2012-2013第七章平面直角坐标系单元测试题及答案
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)
![人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)](https://img.taocdn.com/s3/m/6b38a01c0066f5335b812116.png)
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
七年级数学下册《第七章 平面直角坐标系》单元测试卷及答案
![七年级数学下册《第七章 平面直角坐标系》单元测试卷及答案](https://img.taocdn.com/s3/m/07a38c2ffd4ffe4733687e21af45b307e871f9a9.png)
七年级数学下册《第七章平面直角坐标系》单元测试卷及答案一、选择题(每题3分,共30分)1.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣52.第24届冬季奥林匹克运动会将于2022年在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是()A.离北京市200千米B.在河北省C.在宁德市北方D.东经114.8°,北纬40.8°3.已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1B.3C.﹣1D.54.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,0)C.(﹣1,2)D.(﹣2,2)5、已知点P(x,y)的坐标满足|x|=3,y=2,且xy<0,则点P的坐标是( )A.(3,-2)B.(-3,2)C.(3,-4)D.(-3,4)6、已知点A(1,0)B(0,2),点P在x轴上,且△P AB的面积为5,则点P的坐标为( )A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.(0,12)或(0,-8)7.已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1B.3C.﹣1D.58.将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.点A(﹣3,﹣5)向上平移4个单位,再向左平移4个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1 )D.(0,﹣1)10.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A .(1,3)B .(2,2)C .(2,4)D .(3,3)二、填空题(每题3分,共24分)11.如图是小兰观看马戏表演的门票若小敏的座位是3排4座,简记为(3,4),则小兰的座位可简记为 .12.点P(x ,y)在第二象限,且x 2=4,y =3.则点P 的坐标为 .13.已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为 .14.如图,平面直角坐标系中,A 、B 两点的坐标分别为(2,0)、(0,1),若将线段AB 平移至A 1B 1,点A 1的坐标为(3,1),则点B 1的坐标为 .15、若点P ,m n 在第二象限,则点Q,m n 在第 象限。
人教版七年级下册数学第七章《平面直角坐标系》单元练习题(含答案)
![人教版七年级下册数学第七章《平面直角坐标系》单元练习题(含答案)](https://img.taocdn.com/s3/m/c4b88a154028915f814dc25c.png)
人教版七年级下册数学第七章《平面直角坐标系》单元练习题(含答案)一、单选题1.线段AB 经过平移得到线段CD ,其中点A 、B 的对应点分别为点C 、D ,这四个点都在如图所示的格点上,那么线段AB 上的一点P (a ,b )经过平移后,在线段CD 上的对应点Q 的坐标是( )A .(a ﹣1,b+3)B .(a ﹣1,b ﹣3)C .(a+1,b+3)D .(a+1,b ﹣3)2.在坐标平面内,下列各点中到x 轴的距离最近的点是()A .(2,5)B .(-4,1)C .(3,-4)D .(6,2)3.如图,在平面直角坐标系中,点P 的坐标为( )A .(3,﹣4)B .(﹣4,3)C .(﹣3,4)D .(4,﹣3)4.已知点()39,1P a a --在第二象限,且它的坐标都是整数,则a = ( )A .1B .2C .3D .05.某校数学课外小组,在数对纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点(,)k k k P x y 处,其中11x =,11y =.当2k ≥时,111215([][])5512[][]55k k k k k k x x k k y y ----⎧=+--⎪⎪⎨--⎪=+-⎪⎩,[]a 表示非负实数a 的整数部分.例如[2.5]2=,[0.2]0=.按此方案,第2019棵树种植的点位( )A .(3,403)B .(4,404)C .(5,2019)D .(6,2020)6.如图,三角形ABC 沿AB 方向向右平移后到达三角形A 1B 1C 1的位置,BC 与A 1C 1相交于点O ,若∠C 的度数为x ,则∠A 1OC 的度数为( )A .xB .90°﹣xC .180°﹣xD .90°+x7.在平面直角坐标系中,已知点()41A --,和()14B -,,平移线段AB 得到线段11A B ,使平移后点1A 的坐标为(2,2),则平移后点1B 坐标是( )A .()31-,B .()37-,C .()11,D .()57,8.下列说法不正确的是( )A .在x 轴上的点的纵坐标为0B .点P (﹣1,3)到y 轴的距离是1C .若xy <0,x ﹣y >0,那么点Q (x ,y )在第四象限D .点A (﹣a 2﹣1,|b |)一定在第二象限9.已知点P(3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .(A )B .(B )C .(C )D .(D )10.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点( )A .(1,3)B .(﹣2,1)C .(﹣1,2)D .(﹣2,2)11.已知点P 关于x 轴的对称点P 1的坐标是(-2,3),则点P 坐标是( )A .(-3,-2)B .(-2,-3)C .(2,-3)D .(3,-2)12.如图,小手盖住的点的坐标可能是( ).A .(﹣3,4);B .(5,2);C .(﹣3,﹣6);D .(6,﹣4).二、填空题 13.如图所示,在平面直角坐标系上有个点1,0P (),点P 第1次向上跳动1个单位至点1(1,1)P ,紧接着第2次向左跳动2个单位至点2(1,1)P -,第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P 第99次跳动至点99P 的坐标是_____;点P 第2009次跳动至点2009P 的坐标是______.14.在平面直角坐标系中,点P (2,﹣3)关于原点对称点P ′的坐标是_____.15.已知线段//MN x 轴,且MN 的长度为5,若M 的坐标为(2,2)-,那么点N 的坐标是__________.16.在第二象限到x 轴距离为2,到y 轴距离为5的点的坐标是___________.17.如果点P(a ,b)在第三象限,则点Q(-a ,-b)在第________象限.18.在平面直角坐标系xoy 中,标出点(1,1)A -,(5,1)B 的位置,则线段AB 的中点M 的坐标是__________.19.在平面直角坐标系中,点P(1,2)向右平移3个单位长度,再向上平移1个单位得到的点的坐标为______.20.已知线段3AB =,AB y ∥轴,若点A 的坐标为()1,2,则点B 的坐标为______.三、解答题21.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=12S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.22.小明给下图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中每个场所所在象限.23.如图,已知在平面直角坐标系中,ABO ∆的面积为8,OA OB =,12BC =.求ABC ∆三个顶点A ,B ,C 的坐标;24.如图,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①,求证:OB∥AC.(2)如图②,若点E 、F 在线段BC 上,且满足∠FOC=∠AOC,并且OE 平分∠BOF.求∠EOC 的度数.(3)在(2)的条件下,若平行移动AC ,如图③,那么∠OCB:∠OFB 的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.25.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。
第七章 平面直角坐标系单元测试卷(含答案)
![第七章 平面直角坐标系单元测试卷(含答案)](https://img.taocdn.com/s3/m/d198c3240b4e767f5bcfce0d.png)
第七章平面直角坐标系单元测试卷一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,4)到x轴的距离为()A.3B.-3C.4D.-42.设点A(m,n)在x轴上,且位于原点的左侧,则下列结论正确的是()A.m=0,n为任意实数;B.m=0,n<0C.m为任意实数,n=0;D.m<0,n=03.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,-2)4.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位长度得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)5.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7)B.(2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(4,3),(1,7)6.如图,将长为3的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()8.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a -10)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 017次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2 015,2)B.(-2 015,-2)C.(-2 016,-2)D.(-2 016,2)二、填空题(每题3分,共30分)11.七年级三班座位按7排8列排列,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为_________.12.在平面直角坐标系中,将点A(4,1)向左平移_________个单位长度得到点B(-1,1).13.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O'A',则点A的对应点A'的坐标为_________.14.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.已知点A的坐标(x,y)满足+(y+3)2=0,则点A的坐标是________.17.已知点A(a,0)和点B(0,5),且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的格点上,在第四象限内坐标为________.19.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B'处,则点B'的坐标为________.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为(用n表示).三、解答题(21题6分,22题8分,25题12分,26题14分,其余每题10分,共60分)21.如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50米记作50,图中点A记作(30°,50);北偏西45°记作-45°,从O点出发沿着该方向的反方向走20米记作-20,图中点B 记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).22.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.23.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l'与直线l垂直,求垂足C点的坐标.24.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.25.如图,长阳公园有四棵古树A,B,C,D(单位:米).(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来,划为保护区,请你计算保护区的面积.参考答案一、1.【答案】C2.【答案】D解:因为点A(m,n)在x轴上,所以纵坐标是0,即n=0.因为点A位于原点的左侧,所以横坐标小于0,即m<0.所以m<0,n=0,故选D.3.【答案】C解:由“帅”与“马”的位置可以确定平面直角坐标系,进而可知“兵”位于点(-4,1),故选C.4.【答案】D解:点P(-2,3)沿x轴方向向右平移3个单位长度,即横坐标加上3,纵坐标不变,则Q点的坐标为(1,3),选D.5.【答案】C解:三角形向右平移2个单位长度,再向上平移3个单位长度,即(-4,-1),(1,1),(-1,4)的横坐标分别加上2,纵坐标分别加上3,得(-2,2),(3,4),(1,7).故选C.6.【答案】D解:由长为3,可知A点的横坐标为6-3=3,纵坐标与D点相同,即坐标为(3,3).故选D.7.【答案】D解:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,高为3,所以三角形ABO的面积=×2×3=3.8.【答案】D解:由P,Q在图中的位置可知a<7,b<5,所以6-b>0,a-10<0,故点(6-b,a-10)在第四象限.9.【答案】D解:因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以a=-1或a=-4,当a=-1时,P点坐标为(3,3),当a=-4时,P点坐标为(6,-6).10.【答案】B二、11.【答案】(5,2)12.【答案】513.【答案】(-1,3)14.【答案】(2,-2)解:将点A(-1,2)向右平移3个单位长度得到点B的坐标为(-1+3,2),即(2,2),则点B关于x轴15.【答案】二16.【答案】(2,-3)17.【答案】4或-4解:由三角形的面积=底×高×得,5|a|·=10,解得|a|=4,所以a=4或a=-4.此处学生容易只考虑一种情况.18.【答案】3;(1,-1)(答案不唯一)19.【答案】(2,1)解:由题意知四边形BEB'D是正方形,∴点B'的横坐标与点E的横坐标相同,点B'的纵坐标与点D的纵坐标相同,∴点B'的坐标为(2,1).20.【答案】(2n,1)解:由图可知n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),…,所以点A4n+1(2n,1).三、21.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)如图.22.解:(1)如图.(2)体育场、市场、超市的坐标分别为(-2,4),(6,4),(4,-2).23.解:(1)∵l∥x轴,点A,B都在l上,∴m+1=-4,∴m=-5,∴A(2,-4),B(-2,-4),∴A,B两点间的距离为4.(2)∵l∥x轴,PC⊥l,x轴⊥y轴,∴PC∥y轴,∴C点横坐标为-1.又点C在l上,∴C(-1,-4).24.解:(1)C1(4,-2).(2)△A1B1C1如图所示.(3)如图,△AOA1的面积=6×3-×3×3-×3×1-×6×2=18---6=6.25.解:(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)如图,E(0,10),F(0,30),G(50,50),H(60,0),另外令M(0,50),N(60,50),则S=S-S△OEH-S△FMG-S△HGN=50×60-×10×60-×20×50-×10×50=1 950(平方米),所以保护OMNH区的面积为1 950平方米.。
精选七年级下册数学第七章平面直角坐标系单元测试(含答案)
![精选七年级下册数学第七章平面直角坐标系单元测试(含答案)](https://img.taocdn.com/s3/m/55fafd0f10661ed9ac51f30b.png)
人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点B的坐标为()A..(-2,2)B..(-2,-3)C..(-3,-2)D.(-2,-2)3.已知点A(-3,0),则A点在()A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,-4)B.(-4,3)C.(4,-3)D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0)B.(1,2)C.(5,4)D.(5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0)B.(1,2)C.(2,1)D.(1,1)7.钓鱼岛历来就是中国不可分割的领土,中国对钓鱼岛及其附近海域拥有无可争辩的主权,能够准确表示钓鱼岛位置的是()A.北纬25°40′~26°B .东经123°~124°34′C .福建的正东方向D .东经123°~124°34′,北纬25°40′~26°8.已知点M(a,1),N(3,1),且MN=2,则a 的值为( )A .1B .5C .1或5D .不能确定9.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是( )A .(0,-2)B .(1,-2)C .(2,-1)D .(1,2)10.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为( )A .(60,0)B .(72,0)C .⎝⎛⎭⎫67 15, 95D .⎝⎛⎭⎫79 15, 95二.填空题(共6小题)11.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为 .12.在平面直角坐标系中,已知点A(2,3),点B 与点A 关于x 轴对称,则点B 坐标是 .13.若点P(m+5,m -2)在x 轴上,则m= ;若点P(m+5,m -2)在y 轴上,则m= .14.如图所示是轰炸机机群的一个飞行队形,如果其中两架轰炸机的平面坐标分别表示为A(-2,3)和B(2,1),那么轰炸机C 的平面坐标是 .15.将点P(x,4)向右平移3个单位得到点(5,4),则P点的坐标是.16.把自然数按如图的次序在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0,0)对应的自然数是1,点(1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n)对应的自然数是三.解答题(共6小题)17.在平面直角坐标系中,点A(2m-7,n-6)在第四象限,到x轴和y轴的距离分别为3,1,试求m+n的值.18.已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,-4)且与y轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示,可是她忘记了在图中标出原点和x轴、y轴,只知道游乐园D的坐标为(2,-2),且一格表示一个单位长度.(1)在原图中建立直角坐标系,求出其它各景点的坐标;(2)在(1)的基础上,记原点为0,分别表示出线段AO和线段DO上任意一点的坐标.20.已知A(1,0)、B(4,1)、C(2,4),△ABC经过平移得到△A′B′C′,若A′的坐标为(-5,-2).(1)求B′、C′的坐标;(2)求△A′B′C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为,B4的坐标为.(2)按以上规律将△OAB进行n次变换得到△OA n B n,则A n的坐标为,B n的坐标为;(3)△OA n B n的面积为.22.(1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1),并将各点用线段顺次连接起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)如果将原图形上各点的横坐标加2、纵坐标减5,猜一猜,图形会发生怎样的变化?(4)如果想让变化后的图形与原图形关于原点对称,原图形各点的坐标应该如何变化?答案:1-10 BDBCD DDCAA11. (2,5)12. (2,-3)13.-514. (-2,-1)15. (2,4)16.60 4n2-2n+117.解:∵点A(2m-7,n-6)在第四象限,到x轴和y轴的距离分别为3,1,∴2m-7=1,n-6=-3,解得m=4,n=3,所以,m+n=4+3=7.18.解:(1)∵点P(2m+4,m-1)在x轴上,∴m-1=0,解得m=1,∴2m+4=2×1+4=6,m-1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m-1)的纵坐标比横坐标大3,∴m-1-(2m+4)=3,解得m=-8,∴人教版七年级下册第七章平面直角坐标系单元测试卷一、选择题:1.若点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标是( )A.(-2,-3)B.(-2,3)C.(2,-3)D.(2,3)2.若点A(2,m)在x轴上,则点B(m﹣1,m+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.点A1(5,–7)关于x轴对称的点A2的坐标为( ).A.(–5, –7)B.(–7 , –5)C.(5, 7)D.(7, –5)4.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)5.若点A(m,n)在第二象限,那么点B(-m,│n│)在( )A.第一象限B.第二象限;C.第三象限D.第四象限6.若点P关于x轴的对称点为P1(2a+b,3),关于y轴的对称点为P2(9,b+2),则点P的坐标为( )A.(9,3)B.(﹣9,3)C.(9,﹣3)D.(﹣9,﹣3)7.已知点P(x,y),且,则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( )A.-1<m<3B.m>3C.m<-1D.m>-19.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为( )A.(-9,3)B.(-3,1)C.(-3,9)D.(-1,3)10.在平面直角坐标系中,线段BC∥轴,则( )A.点B与C的横坐标相等B.点B与C的纵坐标相等C.点B与C的横坐标与纵坐标分别相等D.点B与C的横坐标、纵坐标都不相等11.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个B.3个C.4个D.5个12.如图,一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)•,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A.(0,9)B.(9,0)C.(0,8)D.(8,0)二、填空题:13.若点A在第二象限,且到x轴的距离为3,到y轴的距离为2,则点A的坐标为__________.14.在平面直角坐标系中,点C(3,5),先向右平移了5个单位,再向下平移了3个单位到达D点,则D点的坐标是 .15.若A(a,b)在第二、四象限的角平分线上,a与b的关系是_________.16.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标.17.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(x+2,y).②g(x,y)=(−x,−y),例如按照以上变换有:f(1,1)=(3,1);g(f(1,1)) =g(3,1)=(−3,−1).如果有数a、b,使得f(g(a,b)) = (b,a),则g(f(a+b,a−b))= .18.将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2014对应的有序数对为.三、解答题:19.如图,在单位正方形网格中,建立了平面直角坐标系xOy,试解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位,再向下平移2个单位后的图形△A1B1C1;(3)求△ABC的面积.20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,点A,B,C均在格点上.(1)请值接写出点A,B,C的坐标.(2)若平移线段AB,使B移动到C的位置,请在图中画出A移动后的位置D,依次连接B,C,D,A,并求出四边形ABCD的面积.21.如图,已知A(-2,3)、B(4,3)、C(-1,-3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.22.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(________,________)、B(________,________)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(_______,_______)、B′(_______,_______)、C′(________,________).(3)△ABC的面积为 .人教版七年级下册第7章平面直角坐标系水平测试卷一.选择题(共10小题)1.在平面直角坐标系中,点()23,2P x -+所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各点中,位于第四象限的点是( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4) 3.已知点P(-4,3),则点P 到y 轴的距离为( )A .4B .-4C .3D .-34.已知m 为任意实数,则点()2,1A m m +不在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 5.已知点P 在第二象限,并且到x 轴的距离为1,到y 轴的距离为2.则点P 的坐标是( ) A .(1、2) B .(-1,2) C .(2,1) D .(-2,1) 6.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .( 8,0)7.已知点A(-3,0),则A 点在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上8.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为( )A .(1,0)B .(1,2)C .(5,4)D .(5,0) 9.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移2个单位得线段11,A B 以下点在线段11A B 上的是()A.(0,3) B.(-2,1) C.(0,8) D.(-2,0)10.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)二.填空题(共6小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,点A(-5,4)在第象限.13.点P(3,-2)到y轴的距离为个单位.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.15.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.16.在平面直角坐标系中,已知点(A B点C在x轴上,且AC+BC=6,写出满足条件的所有点C的坐标三.解答题(共7小题)17.如图,在平面直角坐标系中,点A、B、C、D都在坐标格点上,点D的坐标是(-3,1),点A的坐标是(4,3).(1)将三角形ABC平移后使点C与点D重合,点A,B分别与点E,F重合,画出三角形EFD.并直接写出E,F的坐标;(2)若AB上的点M坐标为(x,y),则平移后的对应点M的坐标为.18.如图,在正方形网格中建立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC 向左平移5个单位长度,再向上平移4个单位长度,得到111,A B C 在图中画出111,A B C 并直接写出点1A 、1B 、1C 的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M 到x 轴的距离为1时,求点M 的坐标;(2)当点M 到y 轴的距离为2时,求点M 的坐标.20.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M 到y 轴的距离为l 时,M 的坐标?(2)点N(5,-1)且MN ∥x 轴时,M 的坐标?21.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点(2,4),A B -+的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.22.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置; (2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置; (3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.23.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F 变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)= ;(2)若点P(4,-4)在F变换下的对应点是它本身,则a= ,b= .答案:1-5 BAADD6-10 CBDAC11.-112.二13.314. (3,4)15.916.. (3,0)或(-3,0)17. 解:(1)如图所示,△EFD即为所求,其中E(0,2)、F(-1,0).(2)由图形知将△ABC向左平移4个单位、再向下平移1个单位可得△EFD,∴平移后点M的坐标为(x-4,y-1),18. 解:(1)如图所示:(2)如图所示:结合图形可得:A1(-2,6),B1(-1,1),C1(-4,2).19. 解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得:m=-1或m=-2,∴点M的坐标是(-2,1)或(-3,-1);(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得:m=3或m=-1,∴点M的坐标是:(2,9)或(-2,1).20. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点。
七年级下册数学第七章《平面直角坐标系》单元测试卷(含答案)
![七年级下册数学第七章《平面直角坐标系》单元测试卷(含答案)](https://img.taocdn.com/s3/m/4ee33f096ad97f192279168884868762caaebbac.png)
七年级下册数学第七章《平⾯直⾓坐标系》单元测试卷(含答案)七年级下册数学第七章《平⾯直⾓坐标系》单元测试卷⼀、选择题(本⼤题共10⼩题,每⼩题3分,共30分)1.在直⾓坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于( )A.第⼀象限B.第⼆象限C.第三象限D.第四象限2.如图是雷达探测到的6个⽬标,若⽬标B⽤(30,60°)表⽰,⽬标D⽤(50,210°)表⽰,则表⽰为(40,120°)的⽬标是( )A.⽬标A B.⽬标C C.⽬标E D.⽬标F3.⼩王和⼩丽下棋,⼩王执圆⼦,⼩丽执⽅⼦,如图是在直⾓坐标系中棋⼦摆出的图案,若再摆放⼀圆⼀⽅两枚棋⼦,使9枚棋⼦组成的图案既是轴对称图形⼜是中⼼对称图形,则这两枚棋⼦的坐标分别是( )A.圆⼦(2,3),⽅⼦(1,3) B.圆⼦(1,3),⽅⼦(2,3)C.圆⼦(2,3),⽅⼦(4,0)D.圆⼦(4,0),⽅⼦(2,3)4.在平⾯直⾓坐标系中,线段CF是由线段AB平移得到的;点A(?1,4)的对应点为C(4,1);则点B(a,b)的对应点F的坐标为()A.(a+3,b+5)B.(a+5,b+3)C.(a?5,b+3)D.(a+5,b?3)5.如图,在⼀单位长度为1cm的⽅格纸上,依如图所⽰的规律,设定点A1、A2、A3、A4、A5、A6、A7、…、A n,连接点O、A1、A2组成三⾓形,记为△1,连接O、A2、A3组成三⾓形,记为△2…,连O、A n、A n+1组成三⾓形,记为△n(n为正整数),请你推断,当n为50时,△n的⾯积=()cm2.A . 1275B . 2500C . 1225D . 12506.如图,将“笑脸”图标向右平移4个单位,再向下平移 2个单位,点P 的对应点P '的坐标是( )A .(-1,6)B .(-9,6)C .(-1,2)D .(-9,2)7.若点(,)A n m 在第四象限,则点2(B m ,)(n -)A .第四象限B .第三象限C .第⼆象限D .第⼀象限8.下列各点中,在第三象限的点是()A .()3,2B .()3,2-C .()3,2--D .()3,2-9.如图,已知1(1,0)A ,2A (1,1)-,3(1,1)A --,4(1,1)A -,5A (2,1),?,则点2019A 的坐标是( )A .(505,505)--B .(505,506)--C .(504,504)--D .(505,504)10.如图,在⼀单位为1的⽅格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直⾓三⾓形,若A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A3(0,0),则依图中所⽰规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)⼆、填空题(本⼤题共6⼩题,每⼩题3分,共18分)11. (1)点A(-5,-4)到x轴的距离是______;到y轴的距离是______.(2)点B(3m,-2n)到x轴的距离是______;到y轴的距离是______.12.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为________.13.已知长⽅形ABCD中,AB=5,BC=8,并且AB∥x轴,若点A的坐标为(-2,4),则点C的坐标为__________________________。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
![人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)](https://img.taocdn.com/s3/m/36ab99956edb6f1afe001f25.png)
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
完整版平面直角坐标系单元测试题及答案
![完整版平面直角坐标系单元测试题及答案](https://img.taocdn.com/s3/m/ad97e299b4daa58da1114a6f.png)
一、填空题1•已知点A (0,1)、B (2,0)、C ( 0,0)、D (-1,0)、E (-3,0),则在y 轴上的点有____________ 个。
2•如果点A a,b在x轴上,且在原点右侧,那么a __________ ,b ________3•如果点M a,a 1在x轴下侧,y轴的右侧,那么a的取值范围是______________________4•已知两点A 3, m ,B n, 4,若AB // y轴,则n= ____________ , m的取值范围是 _________5. ?ABC上有一点P ( 0,2),将?ABC先沿X轴负方向平移2个单位长度,再沿y轴正方向平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是_________________ .6, 如图所示,象棋盘上,若“将”位于点 (3, -2), “车”位于点(-1 , -2),则“马”位于8题图7, 李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为(3,2),若周伟的座位在李明的后面相距2排,同时在他的左边相距3列,则周伟的座位可简记为8•将?ABC绕坐标原点旋转180后,各顶点坐标变化特征是:____________________________ .二、选择题9•下列语句:(1 )点(3,2)与点(2,3)是同一点;(2)点(2,1)在第二象限;(3)点(2,0) 在第象限;(4)点(0,2)在X轴上,其中正确的是( )A. (1) (2)B. (2) ( 3)C. (1) (2) (3) (4)D.没有X10. 如果点M x,y的坐标满足0,那么点M的可能位置是( )yA・X轴上的点的全体B.除去原点后X轴上的点的全体C・y轴上的点的全体D・除去原点后y轴上的点的全体11・已知点P的坐标为2-a,3a 6,且点P到两坐标轴的距离相等,则点P的坐标是( ) A・(3,3) B・(3, -3) C・(6, -6) D・(3,3)或(6, -6)12・如果点2X,X 3在X轴上方,y轴右侧,且该点到X轴和y轴的距离相等,贝U X的值为( )A・1 B;1 C・3 D・-313・将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形( )A・横向右平移2个单位B・横向向左平移2个单位C・纵向向上平移2个单位D・纵向向下平移2个单位14・下面是小明家与小刚家的位置描述:小明家:出校门向东走150m,再向北走200m ;小刚家:出校门向南走 100m ,再向西走300m ,最后向北走50m 如果以学校所在位置为原点,分别以正东、正北方向为 x 轴,y 轴正方向建立平面直角坐标系,并取比例尺1 : 10 000.则下列说法正确的是()点(150,200)是小明家的位置; 点(-300,-50)是小刚家的位置;从小明家向西走 200m ,到达点(200,-50);包从小刚家向东走100 m 到达点(50, -300).A. B.③ C. D.④15.一条东西向道路与一条南北向道路的交汇处有一座雕像, 甲车位于雕像东方 5 km 处,乙车位于雕像北方7km 处,若甲、乙两车以相同的速度向雕像的方向同时出发, 当甲车到雕像西方1 km 处乙车在()应点A 的坐标是( A.(4 , 1) B.(9 , -4)18..如图所示,是郑州市某天的温度随时间变化的图象,A.这天15点温度最高B.这天3点时温度最低C.这天最高温度与最低温度的差是15度 D.这天21时温度是30度A.雕像北方1 km 处B.雕像北方3 km 处 16.已知如图所示,方格纸中的每个小方格边长为 (2,2 )、(4,3)来表示,请在小方格顶点上确定一点 单位,则点C 的位置可能为()C.(2 , 4)D.(3 , 2)A.(4 , 4)B.(4 , 2) c.雕像南方1 km 处 1 D.雕像南方3 km 处的正方形,AB 两点在小方格的顶点上,位置分别用 C ,连接AB 、AC 、BC ,使?ABC 的面积为2个平方17..如图所示,若三角形 ABC 中经平移后任意一点P X 0, y 0的对应点为R X 05, y 0 3,则点A 的对C.(-6 , 7)D.(-1 , 2)通过观察可知下列说法错误的是(16题图17题图三•解答题(共40分)19. (7分)以点A为圆心的圆可表示为O A。
人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析
![人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析](https://img.taocdn.com/s3/m/682be63e854769eae009581b6bd97f192379bf7a.png)
人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。
七年级数学下册《第七章平面直角坐标系》单元练习题及答案(人教版)
![七年级数学下册《第七章平面直角坐标系》单元练习题及答案(人教版)](https://img.taocdn.com/s3/m/52743290d0f34693daef5ef7ba0d4a7302766c85.png)
七年级数学下册《第七章平面直角坐标系》单元练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________温故而知新一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x点P(x,y)在第三象限0,0<<⇔y x点P(x,y)在第四象限0,0<>⇔y x2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)练习题一、单选题(本大题共8小题.每小题只有一个正确选项,每小题5分,共40分)1.下列选项中能较为准确地描述合肥市大蜀山位置的是( )A .东经116°B .北纬32°C .北纬32° ,东经116°D .在合肥的西边2.平面直角坐标系中,点M(2,1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是 ()2,1- ,超市的位置是 ()3,3- ,则市场的位置是( )A .()3,3-B .()3,2C .()1,2--D .()5,34.若点N 的坐标为(a ,2a −1),则点N 一定不在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 5.点 P(t +3,t +2) 在直角坐标系的x 轴上,则P 点坐标为( )A .()0,2-B .()2,0-C .()1,2D .()1,06.已知点A(3,8),B(a ,7),C(4,6−b),且BC ∥x 轴,AB ∥y 轴,则a −b 的平方根为( )A .2B .2±C .4D .4±7.定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .48.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)二、填空题(本大题共5小题,每小题3分,共15分) 9.在平面直角坐标系中,点()35-,到x 轴的距离为 . 10.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是 .11.已知点 C (-2,3),CD // y 轴,且 CD=3,则 D 点坐标为 .12.点 C 在 x 轴的下方, y 轴的右侧,距离 x 轴3个单位长度,距离 y 轴5个单位长度,则点 C 的坐标为 .13.△ABC 的三个顶点坐标分别是()5A a ,,()7B b ,和()49C ,,将△ABC 平移后得到111A B C ,其中()138A ,,()163B ,则点1C 的坐标是 . 三、计算题(本大题共5小题,共45分)14.如图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图,如果这个坐标系分别以正东、正北方向为 x 轴、 y 轴的正方向,以天安门为坐标原点建立平面直角坐标系.(1)请根据题意画出平面直角坐标系;(2)写出天安门、故宫、王府井、人民大会堂、中国国家博物馆这五个景点位置的坐标.15.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →C ( , )C →D ( , );(2)若这只甲虫的行走路线为A →B →C →D ,请计算该甲虫走过的最少路程;(3)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.16.在平面直角坐标系中,△ABC经过平移得到三角形△A′B′C′,位置如图所示:(1)分别写出点A、A'的坐标:A ,A' ;(2)若点M(m,n)是△ABC内部一点,则平移后对应点M'的坐标为;(3)求△ABC的面积.17.已知点P(8﹣2m,m+1).(1)若点P在y轴上,求m的值.(2)若点P在第一象限,且点P到x轴的距离是到y轴距离的2倍,求P点的坐标.18.如图,在平面直角坐标系中,已知点A(0,4),B(8,0),C(8,6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标1.C 2.A 3.D 4.B 5.D 6.B 7.D 8.B9.510.(-1,-2)11.(-2,0) 或(-2,6)12.(5,—3)13.(3,12)14.(1)解:以天安门为坐标原点建立平面直角坐标系如图所示.(2)解:各景点的坐标分别是:天安门(0,0)、故宫(0,1)、王府井(3,1)、人民大会堂(-1,-1)、中国国家博物馆(1,-1)15.解:(1)A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);(2)1+4+2+1+2=10;(3)点P如图所示.16.(1)(1,0);(-4,4)(2)(m-5,n+4)(3)解:△ABC的面积为:4×4-12×4×2-12×3×2-12×1×4=7.17.(1)解:∵点P(8﹣2m,m+1),点P在y轴上∴8﹣2m=0解得:m=4;(2)解:由题意可得:m+1=2(8﹣2m)解得:m=3则8﹣2m=2,m+1=418.(1)解:∵B(8,0),C(8,6)∴BC=6∴S△ABC= 12×6×8=24;(2)解:∵A(0,4) B(8,0)∴OA=4,OB=8∴S四边形ABOP=S△AOB+S△AOP= 12×4×8+12×4(﹣m)=16﹣2m又∵S四边形ABOP=2S△ABC=48 ∴16﹣2m=48解得:m=﹣16∴P(﹣16,1)。
第七章《平面直角坐标系》单元测试卷(含答案)
![第七章《平面直角坐标系》单元测试卷(含答案)](https://img.taocdn.com/s3/m/062037297275a417866fb84ae45c3b3567ecdd4a.png)
第七章《平面直角坐标系》测试卷班级_______ 姓名________ 坐号_______ 成绩_______一、选择题(每小题3分,共30 分)1、根据下列表述,能确定位置的是( )A、红星电影院2排B、北京市四环路C、北偏东30°D、东经118°,北纬40°2、若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是()A、第一象限B、第二象限C、第三象限D、第四象限3、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为()A、(3,3)B、(-3,3)C、(-3,-3)D、(3,-3)4、点P(x,y),且xy<0,则点P在()A、第一象限或第二象限B、第一象限或第三象限C、第一象限或第四象限D、第二象限或第四象限5、如图1,与图1中的三角形相比,图2中的三角形发生的变化是()A、向左平移3个单位长度B、向左平移1个单位长度C、向上平移3个单位长度D、向下平移1个单位长度6、如图3所示的象棋盘上,若错误!位于点(1,-2)上,错误!位于点(3,-2)上,则错误!位于点()A、(1,-2)B、(-2,1)C、(-2,2)D、(2,-2)7、若点M(x,y)的坐标满足x+y=0,则点M位于( )A、第二象限B、第一、三象限的夹角平分线上C、第四象限D、第二、四象限的夹角平分线上8、将△ABC的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是()A、将原图形向x轴的正方向平移了1个单位;B、将原图形向x轴的负方向平移了1个单位C、将原图形向y轴的正方向平移了1个单位D、将原图形向y轴的负方向平移了1个单位9、在坐标系中,已知A(2,0),B(-3,-4),C(0,0),则△ABC的面积为()A、4B、6C、8D、310、点P(x-1,x+1)不可能在()A、第一象限B、第二象限C、第三象限D、第四象限二、填空题(每小题3分,共18分)11、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________。
部编人教版数学七年级下册第七章《平面直角坐标系单元过关检测试题 》(含答案)
![部编人教版数学七年级下册第七章《平面直角坐标系单元过关检测试题 》(含答案)](https://img.taocdn.com/s3/m/3e987a3959eef8c75ebfb324.png)
第七章平面直角坐标系单元过关检测题一、选择题1.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4)B.(4,3)C.(-1,-2)D.(-2,-1)2.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸左眼B的坐标是()A.(0,3)B.(0,1)1C.(-1,2)D.(-1,3)3.在平面直角坐标系中,点P(-2015,2016)在()A.第一象限B.第二象限C.第三象限D.第四象限4.点M(x,y)在第四象限,且|x|=2,y2=4,则点M的坐标是() A.(2,2)B.(-2,-2)C.(2,-2)D.(-2,2)5.在平面直角坐标系中,若点M的坐标是(m,n),且点M在第二象限,则mn的值()A.<0B.>0C.=02D.不能确定6.如果点P(a+b,ab)在第二象限,那么点Q(a,-b)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限7.在平面直角坐标系中,点P(-5,0)在()A.第二象限B.x轴上C.第四象限D.y轴上8.如图,三角形ABC经过平移得到三角形DEF,其中A点(-2,4)平移到D点(2,2),则B点(a,b)平移后的对应点E的坐标是()A.(a+2,b)3B.(a+4,b-2)C.(a+2,b-2)D.(a+4,b+2)二、填空题9.在平面直角坐标系中,点P(2,-2)和点Q(2,4)之间的距离等于________个单位长度.线段PQ的中点的坐标是________.10.若点A(x,9)在第二象限,则x的取值范围是________.11.若点A(a,2a+1)在第一、三象限的两坐标轴夹角的平分线上,则a =________.(注:在角的内部,角平分线上的点到角两边的距离相等)12.若点A(a,3)在y轴上,则点B(a-3,a+2)在第________象限.13.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左、右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.14.如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为________.415.点M(-1,5)向下平移4个单位得N点坐标是________.16.若点P(2x-2,-x+4)到两坐标轴的距离相等,则点P的坐标为________.三、解答题17.已知点A(a-3,a2-4),求a及A点的坐标:(1)当点A在x轴上;(2)当点A在y轴上.18.已知平面直角坐标系中A、B两点,根据条件求符合条件的点B的坐标.(1)已知点A(2,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标;(2)已知点A(0,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标.19.在平面直角坐标中描出下列各点.A(1,1),B(-3,3),C(1,3),D(-1,3),E(1,-4),F(3,3).由描出点你发现了什么规律?520.如图,已知火车站的坐标为(2,1),文化馆为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、医院的坐标.21.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m ,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与三角形ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.6第七章平面直角坐标系单元练习题答案解析1.【答案】A【解析】因为点A(4,-1)向左平移6个单位,再向上平移3个单位得到A′(-2,2),所以点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(-5,4).2.【答案】A【解析】画出直角坐标系如下图所示:则笑脸左眼B的坐标是(0,3).3.【答案】B【解析】点P(-2015,2016)在第二象限.4.【答案】C【解析】因为|x|=2,y2=4,所以x=±2,y=±2,因为点M(x,y)在第四象限,所以x=2,y=-2,所以点M的坐标为7(2,-2).5.【答案】A【解析】由点M的坐标是(m,n),且点M在第二象限,得m<0,n >0.由有理数的乘法,得mn<0.6.【答案】B【解析】因为点P(a+b,ab)在第二象限,所以a+b<0,ab>0,所以a<0,b<0,所以-b>0,所以点Q(a,-b)在第二象限.7.【答案】B【解析】在平面直角坐标系中,点P(-5,0)在x轴上.8.【答案】B【解析】因为A点(-2,4)先右平移4个单位,再向下平移2个单位得到D点(2,2),所以B点(a,b)平移后的对应点E的坐标为(a+4,b-2).9.【答案】6、(2,1)【解析】因为点P(2,-2)和点Q(2,4),8所以P,Q之间的距离等于4-(-2)=6个单位长度;线段PQ的中点的横坐标是2,纵坐标是=1,故中点的坐标是(2,1).10.【答案】x<0【解析】因为点A(x,9)在第二象限,所以x的取值范围是x<0.11.【答案】-1【解析】因为点A(a,2a+1)在第一、三象限的两坐标轴夹角的平分线上,所以a=2a+1,解得a=-1.12.【答案】二【解析】因为点A(a,3)在y轴上,所以a=0,所以点B的坐标为(-3,2),所以点B(-3,2)在第二象限.13.【答案】(5,4)【解析】因为左图案中左翅尖的坐标是(-4,2),右图案中左翅尖的坐标是(3,4),所以变化规律为横坐标加7,纵坐标加2,因为左图案中右翅尖的坐标是(-2,2),所以右图案中右翅尖的坐标是9(5,4).14.【答案】(2,1.5)【解析】因为四边形ONEF是矩形,所以OM=ME,即点M是对角线OE的中点,因为O(0,0),E(4,3),所以M (,),即(2,1.5).15.【答案】(-1,1)【解析】点M(-1,5)向下平移4个单位得N点坐标是(-1,5-4),即为(-1,1).16.【答案】(2,2)或(-6,6)【解析】因为点P到两坐标轴的距离相等,所以2x-2=-x+4或2x-2=-(-x+4),即x=2或x=-2,代入点P,坐标为(2,2)或(-6,6).17.【答案】解:(1)因为点A在x轴上,所以a2-4=0,即a=±2,所以点A的坐标为(-1,0)或(-5,0);(2)因为点A在y轴上,所以a-3=0,解得a=3,所以点A的坐标为(0,5).【解析】(1)在x轴上说明a2-4=0.(2)在y轴上说明a-3=0.1018.【答案】解:(1)因为点A的坐标为(2,0),所以点A在x轴上.当点B在点A的左侧时,点B的坐标为(-2,0),当点B在点A的右侧时,点B的坐标为(6,0).(2)因为点A的坐标为(0,0),所以点A在x轴上也在y轴上.当点A在x轴上时,点B的坐标为(-4,0)或(4,0);当点A在y轴上时,点B的坐标为(0,4)或(0,-4).【解析】(1)由点A的坐标可知点A在x轴上,点B可以在点A的左、右两侧,根据AB=4可求得点B的坐标;(2)由点A的坐标可知点A在x轴和y轴上,符合条件的点B共有4个,根据AB=4可求得点B的坐标.19.【答案】解:如图所示,发现的规律:①关于y轴对称的点的横坐标互为相反数,纵坐标相同,②纵坐标相同的点在平行于x轴的直线上.【解析】建立平面直角坐标系,然后分别描出各点,再根据图形解答.20.【答案】解:(1)如图所示:11(2)体育馆(-2,4)、市场(6,4)、超市(4,-2)、医院(0,-1).【解析】(1)以火车站向左两个单位,向下一个单位为坐标原点建立平面直角坐标系;(2)根据平面直角坐标系写出各场所的坐标即可.21.【答案】解:(1)由已知|a-2|+(b-3)2=0,(c-4)2≤0.(2)因为S三角形ABO =×2×3=3,S三角形APO =×2×(-m)=-m,所以S四边形ABOP=S三角形ABO+S三角形APO=3+(-m)=3-m;(3)因为S三角形ABC =×4×3=6,因为S四边形ABOP=S三角形ABC,所以3-m=6,则m=-3,所以存在点P(-3,)使S四边形ABOP=S三角形ABC.【解析】(1)用非负数的性质求解;(2)把四边形ABOP的面积看成两个三角形面积和,用m来表示;(3)三角形ABC可求,是已知量,根据题意,方程即可.121314。
人教版七年级数学下册第七章《平面直角坐标系》单元测试卷附答案
![人教版七年级数学下册第七章《平面直角坐标系》单元测试卷附答案](https://img.taocdn.com/s3/m/c29a643c876fb84ae45c3b3567ec102de3bddf4a.png)
第七章《平面直角坐标系》单元测试卷(共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.(跨学科融合)如图,气象台为了预报台风,首先要确定台风中心的位置,则下列能确定台风中心位置的是()A.西太平洋B.北纬128°,东经36°C.距珠海500海里D.湛江附近第1题图第3题图第4题图2.在平面直角坐标系中,点P(-3,-8)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限3.(跨学科融合)如图是象棋棋盘的一部分,若位于点(1,-2)上,位于点(3,-2)上,则位于点 ()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(北偏东40°,35海里)B.(北偏西40°,35海里)C.(南偏西50°,35海里)D.(北偏东50°,35海里)5.已知x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(0,3)C.(0,3)或(0,-3)D.(3,0)或(-3,0)6.若点P(5,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥07.在平面直角坐标系中,一个三角形的三个顶点的横坐标保持不变,纵坐标都增加3个单位长度,则所得的图形与原图形相比()A.形状不变,大小扩大为原来的3倍B.形状不变,向右平移了3个单位长度C.形状不变,向上平移了3个单位长度D.三角形被纵向拉伸为原来的3倍8.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)9.一个长方形在平面直角坐标系中,其中三个顶点的坐标分别为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)10.(创新题)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)二、填空题(本大题共5小题,每小题3分,共15分)11.把点A(-4,6)先向左平移2个单位长度,再向下平移4个单位长度,此时的位置是.12.在坐标平面内,已知点M(1,2)和点N(1,-4),那么线段MN的长为个单位长度.13.如图,表示北偏西50°方向的是射线.14.观察下图,与图1中的鱼相比,图2中的鱼发生了一些变化.若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标为(图中的方格是1×1).图1图215.(创新题)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).一只蚂蚁从点A处出发,并按A-B-C-D-A-B…的规律在四边形ABCD的边上以每秒1个单位长度的速度运动,运动时间为t秒.若t=2 023,则这只蚂蚁所在位置的点的坐标是.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.如图,写出点A,B,C,D,E,F的坐标.17.如图,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?18.如图,在平面直角坐标系中,O是原点,四边形ABCD是长方形,A,B,C的坐标分别是A(-3,1),B(-3,3),C(2,3).(1)直接写出点D的坐标;(2)画出将长方形ABCD先向右平移3个单位长度,再向下平移5个单位长度后所得的长方形A1B1C1D1,直接写出点D1的坐标.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位长度,再向右平移5个单位长度得到△A'B'C',画出△A'B'C'并写出C'的坐标.20.如图是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(-3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(-1,-1),在图中标出行政楼的位置.21.在如图所示的平面直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(-4,-2),B(4,-2),C(2,2),D(-2,3),求这个四边形的面积.五、解答题(三)(本大题共2小题,每小题12分,共24分))为“开心点”.22.(创新题)已知当m,n都是实数,且满足2m=8+n时,称P(m−1,n+22(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a-1)是“开心点”,请判断点M在第几象限?并说明理由.23.如图,A(-1,0),C(1,4),点B在x轴上,且AB=2.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为7?若存在,请求出点P的坐标;若不存在,请说明理由.第七章《平面直角坐标系》单元测试卷1.B 2.C 3.C 4.A 5.D 6.A7.C8.C9.B10.D11.(-6,2)12.613.OC14.(4,2.2)15.(-1,0)16.解:A(-3,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).17.解:(1)MN=x2-x1.(2)PQ=y2-y1.18.解:(1)D(2,1).(2)图略,D1(5,-4).×3×5=7.5.19.解:(1)△ABC的面积是12(2)作图如下:所以点C'的坐标为(1,1).20.解:(1)如图.(2)由平面直角坐标系知,教学楼的位置为(1,0),体育馆的位置为(-4,3).(3)行政楼的位置如图所示.21.解:如图,过D作DE⊥AB,过C作CF⊥AB,垂足分别为E,F.S四边形ABCD=S△ADE+S梯形DEFC+S△BCF=1 2×2×5+12×(4+5)×4+12×2×4=5+18+4=27.22.解:(1)点A(5,3)为“开心点”,理由如下:当A(5,3)时,m-1=5,n+22=3,得m=6,n=4,则2m=12,8+n=12,∴2m=8+n,∴A(5,3)是“开心点”.点B(4,10)不是“开心点”,理由如下:当B(4,10)时,m-1=4,n+22=10,解得m=5,n=18, 则2m=10,8+18=26,∴2m≠8+n,∴点B(4,10)不是“开心点”.(2)点M在第三象限,理由如下:∵点M(a,2a-1)是“开心点”,∴m-1=a,n+22=2a-1,∴m=a+1,n=4a-4,代入2m=8+n有2a+2=8+4a-4,∴a=-1,∴2a-1=-3,∴M(-1,-3),故点M在第三象限.23.解:(1)如图:△AB'C或△AB″C是所求作的三角形.由图形可知:点B的坐标为(-3,0)或(1,0).(2)S△ABC=12AB·CB'=12×2×4=4,即△ABC的面积为4.(3)存在.设点P(0,y),因为以A,B,P三点为顶点的三角形的面积为7,所以S△ABP=12AB·|y|=7,即12×2×|y|=7,解得y=±7,故点P的坐标为(0,7)或(0,-7).。
(完整版)《平面直角坐标系》单元测试题及答案
![(完整版)《平面直角坐标系》单元测试题及答案](https://img.taocdn.com/s3/m/dc23394b5fbfc77da369b15f.png)
平面直角坐标系单元测试题一、选择题(每小题3分,共30分)1.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示 B 点,那么C 点的位置可表示为( ) A .(0,3) B .(2,3) C .(3,2) D .(3,0) 2.点B (0,3-)在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上3.平行于x 轴的直线上的任意两点的坐标之间的关系是( ) A .横坐标相等 B .纵坐标相等 C .横坐标的绝对值相等 D .纵坐标的绝对值相等 4.下列说法中,正确的是( )A .平面直角坐标系是由两条互相垂直的直线组成的B .平面直角坐标系是由两条相交的数轴组成的C .平面直角坐标系中的点的坐标是唯一确定的D .在平面上的一点的坐标在不同的直角坐标系中的坐标相同 5.已知点P 1(-4,3)和P 2(-4,-3),则P 1和P 2( ) A .关于原点对称 B .关于y 轴对称C .关于x 轴对称D .不存在对称关系6.如果点P (5,y )在第四象限,则y 的取值范围是( ) A .y >0 B .y <0 C .y ≥0 D .y ≤07.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为( ) A .(2,2); B .(3,2); C .(2,-3) D .(2,3) 8.在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是( ) A .(-3,2); B .(-7,-6); C .(-7,2) D .(-3,-6) 9.已知P(0,a)在y 轴的负半轴上,则Q(21,1a a ---+)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 二、填空题(每小题3分,共21分)A BC11.如果用(7,8)表示七年级八班,那么八年级七班可表示成 . 12.已知坐标平面内一点A(1,-2),若A 、B 两点关于x 轴对称,则点B 的坐标为 .13.点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点A的坐标为 .14.已知点M 在y 轴上,纵坐标为5,点P(3,-2),则△OMP 的面积是_______. 15.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________.16.已知点A(3a +5,a -3)在二、四象限的角平分线上,则a =_____.17.已知线段MN 平行于x 轴,且MN 的长度为5,若M (2,-2),那么点N 的坐标是__________.18.如图,是象棋盘的一部分,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点 ( )A .(-1,1)B .(-1,2)C .(-2,1)D .(-2,2)三、解答题(共66分)19.(10分)写出如图中“小鱼”上所标各点的坐标.19.(6分)在平面直角坐标系中,画出点A (0,2),B (-1,0),过点A 作直线L 1∥x 轴,过点B 作L 2∥y 轴,分析L 1,L 2上点的坐标特点,由此,你能总结出什么规律?20.(8分)如图,A 点坐标为(3,3),将△ABC 先向下平移4个单位得△A ′B ′C ′,再将△A ′B ′C ′向左平移5个单位得 △A 〞B 〞C 〞。
人教版七年级数学下册《第七章平面直角坐标系》单元练习题含答案
![人教版七年级数学下册《第七章平面直角坐标系》单元练习题含答案](https://img.taocdn.com/s3/m/98cc3cc231126edb6e1a10b1.png)
第七章平面直角坐标系一、选择题1.若线段CD 是由线段AB 平移获取的,点A(-1,3)的对应点为C(2,2),则点 B(-3,-1)的对应点 D 的坐标是 ()A . (0,- 2)B . (1,- 2)C. (- 2,0)D . (4,6)2.如图,点A、点B的坐标分别为(2,0),(0,1) ,若将线段AB平移至A1B1,若A1(1,b ),B1(a,- 2),则 3a2()- b 的值为A .-3B . 3C. 1D.-13.以下各点中位于第四象限的点是()A . (3,4)B . (- 3,4)C. (3,- 4)D . (- 3,- 4)4.若是P(m+3,2m+4) 在y轴上,那么点P 的坐标是()A . (- 2,0)B . (0,- 2)C. (1,0)5.如图,一方队正沿箭头所指的方向前进, A 的地址为三列三行,表示为(3,3), (5,4)表示的地址是()A. AB. BC.CD .D6.在平面直角坐标系中,线段BC∥ x 轴,则()A .点B与点C的横坐标相等B .点B与点C的纵坐标相等C.点B与点C的横坐标与纵坐标分别相等D.点 B 与点 C 的横坐标、纵坐标都不相等7.当m为任意实数时,点A(m 2+1,-2)在第几象限()A .第一象限B .第二象限C.第三象限D .第四象限8.如图,一个矩形的两边长分别是 4 和 2,建立直角坐标系,则以下不在矩形上的点为()A . (4,0)B . (2,4)C. (0,2)D . (4,2)9.如图,在国际象棋的棋盘上,左右两边标有数字 1 至 8,上下两边标有字母 a 至 h,若是黑色的国王棋子的地址用 (d,3) 来表示,白色的马棋子的地址用(g, 5)来表示,请你分别写出棋盘中其他三个棋子的地址,分别是________________ .10.已知 AB∥x 轴, A 点的坐标为(-3,2),并且 AB =4,则 B 点的坐标为______________.11.同学们玩过五子棋吗?它的比赛规则是只要同色 5 子先成一条直线就算胜.如图,是两人玩的一盘棋,若白①的地址是 (0,1) ,黑②的地址是 (1,2),现轮到黑棋走,你认为黑棋放在________地址就成功了.12. 若图中的有序数对(4,1) 对应字母 D ,有一个英文单词的字母序次对应图中的有序数对为(1,1) 、 (2,3) 、(2,3) 、 (5,2)、(5,1) ;则这个英文单词是________.(大小写均可 )13.点 M (-1,5)向下平移 4 个单位得N点坐标是 ________.14.点 Q(5,-3)到两坐标轴的距离之和为________.15.点 P(,-)到x轴距离为 ________,到y轴距离为 ________.16.如图,小华用手遮住的点向上平移 3 个单位获取的点的坐标为(2,1) ,则小明用手遮住的那个点的坐标为________ .17.如图,在平面直角系统中,描出下各点: A (-2,1), B(2,3), C(-4,-3), D(1,2), E(0,-3), F(-3,0),G(0,0), H(0,4),J(2,2),K(-3,-3).18.已知:点P(0, a)在 y 轴负半轴上,问点M (- a2-1,- a+1)在第几象限?19.正方形ABCD的边长为4,请你建立合适的平面直角坐标系,写出各个极点的坐标.20.已知 |x- 2|+ (y+ 1)2= 0,求P(x,y)的坐标,并说出它在第几象限内.21.以下列图,是某城市植物园周围街巷的表示图, A 点表示经 1 路与纬 2 路的十字路口,B点表示经 3 路与纬5路的十字路口,若是用(1,2) → (2,2) → (3,2) → (3,3)→ (3,4)→ (3,5)表示由 A 到 B 的一条路径,那么你能用同样的方式写出由 A 到 B 的尽可能近的其他几条路径吗?答案剖析1.【答案】 A(-1,3)(2,2),可知横坐标由-1变为2,向右搬动了3个单位,3变为2【剖析】点 A的对应点为 C,表示向下搬动了1个单位,于是(3,-1)的对应点 D 的横坐标为-3 30D的纵坐标为-112,故B-+=,点-=-D (0,-2).2.【答案】 B【剖析】由题意可得线段AB 向左平移1个单位,向下平移了 3个单位,因为 A、 B 两点的坐标分别为(2,0)、 (0,1),所以点 A1、 B1的坐标分别为(1,-3),(-1,-2),所以3a-2b =3.3.【答案】 C【剖析】第四象限的点的坐标的符号特点为(+,- ),观察各选项只有 C 吻合条件.4.【答案】 B【剖析】因为(3,2m +4)303,24=-2 P m +在 y 轴上,所以 m +=,解得 m =-m +,所以点 P 的坐标是(0,-2).5.【答案】 D【剖析】一方队正沿箭头所指的方向前进, A 的地址为三列三行,表示为(3,3), (5,4) 表示的地址是 D.6.【答案】 B【剖析】依照线段BC∥ x 轴,则点 B 与 C 的纵坐标相等.7.【答案】 D【剖析】因为m 2≥0,所以 m 2+1≥1,所以点 A(m 2+1,-2)在第四象限.8.【答案】 B【剖析】因为矩形的两边长分别是 4 和 2,所以矩形上点的横坐标在0~4 之间,纵坐标在0~ 2 之间,所以 A 、 C、D 正确, B 错误.9. 【答案】 (d, 5), (f,5), (g, 2)【剖析】因为黑色的国王棋子的地址用( d,3) 来表示,白色的马棋子的地址用(g, 5)来表示,所以棋盘中其他三个棋子的地址,分别是(d, 5), (f,5), (g,2) .【剖析】因为AB∥ x 轴,所以点 B 纵坐标与点 A 纵坐标相同,为2,又因为 AB =4,可能右移,横坐标为-3+4=- 1;可能左移横坐标为-3- 4=- 7,所以 B 点坐标为(1,2)或(-7,2),11. 【答案】 (1,6)或 (6,1)【剖析】建立平面直角坐标系如图,黑棋的坐标为(1,6) 或 (6,1).12. 【答案】 APPLE【剖析】有序数对(1,1)、 (2,3) 、 (2,3)、 (5,2) 、 (5,1) 分别对应的字母为: A , P, P, L , E;所以这个英文单词是APPLE.13.【答案】 (- 1,1)【剖析】点M (-1,5)向下平移4个单位得 N 点坐标是(-1,5-4),即为(-1,1).14.【答案】 8【剖析】因为点Q(5,-3),所以点 Q 到 y 轴的距离为|5|=5;到 x 轴的距离为|-3|=3,所以距离之和为3+5= 8.15.【答案】【剖析】点P(,-)到x轴距离为,到y轴距离为.16.【答案】 (2,- 2)【剖析】小华用手遮住的点向上平移 3 个单位获取的点的坐标为(2,1),则小明用手遮住的那个点的坐标为(2 ,- 2).17.【答案】解:以下列图【剖析】注意描点法正确的找到点的地址.18.【答案】解:因为点 P(0, a)在 y 轴负半轴上,所以 a<0,所以- a2-1<0,- a+1>0,所以点 M 在第二象限.【剖析】先判断出 a 是负数,再求出点 M 的横坐标与纵坐标的正负情况,尔后依照各象限内点的坐标特点解答.19. 【答案】解: (这是开放题,答案不唯一)以AB所在的直线为x 轴, AD 所在的直线为y 轴,并以点 A 为坐标原点,建立平面直角坐标系,以下列图,则点 A、 B、C、 D 的坐标分别是(0,0)、(4,0)、(4,4)、(0,4).【剖析】可以以正方形中互相垂直的边所在的直线为坐标轴,建立平面直角坐标系,再依照点的地址和线段长表示坐标.20.【答案】解:由题意得, x-2=0, y +1=0,解得 x=2,y =-1,所以,点 P(2,-1)在第四象限.【剖析】依照非负数的性质列式求出x、y,再依照各象限内点的坐标特点解答.21.【答案】解:还有两条路线,一是:(1,2)→ (1,3)→ (1,4)→ (1,5)→; (2,5)→ (3,5)二是:(1,2)→ (2,2)→ (2,3)→ (2,4),5)→. (2,5)→ (3【剖析】依照已知的路线可以知道由 A 到 B 的一条路径只能向东,向北,所以依照这个方向即可确定其他的路径.。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
![人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)](https://img.taocdn.com/s3/m/66d13ffeb84ae45c3a358c5d.png)
第七章平面直角坐标系检测卷一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点(﹣8,2)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.若x 轴上的点P 到y 轴的距离是3,则点P 的坐标为( ) A .(3,0) B .(3,0)或 (﹣3,0)C .(3,0)D .(0,3)或 (0,﹣3)3.若点P (m +3,m ﹣1)在x 轴上,则P 点的坐标为( ) A .(0,﹣4) B .(4,0)C .(0,4)D .(﹣4,0)4.在平面直角坐标系中,若点()2,3M -与点()2,N y -之间的距离是5,那么y 的值是( ) A .2-B .8C .2或8D .2-或85.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( ) A .(5,﹣3)B .(﹣5,3)C .(3,﹣5)D .(﹣3,5)6.在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点A (-1,4)的对应点为C (4,1);则点B (a ,b )的对应点F 的坐标为( )A .(a+3,b+5)B .(a+5,b+3)C .(a-5,b+3)D .(a+5,b-3) 7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( )A .(﹣3,3)B .(3,2)C .(1,3)D .(0,3)8.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB 得到线段A’B’(点A 与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为( ) A .(4,2)B .(5,2)C .(6,2)D .(5,3)9.将点A (-2,-3)向左平移3个单位长度得到点B ,则点B 的坐标是( ) A .(1,-3) B .(-2,0) C .(-5,-3) D .(-2,-6) 10.点()'2,1A -可以由点()2,1A -通过两次平移得到,正确的移法是( ) A .先向左平移4个单位长度,再向上平移2个单位长度 B .先向右平移4个单位长度,再向上平移2个单位长度 C .先向左平移4个单位长度,再向下平移2个单位长度 D .先向右平移4个单位长度,再向下平移2个单位长度二、填空题(每小题3分,共24分)11.已知点M(a+3,4-a)在y 轴上,则点M 的坐标为 .12.如图3,观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红方“马”走完“马3进4”后到达点B,则表示点B 位置的数对是 .图313.如图4,把笑脸放在平面直角坐标系中,已知眼睛A的坐标是(-2,3),嘴唇C 的坐标是(-1,1),则将此笑脸向右平移3个单位长度后,眼睛B的坐标是.图414.若点B的坐标为(2,1),AB∥y轴,且AB=4,则点A的坐标为.15.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为________.16.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可得点A2017的坐标是________.第14题图第18题图三、解答题(共66分)19.(7分)如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.20.(7分)如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB,CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?21.(8分)若点P(1-a,2a+7)到两坐标轴的距离相等,求6-5a的平方根.22.(10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10米),现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A 与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF 是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.24.(12分)已知A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.25.(12分)如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发112s时,试求三角形PQC的面积;(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积S(单位:cm2).参考答案与解析1.B 2.B 3.B 4.D 5.D6.D 7.C 8.B 9.C10.D11. (0,7)12. (4,7)13. (3,3)14. (2,-3)或(2,5)15.(1,1) 16.-1 17.±418.(2017,2)19.解:(1)三角形A′B′C′如图所示.(3分)(2)建立的平面直角坐标系如图所示.(5分)点B的坐标为(1,2),点B′的坐标为(3,5).(7分)20.解:(1)∵A(2,1),AB=4,AD=2,∴BC到y轴的距离为4+2,(1分)CD到x轴的距离2+1=3,(2分)∴点B的坐标为(4+2,1),点C的坐标为(4+2,3),点D的坐标为(2,3).(5分)(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).(7分)21.解:由题意,得1-a=2a+7或1-a+2a+7=0,解得a=-2或-8,(4分)故6-5a=16或46,(6分)∴6-5a的平方根为±4或±46.(8分) 22.解:(1)过B作BF⊥x轴于F,过A作AG⊥x轴于G,如图所示.(2分)∴S四边形ABCO =S三角形BCF+S梯形ABFG+S三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102=2500(平方米).(6分)(2)把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,(8分)故所得到的四边形的面积与原四边形的面积相等,为2500平方米.(10分)23.解:(1)A(2,4),D(-1,1),B(1,2),E(-2,-1),C(4,1),F(1,-2).(3分)三角形DEF是由三角形ABC先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(5分)(2)由题意得2a-3=a+3,2b-3-3=4-b,(7分)解得a=6,b=103,(9分)∴a -b =83.(10分)24.解:(1)三角形ABC 如图所示.(3分)(2)如图,过点C 向x 轴、y 轴作垂线,垂足为D ,E .(4分)∴S长方形DOEC=3×4=12,S 三角形BCD =12×2×3=3,S 三角形ACE =12×2×4=4,S 三角形AOB =12×2×1=1.(6分)∴S三角形ABC=S 长方形DOEC -S 三角形ACE -S 三角形BCD -S 三角形AOB =12-4-3-1=4.(7分)(3)当点P 在x 轴上时,S 三角形ABP =12AO ·BP =4,即12×1×BP =4,解得BP =8.∵点B 的坐标为(2,0).∴点P 的坐标为(10,0)或(-6,0);(9分)当点P 在y 轴上时,S 三角形ABP =12BO ·AP =4,即12×2·AP =4,解得AP =4.∵点A 的坐标为(0,1),∴点P 的坐标为(0,5)或(0,-3).(11分)综上所述,点P 的坐标为(10,0)或(-6,0)或(0,5)或(0,-3).(12分)25.解:(1)B (4,5),C (4,2),D (8,2).(3分)(2)当t =112s 时,点P 运动的路程为112cm ,点Q 运动到点D 处停止,由已知条件可得BC =OA -DE =5-2=3(cm).∵AB +BC =7cm >112cm ,AB =4cm <112cm ,∴当t =112s 时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32cm.∴S 三角形CPQ=12CP ·CD =12×32×4=3(cm 2).(6分) (3)①当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图①所示,OA =5cm ,OQ =2t cm ,∴S 三角形OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);(8分)②当4≤t ≤5时,点P 在BC 上,点Q 在ED 上,如图②所示,过P 作PM ∥x 轴交ED 延长线于M ,则OE =8cm ,EM =(9-t )cm ,PM =4cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,∴S 三角形OPQ=S梯形OPME -S三角形PMQ -S三角形OEQ=12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);(10分)③当5<t ≤7时,点P 在BC 上,点Q 停在D 点,如图③所示,过P 作PM ∥x 轴交ED 的延长线于M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,∴S三角形OPQ =S梯形OPME -S三角形PDM -S三角形DOE=12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎨⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).(12分)。
人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)
![人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)](https://img.taocdn.com/s3/m/45b5ede6a300a6c30d229fdd.png)
第七章平面直角坐标系单元测试一、单项选择题(共7 题;共 28 分)1.以下是甲、乙、丙三人看地图时对四个坐标的描绘:甲:从学校向北直走500 米,再向东直走100 米可到图书室.乙:从学校向西直走300 米,再向北直走200 米可到邮局.丙:邮局在火车站西200 米处.依据三人的描绘,若从图书室出发,判断以下哪一种走法,其终点是火车站()A. 向南直走300 米,再向西直走200 米B. 向南直走300 米,再向西直走100 米C. 向南直走700 米,再向西直走200 米D. 向南直走700 米,再向西直走600 米2.平面直角坐标系中,以下各点中,在y 轴上的点是 ()A.(2,0)B. ( -2,3 )C.(0,3)D.(1,-3)3.若 y 轴上的点P 到 x 轴的距离为 3,则点 P 的坐标是()A. (3, 0)B. ( 0,3)C. ( 3, 0)或(﹣ 3, 0)D. (0, 3)或( 0,﹣ 3)4.已知 M(1,﹣ 2), N(﹣ 3,﹣2),则直线 MN 与 x 轴, y 轴的地点关系分别为()A. 订交,订交B. 平行,平行C. 垂直订交,平行D. 平行,垂直订交5.点 P(a,b)在第四象限 ,则点 P 到 x 轴的距离是 ()A. a-B. b-C. -aD. -b6.如图是某校的平面表示图的一部分,若用“(0,0)”表示校门的地点,“(0,3)”表示图书室的地点,则教课楼的地点可表示为()A. (0, 5)B(.5, 3)C(. 3, 5)D(.﹣ 5, 3)7.已知点 P 的坐标( 2a, 6﹣ a),且点 P 到两坐标轴的距离相等,则点P 的坐标是()A. (12,﹣ 12)或( 4,﹣ 4)B. (﹣ 12, 12)或( 4, 4)C.(﹣ 12, 12)D.(4,4)二、填空题(共 6 题;共 30 分)8.假如“2街 5 号”用坐标( 2,5)表示,那么(3 ,1)表示 ________9.将点 A( 1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移 5 个单位长度后获得的点A′的坐标为 ________.10.以下图的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是________.111.电影院里 5 排 2 号能够用( 5, 2)表示,则( 7, 4)表示 ________12.( 2015?广安)假如点 M ( 3, x)在第一象限,则 x 的取值范围是 ________ .13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A( 0,4),点 B 是 x 轴正半轴上的整点,记△ AOB 内部(不包含界限)的整点个数为m.如当点 B 的横坐标为 4 时, m=3;那么当点的横坐标为 4n( n 为正整数)时, m= ________ .(用含 n 的代数式表示)三、解答题(共 4 题;共 42 分)14.在平面直角坐标系中,点 A 在 y 轴正半轴上,点 B 与点 C 都在 x轴上,且点 B在点 C的左边,知足BC=OA.若﹣ 3a m﹣1b2与 a n b2n﹣2是同类项且 OA=m, OB=n,求出 m 和 n 的值以及点 C的坐标.15.某水库的景区表示图以下图(网格中每个小正方形的边长为1).若景点 A 的坐标为( 3 ,3),请在图中画出相应的平面直角坐标系,并写出景点B、 C、 D 的坐标.16.在平面直角坐标系中,已知 A(0, 0)、 B( 4, 0),点 C 在 y 轴上,且△ ABC的面积是 12.求点 C 的坐标.17.在雷达探测地区,能够成立平面直角坐标系表示地点.在某次行动中,当我两架飞机在A(- 1, 2)与B( 3, 2)地点时,可疑飞机在(-1,- 3)地点,你能找到这个直角坐标系的横、纵坐标的地点吗?把它们表示出来并确立可疑飞机的地点,谈谈你的做法.2答案一、单项选择题1-7.ACDDDBB二、填空题8.3街1号9.(﹣ 2, 2)10.(﹣ 3, 0)11.7排 4号12.x> 013.6n﹣ 3三、解答题14.解:∵﹣3a m﹣1b2与 a n b2n﹣2是同类项,∴,m = 3解得:{,∵OA=m=3, OB=n=2,∴B( 2,0)或(﹣ 2, 0),∵点 B 在点 C 的左边, BC=OA,∴C( 5,0)或( 1, 0)15.解:以下图:B(﹣ 2,﹣ 2), C( 0, 4), D( 6,5).16.解:∵ A( 0,0)、 B( 4, 0),∴AB=4,且 AB 在 x 轴上,设点 C 坐标是( 0, y),则依据题意得,112AB× AC=12,即2× 4× |y|=12,解得 y=±6.3∴点 C 坐标是:( 0, 6)或( 0, -6)17.解:能.以以下图,先把 AB 四平分,而后过凑近 A 点的分点 M 作 AB 的垂线即为 y 轴,以 AM 为单位长度沿 y 轴向下 2 个单位即为 O 点,过点 O 作 x 轴垂直于 y 轴,而后描出敌机地点为点 N.4。
七年级数学下册《第七章 平面直角坐标系》单元测试卷-带答案(人教版)
![七年级数学下册《第七章 平面直角坐标系》单元测试卷-带答案(人教版)](https://img.taocdn.com/s3/m/436899d4112de2bd960590c69ec3d5bbfd0adac7.png)
七年级数学下册《第七章平面直角坐标系》单元测试卷-带答案(人教版)一、选择题(共8题)1.在平面直角坐标系中,点A(−2,−3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,在P(x−3,x+3)是x轴上一点,则点P的坐标是()A.(0,6)B.(0,−6)C.(−6,0)D.(6,0)3.在平面直角坐标系中,把点A(3,5)向下平移3个单位长度,再向左平移2个单位长度后,得对应点A1的坐标是()A.(1,2)B.(2,1)C.(−1,2)D.(−1,−2)4.已知点P(a,b)且ab=0,则点P在()A.x轴上B.y轴上C.坐标原点D.坐标轴上5.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(−2,2),黑棋(乙)的坐标为(−1,−2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,−1)D.(2,1)6.如图A,B的坐标为(1,0),(0,2)若将线段AB平移至A1B1,则a−b的值为()A.1B.−1C.0D.27.在直角坐标平面内,A是第二象限内的一点,如果它到x轴、y轴的距离分别是3和4,那么点A 的坐标是()A.(3,−4)B.(−3,4)C.(4,−3)D.(−4,3)8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到A1,第2次移动到A2⋯第n 次移动到A n,则△OA3A2020的面积是()A.504.5m2B.505m2C.505.5m2D.1010m2二、填空题(共5题)9.点P(−3,2)到x轴的距离是.10.如果点P(a,2)在第二象限,那么点Q(−3,a−1)在第象限.11.坐标系中点M(a,a+1)在x轴上,则a=.12.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为1,则点C的坐标为13.在平面直角坐标系xOy中,对于点P(x,y),我们把点Pʹ(−y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4⋯⋯这样依次得到点A1,A2,A3⋯A n⋯.若点A1的坐标为(2,4),点A2021的坐标为.三、解答题(共6题)14.在平面直角坐标系中A,B,C三点的坐标分别为(−5,6),(−3,2),(0,5).(1) 在如图的坐标系中画出△ABC.(2) △ABC的面积为.(3) 将△ABC平移得到△AʹBʹCʹ,点A经过平移后的对应点为Aʹ(1,1),在坐标系内画出△AʹBʹCʹ,并写出点Bʹ,Cʹ的坐标.15.如图,在平面直角坐标系中,已知A(a,0),B(b,0)其中a,b满足∣a+2∣+(b−4)2=0.(1) 填空:a=,b=;(2) 如果在第三象限内有一点M(−3,m),请用含m的式子表示△ABM的面积;(3) 在(2)条件下,当m=−3时,在y轴上有一点P,使得△ABP的面积与△ABM的面积相等,请求出点P的坐标.16.已知点P(−3a−4,2+a),解答下列各题:(1) 若点P在x轴上,试求出点P的坐标;(2) 若Q(5,8),且PQ∥y轴,试求出点P的坐标.17.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均在格点上.点A的坐标为(2,3),点B的坐标为(3,0),点C的坐标为(0,2).(1) 以点C为旋转中心,将△ABC旋转180∘后得到△A1B1C,请画出△A1B1C.(2) 平移△ABC,使点A的对应点A2的坐标为(0,−1),请画出△A2B2C2.(3) 若将△A1B1C绕点P旋转可得到△A2B2C2,则点P的坐标为.18.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a,b,c满足关系式:∣a−2∣+(b−3)2+√c−4=0.(1) 求a,b,c的值.),请用含m的式子表示四边形ABOP的面积.(2) 如果在第二象限内有一点P(m,12(3) 在(2)的条件下,是否存在点P,使得四边形ABOP的面积不小于△ABC的面积的两倍?若存在,求出点P的坐标;若不存在,请说明理由.19.如图,点O为平面直角坐标系的原点,三角形ABC中∠BAC=90∘,AB=m顶点A,C的坐标分别为(1,0),(n,0)且∣m−3∣+(n−5)2=0.(1) 求三角形ABC的面积;(2) 动点P从点C出发沿射线CA方向以每秒1个单位长度的速度运动,设点P的运动时间为t秒,连接PB,请用含t的式子表示三角形ABP的面积;(3) 在(2)的条件下,当三角形ABP的面积为15时,直线BP与y轴相交于点D,求点D的坐标.2参考答案1. C2. C3. A4. D5. D6. C7. D8. B9. 210. 三11. −112. (0,2)或(0,−2)13. (2,4)14.(1) 略(2) 9(3) 略,点Bʹ(3,−3),Cʹ(6,0).15.(1) −2;4×6∣m∣=−3m.(2) S△ABM=12(3) P1(0,3),P2(0,−3).16.(1) ∵点P在x轴上∴2+a=0,∴a=−2∴−3a−4=2,∴P(2,0).(2) ∵Q(5,8),且PQ∥y轴∴−3a−4=5,a=−3∴2+a=−1∴P(5,−1).17.(1) 略(2) 略(3) (−1,0)18.(1) ∵∣a−2∣+(b−3)2+√c−4=0且∣a−2∣≥0,(b−3)2≥0,√c−4≥0∴∣a−2∣=0,(b−3)2=0,√c−4=0∴a=2,b=3,c=4.(2) 过P点作OA边上的高,设为ℎ由图可知:S ABOP=S△APO+S△ABO由(1)可得:A(0,2),B(3,0),C(3,4)∴OA=2,OB=3.又∵P点坐标(m,12)且P在第二象限∴m<0,ℎ=−m∴S ABOP=S△APO+S△ABO=12⋅OA⋅ℎ+12⋅OA⋅OB=12×2×(−m)+12×2×3=3−m,即四边形ABOP的面积为3−m.(3) P点是存在的.由(2)得:S ABOP=3−m过A点作BC边上的高,设为ℎ1∵BC=4,ℎ1=3∴S△ABC=12⋅BC⋅ℎ1=12×4×3=6.又∵S ABOP≥2S△ABC∴3−m≥2×6∴m≤−9此时P点坐标为(−9,12)即P点存在.19.(1) ∵∣m−3∣+(n−5)2=0.∴∣m−3∣=0,(n−5)2=0.∴m=3,n=5∴B(1,3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知点A (0,1)、B (2,0)、C (0,0)、D (-1,0)、E (-3,0),则在y 轴上的点有 个。
2.如果点A
()b a ,在x 轴上,且在原点右侧,那么a ,b
3.如果点()1,-a a M
在x 轴下侧,y 轴的右侧,那么a 的取值范围是
4..如图所示,○
A 表示三经路与一纬路的十字路口,○
B 表示一经路与三纬路的十字路口,如果用(3,1)→(3,2)→(3,3)→(2,3)→(1,3)表示由○A 到○B 的一条路径,用同样的方式写出另一条由○A 到○B 的路径:(3,1)→ → → →(1,3)
○A
○B
5.如图所示,在一个规格为84⨯的球台上,有两只小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则点O 的位置可以表示为 .
6.已知两点A
()m ,3-,B ()4,-n ,若AB ∥y 轴,则n = , m 的取值范围是 .
7.∆ABC 上有一点P (0,2),将∆ABC 先沿x 轴负方向平移2个单位长度,再沿y 轴正方向平移3个单位长度,得到的新三
角形上与点P 相对应的点的坐标是 .
8.如图所示,象棋盘上,若“将”位于点 (3,-2),“车”位于点(-1,-2),则“马”位于 .
9.李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为(3,2),若周伟的座位在李明的后面相距2排,同时在他的左边相距3列,则周伟的座位可简记为 .
10.将∆ABC 绕坐标原点旋转180后,各顶点坐标变化特征是: .
路
章豫
路明
明
路经三路经二路
经
一
路
纬二路
纬一路
纬三Q
P
D
C
B A
马
将
车
4题图 5题图
11.下列语句:(1)点(3,2)与点(2,3)是同一点;(2)点(2,1)在第二象限;(3)点(2,0) 在第一象限;(4)点(0,2)在x 轴上,其中正确的是( )
A.(1)(2)
B.(2)(3)
C.(1)(2)(3)(4)
D. 没有 12.如果点M
()y x ,的坐标满足0=y
x ,那么点M 的可能位置是( )
A.x 轴上的点的全体
B. 除去原点后x 轴上的点的全体
C.
y 轴上的点的全体 D. 除去原点后y 轴上的点的全体
13.已知点P 的坐标为
()63,-2+a a ,且点P 到两坐标轴的距离相等,则点P 的坐标是( )
A.(3,3)
B.(3,-3)
C. (6,-6)
D.(3,3)或(6,-6) 14.如果点
()3,2+x x 在x 轴上方,y 轴右侧,且该点到x 轴和y 轴的距离相等,则x 的值为( )
A.1
B.-1
C.3
D.-3
15.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形( ) A.横向右平移2个单位 B.横向向左平移2个单位 C.纵向向上平移2个单位 D.纵向向下平移2个单位 A.①②B.③○
4C.①③D.②○4 16.一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5km 处,乙车位于雕像北方7km 处,若甲、乙两车以相同的速度向雕像的方向同时出发,当甲车到雕像西方1km 处乙车在( ) A.雕像北方1km 处 B.雕像北方3km 处 C.雕像南方1km 处 D.雕像南方3km 处
17.已知如图所示,方格纸中的每个小方格边长为1的正方形,AB 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格顶点上确定一点C ,连接AB 、AC 、BC ,使∆ABC 的面积为2个平方单位,则点C 的位置可能为( ) A.(4,4) B.(4,2) C.(2,4) D.(3,2) 18.如图所示,若三角形ABC 中经平移后任意一点P
()00,y x 的对应点为()3,5001-+y x P ,则点A 的对应点1A 的坐标
是( ) A.(4,1) B.(9,-4) C.(-6,7) D.(-1,2)
19.如图所示,是郑州市某天的温度随时间变化的图象,通过观察可知下列说法错误的是( ) A.这天15点温度最高 B.这天3点时温度最低
C.这天最高温度与最低温度的差是15度
D.这天21时温度是30度
x
y
–1–2–3–4–51
2
3
4
5–1
–2
–3–4
1
2345C B
A
O
x y 34
28
22
24
15
9
3
17题图 18题图 19题图
B
A
三、解答题(共40分)
21.(6分)如图所示,是一个规格为88⨯的球桌,小明用A 球撞击B 球,到C 处反弹,再撞击桌边D 处,请选择适当的平面直角坐标系,并用坐标表示各点的位置.
22.(7分)以点A 为圆心的圆可表示为⊙A 。
如图所示,⊙A 是由⊙B 怎样平移得到的?对应圆心A 、B 的坐标有何变化?
23.(9分)如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (-3,4)、B (2,3)、C (2,0)、D (-4,-2),且AD 与x 轴交点E 的坐标为⎪⎭
⎫
⎝⎛-0311,,求这个四边形的面积。
(提示:分别过点A 、D 向x 轴作垂线)
D
C
B
A
x
y –1–2–3–41234
–1
–2–3–41
23456B
A
O
x
y
B
–1–2–3–412
34
–1–2
1
234D
C
A
O
22题图
23题图
24.(9分)如图所示,游艇A和B在湖中作直线运动,已知游艇B的速度是游艇A的1.5倍,出发时,游艇A的位置为(50,20),当B追上A时,此时的位置为(110,20),求出发时游艇B的位置。
(游艇的大小忽略不计)
y
B A
x
24题图
25.(9分)某班教室中有9排5列座位,如图所示,请根据下面四个同学的描述,在图中标出“5号”小明的位置。
1号同学说:“小明在我的右后方。
”2号同学说:“小明在我的左后方。
”3号同学说:“小明在我的左前方. ”4号同学说:“小明离1号同学和3号同学的距离一样远.”
2号
1号
3号
4号
25题图
参考答案
1.2;
2. >0,=0;
3.0 <a<1;
4.(2,1)、(2,2)、(2,3);
5.(3,4);
6.3,m≠-4;
7.(-2,1);
8.(6,1);9.(7,1);10.横、纵坐标均不原来的相反数;
11.D;12.D;13.D;14.C;15B;16.A;17.A;18C;19.A;20.C;
21.以A为坐标原点,B(2,1)、C(6,3)、D(-1,6);
22. ⊙A是⊙B向左平移4个单位,再向下平移10个单位,点B的横坐标减4,纵坐标减10得到A点的坐标;
23.24.8;
24.B(20,20)
25.五排三列。