抽样误差——精选推荐

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽样误差、抽样平均误差与抽样极限误差
一、基本概念
抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差。

因此,又称为随机误差,它不包括登记误差,也不包括系统性误差。

影响抽样误差的因素有:1、总体各单位标志值的差异程度;2、样本的单位数;3、抽样的方法;4、抽样调查的组织形式。

抽样误差又分为两种:
1、抽样平均误差。

抽样平均误差是反映抽样误差一般水平的指标,它的实质含义是指抽样平均数(或成数)的标准差。

即它反映了抽样指标与总体指标的平均离差程度。

抽样平均误差的作用首先表现在它能够说明样本指标代表性的大小。

平均误差大,说明样本指标对总体指标的代表性低;反之,则高。

(记为μx 或μp )
2、抽样极限误差。

抽样极限误差指在进行抽样估计时,根据研究对象的变异程度和分析任务的要求所确定的样本指标与总体指标之间可允许的最大误差范围(记为∆)。

二、计算公式
(一)抽样平均误差
1、样本平均数的平均误差
以μx 表示样本平均数的平均误差,σ表示总体的标准差。

根据定义:
即n x σμ=,(若为不重复抽样,则总体方差σ要用进行修正)它说明在重复抽样的条件下,抽样平均误差与总体标准差成正比,与样本容量的平方根成反比。

例1:有5个工人的日产量分别为(单位:件):6,8,10,12,14,用重复抽样的方法,从中随机抽取2个工人的日产量,用以代表这5个工人的总体水平。

则抽样平均误差为多少?
解:根据题意可得:(件)
总体标准差(件)
抽样平均误差(件)
注意:在计算抽样平均误差时,通常得不到总体标准差的数值,一般可以用样本标准差来代替总体标准差。

2、抽样成数的平均误差
总体成数P 可以表现为总体是非标志的平均数。

即E(X)=P ,它的标准差。

根据样本平均误差和总体标准差的关系,可以得到样本成数的平均误差的计算公式。

(不重复抽样时要修正)
注意:当总体成数未知时,可以用样本成数来代替。

例2:某企业生产的产品,按正常生产经验,合格率为90%,现从5000件产品中抽取50件进行检验,求合格率的抽样平均误差。

解:根据题意,在重复抽样条件下,合格率的抽样平均误差为:
在不重复抽样条件下,合格率的抽样平均误差为:
(二)抽样极限误差
抽样极限误差是指用绝对值形式表示的 样本指标与总体指标偏差的可允许的最大范围。

它表明被估计的总体指标有希望落在一个以样本指标为基础的可能范围。

它是由抽样指标变动可允许的上限或下限与总体指标之差的绝对值求得的。

μαx Z *=∆2 或μαp Z *=∆2(P126,例题5-4)。

相关文档
最新文档