晏家坪实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晏家坪实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列方程组中,是二元一次方程组的是()
A. B. C. D.
【答案】C
【考点】二元一次方程组的定义
【解析】【解答】解:A、与是分式,故该选项错误;
B、有三个未知数,故该选项错误;
C、符合二元一次方程组的定义;
D、第一个方程中的xy是二次的,故该选项错误.故答案为:C.
【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。

判断即可得出答案。

2、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()
A. ∠1=∠2
B. ∠2=∠4
C. ∠3=∠4
D. ∠1+∠4=180°
【答案】D
【考点】平行线的判定
【解析】【解答】A选项,错误,所以不符合题意;
B选项,∠2与∠4不是同位角,错误,所以不符合题意;
C选项,∠3与∠4不是同位角,错误,所以不符合题意;
D选项,因为∠1+∠4=180°,所以a∥b,正确,符合题意;
故答案为:D。

【分析】根据判断直线平行的几个判定定理即可进行判别:同位角相同,两直线平行;同旁内角互补,两直线平行
内错角相等,两直线平行。

3、(2分)若a,b为实数,且|a+1|+ =0,则(ab)2 017的值是()
A. 0
B. 1
C. -1
D. ±1
【答案】C
【考点】非负数之和为0
【解析】【解答】解:因为|a+1|+ =0,
所以a+1=0且b-1=0,
解得:a=-1,b=1,
所以(ab)2 017=(-1)2 017=-1.
故答案为:C
【分析】先根据若几个非负数的和等于0,则每个非负数都等于0,建立关于a、b的方程组求解,再将a、b 的值代入代数式求值即可。

4、(2分)如图,点在射线上,,则等于()
A. B. 180º
C. D. 180º
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD∥EF
∴∠B=∠BCD,∠E+∠DCE=180°
∴∠DCE=180°-∠E
∵∠BCD+∠DCE+∠GCE=180°
∴∠B+180°-∠E+∠GCE=180°
∴∠GCE=∠E-∠B
故答案为:C
【分析】根据平行线的性质得出∠B=∠BCD,∠E+∠DCE=180°,再根据∠BCD+∠DCE+∠GCE=180°,即可证得结论。

5、(2分)如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()
A. 40°
B. 70°
C. 80°
D. 140°
【答案】B
【考点】角的平分线,平行线的性质
【解析】【解答】解:∵AB∥CD,∠ACD=40°,
∴∠ACD+∠BAC=180°
∴∠BAC=180°-40°=140°
∵AE平分∠CAB
∴∠BAE=∠CAB=×140°=70°
故答案为:B
【分析】根据平行线的性质可求出∠BAC的度数,再根据角平分线的定义得出∠BAE=∠CAB,即可得出答案。

6、(2分)在下列所给出的坐标中,在第二象限的是()
A. (2,3)
B. (2,-3)
C. (-2,-3)
D. (-2,3)
【答案】D
【考点】点的坐标,点的坐标与象限的关系
【解析】【解答】解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(2,﹣3)、(﹣2,﹣3)、(﹣2,3)中只有(﹣2,3)在第二象限.
故答案为:D.
【分析】第二象限内的点的坐标特征是:横坐标为负数,纵坐标为正数. 由此即可得出.
7、(2分)把不等式x+1≤-1的解集在数轴上表示出来,下列正确的是()
A. B.
C. D.
【答案】D
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式
【解析】【解答】移项并合并得,x≤-2,
故此不等式的解集为:x≤-2,
在数轴上表示为:
故答案为:D.
【分析】先求出此不等式的解集,再将解集再数轴上表示出来。

8、(2分)下列各数:,0,0.2121121112,,其中无理数的个数是()
A. 4个
B. 3个
C. 2个
D. 1个【答案】D
【考点】无理数的认识
【解析】【解答】,0,0.2121121112,中无理数有,共计1个.
故答案为:D.
【分析】根据无理数的定义开方开不尽的数和无限不循环小数是无理数,判断即可.
9、(2分)某商场店庆活动中,商家准备对某种进价为600元、标价为1200元的商品进行打折销售,但要保证利润率不低于10%,则最低折扣是()
A. 5折
B. 5.5折
C. 6折
D. 6.5折
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:设至多可以打x折
1200x-600≥600×10%
解得x≥55%,即最多可打5.5折.
故答案为:B
【分析】设至多可以打x折,根据利润=售价减进价,利润也等于进价乘以利润率,即可列出不等式,求解得出答案。

10、(2分)若关于x的一元一次不等式组有解,则m的取值范围为()
A.
B.
C.
D.
【答案】C
【考点】解一元一次不等式组
【解析】【解答】解:,
解①得:x<2m,
解②得:x>2-m,
根据题意得:2m>2-m,
解得:.
故答案为:C.
【分析】先求出每个不等式的解集,再根据已知不等式组有解,即可得出关于m的不等式,即可得出答案.
11、(2分)如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()
A.60°
B.80°
C.100°
D.120°
【答案】B
【考点】平行线的性质
【解析】【解答】解:∵DE∥OB
∴∠ADE=∠AOB=40°,∠CDE+∠DCB=180°
∵CD和DE为光线
∴∠ODC=∠ADE=40°
∴∠CDE=180°-40°-40°=100°
∴∠BCD=180°-100°=80°。

故答案为:B。

【分析】根据入射光线和反射光线,他们与镜面所成的角相等,可得∠ODC=∠ADE;根据直线平行的性质,两直线平行,同位角相等,同旁内角互补进行计算即可。

12、(2分)下列图形中,1与2是对顶角的有()
A. B. C. D.
【答案】A
【考点】对顶角、邻补角
【解析】【解答】解:A、此图形中的∠1与∠2是两条直线相交所形成的角,它们是对顶角,故A符合题意;
B、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故B不符合题意;
C、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故C不符合题意;
D、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故D不符合题意;
故答案为;A
【分析】根据两条直线相交,具有公共的顶点,角的两边互为反向延长线,这样的两个角是对顶角,对各选项逐一判断即可。

二、填空题
13、(1分)已知,则x+y=________.
【答案】-2
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:因为, ,
所以可得: ,解方程组可得: ,所以x+y=-2,故答案为: -2.
【分析】根据几个非负数之和为0,则每一个数都为0,就可建立关于x、y的方程组,利用加减消元法求出方程组的解,然后求出x与y的和。

14、(1分)把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z个学生,依题意可列不等式组为________
【答案】
【考点】一元一次不等式组的应用
【解析】【解答】解:设有z个学生,根据题意得:
【分析】题中关键的已知条件是:每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个(0<最后一个同学分得的梨≤3),列不等式组即可。

15、(1分)关于x的不等式组的解集是________
【答案】x>4
【考点】解一元一次不等式组
【解析】【解答】解:由①得,x≥2,由②得,x>4,
原不等式组的解集为x>4
故答案为:x>4.
【分析】先解得两个不等式的解集,再根据“同大取较大”原则,求得不等式组的解集.
16、(1分)有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由
,得3a=2b;
⑤由a2=b2,得a=b.其中正确的是________
【答案】①②④
【考点】不等式及其性质
【解析】【解答】解:①由a=b,得5﹣2a=5﹣2b,正确;
②由a=b,得ac=bc,正确;
③由a=b(c≠0),得= ,不正确;
④由,得3a=2b,正确;
⑤由a2=b2,得a=b或a=﹣b,不正确.
故答案为:①②④
【分析】利用等式的性质逐一判断,就可得出正确的序号。

17、(1分)比较大小:- ________-3 (填>或=或<)
【答案】<
【考点】实数大小的比较
【解析】【解答】解:∵3=
∴>
∴-<-=3
故答案为:<
【分析】根据两个负数比较大小,绝对值大的反而小,可通过比较其算术平方根的大小,即可解答此题。

18、(1分)的算术平方根为________.
【答案】2
【考点】算术平方根
【解析】【解答】解:的算术平方根为2.
故答案为:2.
【分析】,即求4的算术平方根;算术平方根是正的平方根.
三、解答题
19、(4分)李红调查全班同学“你最喜欢哪一项球类活动?”,根据同学们的回答她制成了下面的扇形统计
图,请看图填空。

(1)________活动最受欢迎。

(2)________和________活动受欢迎程度差不多。

(3)喜欢________活动的同学大约占总人数的。

【答案】(1)乒乓球
(2)足球;篮球
(3)羽毛球
【考点】扇形统计图,百分数与小数的互化,百分数的实际应用
【解析】【解答】(1)32%>26%>19%>18%>5%,乒乓球活动最受欢迎;(2)19%-18%=1%,足球和篮
球这两项活动受欢迎程度差不多;(3)=25%,羽毛球活动的同学大约占总人数的. 故答案为:(1)乒乓球;(2)足球,篮球;(3)羽毛球.
【分析】(1)要求哪种活动最受欢迎,比较几个百分数的大小即可解答;(2)对比百分数的大小,即可得到
哪两项活动的受欢迎程度差不多;(3)将化成百分数,然后与统计图中的百分数对比,即可找到大约占总
人数的的活动.
20、(5分)对于两个不相等的实数、,我们规定符号表示、中的较大值,
表示、中的较小值.如:,,按照这个规定,解方程组:
.
【答案】解:由题意得,①②
解方程组①得
解方程组②得
【考点】解二元一次方程组,定义新运算
【解析】【分析】由于x没有说出是什么数,故应分类讨论,当x是正数时,x大于它的相反数,当x是负数时,它的相反数大于它的相反数,从而根据规定得出两个二元一次方程组,分解求解得出方程组的解。

21、(5分)随着神舟计划的进行,中国人对宇宙的探索更进一步,但是你知道吗,要想围绕地球旋转,飞船的
速度必须要达到一定的值才行,我们把这个速度称为第一宇宙速度,其计算公式为v= (其中g≈0.009 8 km/s2,是重力加速度;R≈6 370 km,是地球的半径).请你求出第一宇宙速度的值.(结果保留两位小数)
【答案】解:v= ≈ ≈7.90(km/s).
答:第一宇宙速度的值约为7.90 km/s
【考点】算术平方根,实数的运算
【解析】【分析】将g、R代入计算,再求出gR的算术平方根即可。

22、(10分)某中学组织七年级同学到银川春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用60座客车,则多出1辆,且其余客车恰好坐满,已知45座客车日租金为每辆220元,60座客车日租金为每辆300元,试问:
(1)七年级人数是多少?原计划租用45座客车多少辆?
(2)要使每个同学都有座位,怎样租车更合算?
【答案】(1)解:设七年级人数是x人,原计划租y辆车,
则,解得,
答:七年级共有240人,计划租5辆车
(2)解:租45座(5+1)×220=1320元;
租60座(5﹣1)×300=1200元;
租4辆45座1辆60座4×220+300=1180元,
租4辆45座1辆60座更合算
【考点】二元一次方程组的其他应用
【解析】【分析】(1)抓住关键的已知条件:原计划租用45座客车若干辆,但有15人没有座位;如果租用60座客车,则多出1辆,且其余客车恰好坐满,建立等量关系,设未知数,列方程组求解即可。

(2)分三种情况讨论:只租45座所需费用;只租60座所需费用;租4辆45座1辆60座所需费用,分别计算并比较大小,即可得出结论。

23、(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.
(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。

(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。

【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
24、(5分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD 的度数.
【答案】解:由角的和差,得∠EOF=∠COE-COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.
由对顶角相等,得∠BOD=∠AOC=34°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据图形求出∠EOF=∠COE-COF的度数,由角平分线的性质求出∠AOF=∠EOF的度数,由角的和差和由对顶角相等,求出∠BOD=∠AOC的度数.
25、(10分)关于x,y的方程组
(1)若x的值比y的值小5,求m的值;
(2)若方程3x+2y=17与方程组的解相同,求m的值.
【答案】(1)解:由已知得:x-y=-5,
∴9m=-5,
∴m=-
(2)解:
由(1)-(2)得:3y=-6m
解之:y=-2m,
把y=-2m代入(2)得
x+2m=9m
解之:x=7m

∵方程3x+2y=17与方程组的解
∴21m-4m=17
解之:m=1
【考点】解二元一次方程组,三元一次方程组解法及应用
【解析】【分析】(1)根据x比y小5,可得出x-y=5=9m,解方程求出m的值。

(2)解已知方程组,用含m的代数式表示出x、y,再将x、y的值代入方程3x+2y=17与方程组的解相同,与原方程建立关于m的方程,求出方程的解。

26、(10分)计算
(1)(﹣3)2+|-1|﹣
(2)|-2|+-(-1)2017;
【答案】(1)解:原式=9 +1-3=7
(2)解:原式=2-2+1=1
【考点】实数的运算
【解析】【分析】(1)先算平方和开放,因为,,所以结果为7.
(2)因为,=-1,所以第二题的结果为:1.。

相关文档
最新文档