得75
r R =
再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="ma" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得
2
12r at =
⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2
145qRB E m
=
⑨
【点睛】
带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.
15.(17分)在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。
一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P
点(AP=d)射入磁场(不计重力影响)。
(1)如果粒子恰好从A点射出磁场,求入射粒子的速度。
(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线的夹角为φ(如图)。
求入射粒子的速度。
【答案】1)(2)
【解析】
试题分析:(1)由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。
设入射粒子的速度为v1,由洛仑兹力的表达式和牛顿第二定律得:
①
由①式解得:②
(2)设O’是粒子在磁场中圆弧轨道的圆心,连接O’Q,设O’Q=R’。
由几何关系得:∠OQO’=③
而OO’=R’-,=d-R
所以OO’= R’+R-d ④
由余弦定理得:⑤。