初中数学中考真题精编-2009年呼和浩特市中考试卷_文档
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年呼和浩特市中考试卷
数学
注意事项:本试卷满分120分.考试时间120分钟.
一、选择题(本题包括10个小题,每题3分,共30分.在每小题给出的四个选项中,只有一项符合题意,请把该选项的序号填入题后面的括号内)
1.2-的倒数是()
A.
1
2
-B.
1
2
C.2
D.2-
2.已知ABC
△的一个外角为50°则ABC
△一定是()
A.锐角三角形B.钝角三角形
C.直角三角形D.钝角三角形或锐角三角形
3.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为()
A.
1
3
B.
1
6
C.
1
2
D.
1
4
4.如图,AB是O
⊙的直径,点C在圆上,CD AB DE BC
⊥,∥,
则图中与ABC
△相似的三角形的个数有()
A.4个B.3个C.2个D.1个
5.用配方法解方程2
3610
x x
-+=,则方程可变形为()
A.2
1
(3)
3
x-=B.2
1
3(1)
3
x-=
C.2
(31)1
x-=D.2
2
(1)
3
x-=
6.为了了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是()
A.15000名学生是总体B.1000名学生的视力是总体的一个样本
C.每名学生是总体的一个个体D.上述调查是普查
7.半径为R的圆内接正三角形的面积是()
A.2
3
2
R B.2
πR C.2
33
2
R D.2
33
4
R
8.在等腰ABC
△中,AB AC
=,一边上的中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()
A.7 B.11 C.7或11 D.7或10
9.右图哪个是左面正方体的展开图()
C
B
D
O
A
E
A.B.C.D.
10.下列命题中,正确命题的个数为( )
(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2 (2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形
(4)若二次函数2
3(1)y x k =-+图象上有三个点1(2)y ,,(22y ,),1(5)y -,,则
321y y y >>
A .1个
B .3个
C .2个
D .4个
二、填空题(本题包括6个小题,每题3分,共18分.本题要求把正确结果填在每题横线上,不需要解答过程)
11.某种生物孢子的直径为0.00063m ,用科学记数法表示为 m . 12.把24520ab a -因式分解的结果是 .
13.初三(1)班有48名学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中“想去野生动物园的学生数”的扇形圆心角为120°,请你计算想去其他地点的学生有 人. 14.如果|21||25|0x y x y -++--=,则x y +的值为 . 15.如图,四边形ABDC 中,120ABD ∠=°,AB AC ⊥,BD CD ⊥,
453AB CD ==,,则该四边形的面积是 .
16.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报3的人心里想的数是 . 三、解答题(本大题包括9个小题,共72人,解答应写出必要的演算步骤,证明过程或文字说明)
17.(1)(5分)计算:22009
(21)86sin 45(1)--+-+-°.
(2)(5分)先化简再求值:22111a b b a a a
a b ⎛⎫-+--÷⨯ ⎪
+⎝⎭,其中1
2a =-,2b =-.
A B
D
C
1 2 3 4 5 6 7 8 9 10
18.(6分)要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般满足5075α°≤≤°.如图,现有一个长6m 的梯子,梯子底端与墙角的距离为3m . (1)求梯子顶端B 距离墙角C 的距离.(结果精确到0.1m )
(2)计算此时梯子与地面所成角α,并判断人能否安全使用这个梯子. (3 1.732≈,2 1.414≈)
19.(7分)如图所示,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE DG ,. (1)求证:BE DG =.
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由.
20.(8分)试确定a 的取值范围,使不等式组
114
111.5(1)()0.5(21)
22
x x a x a x x +⎧+>⎪⎪⎨
⎪-+>-+-⎪⎩ 只有一个整数解.
21.(6分)在直角坐标系中直接画出函数||y x =的图象;若一次函数y kx b =+的图象分
别过点(11)A -,,(22)B ,,请你依据这两个函数的图象写出方程组||
y x y kx b
=⎧⎨=+⎩的解.
α
B
C
A 墙
地面
E F G
D A B
C
y
x
O 1
2
-1
1 2
22.(9分)某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,并整理得到如下统计图(单位:万元).请分析统计数据完成下列问题.
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少? (2)如果想让一半左右营业员都能达到目标,你认为月销售额定为多少合适?说明理由.
23.(8分)如图,已知反比例函数m y x =
(0x >)的图象与一次函数15
22
y x =-+的图象交于A B 、两点,点C 的坐标为112⎛⎫
⎪⎝⎭
,,连接AC AC ,平行于y 轴. (1)求反比例函数的解析式及点B 的坐标.
(2)现有一个直角三角板,让它的直角顶点P 在反比例函数图象上的A B 、之间的部分滑动(不与A B 、重合),两直角边始终分别平行于x 轴、y 轴,且与线段AB 交于M N 、两点,试判断P 点在滑动过程中PMN △是否与CAB △总相似,简要说明判断理由.
24.(8分)如图,在直角梯形ABCD 中,9012cm AD BC ABC AB ∠==∥,°,,
8cm AD =,22cm BC =,AB 为O ⊙的直径,
动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动.P Q 、分别从点
6
5
4 3 2
1
12 13 14 15 16 18 20 22 26 28 30 32 34 35 人数 销售额 (单位:万元)
A M
N
B P
O C x y 1-1
A C 、同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为
(s)t .
(1)当t 为何值时,四边形PQCD 为平行四边形? (2)当t 为何值时,PQ 与O ⊙相切?
25.(10分)某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(50x ≥),一周的销售量为y 件. (1)写出y 与x 的函数关系式.(标明x 的取值范围)
(2)设一周的销售利润为S ,写出S 与x 的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?
(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?
A D
B O
C Q
P
2009年呼和浩特市中考试卷
数学参考答案及评分标准
一、选择题(本大题共10个小题,每小题3分,共30分)
1 2 3 4 5 6 7 8 9 10 A
B
C
A
D
B
D
C
D
B
二、填空题(本大题共6个小题,每小题3分,共18分)
11.46.310-⨯ 12.5(32)(32)a b b +- 13.32 14.6 15.593
2
16.2- 三、解答题(本大题9个小题,共72分) 17.解:(1)
(
)
1
200921
86sin 45(1)--+-︒+-
=
1
2232121
+--- ···································································· 3分 =2122321++--
=0 ·································································································· 5分
(2)22111
a b b a a a a b ⎛⎫-+--÷⨯ ⎪+⎝⎭
=2221a a b a -+-1
1a b a b
⨯⨯
-+ =
(1)(1)1
1b b a a b a b +-⨯
-+· =1
b a b
++ ······································································································ 3分
将122a b =-=-,代入得:上式=12
552
-=-
·
····················································· 5分 18.解:(1)在Rt ACB △中,
22226333 5.2m BC AB AC =-=-=≈
················································································· 2分 (2)在Rt ACB △中,31
cos 62
AC AB α=
== 60α∴=° ··························································· 5分 506075<︒<︒° ∴可以安全使用. ··················································· 6分
B α
19.(1)证明:∵正方形ABCD 和正方形ECGF
90BC CD CE CG BCE DCG ∴==∠=∠=,,°
··········································· 3分 在BCE △和DCG △中,
BC CD
BCE DCG CE CG =⎧⎪
∠=∠⎨⎪=⎩
(SAS)BCE DCG ∴△≌△
BE DG ∴= ··························································································· 5分 (2)存在.BCE △绕点C 顺时针旋转90°得到DCG △(或将DCG △逆时针旋转90°得到BCE △) ······································································································ 7分 20.解:解不等式①:414x x ++> 35
x ∴>
······································································································ 2分 解不等式②:1111
1.50.52222
a x a x x -->-+-
即a x < ······································································································ 5分
由数轴上解集表示可得:
当12a <≤,只有一个整数解 ········································································· 8分
21.解:画出图象得4分
由图象可知,方程y x
y kx b
⎧=⎪⎨
=+⎪⎩的解为
2121x x y y ==-⎧⎧⎨
⎨==⎩⎩
或 ····························· 6分 (画出函数y x =的图象得3分,画出y kx b =+的图象得1分)
22.①销售额为18万元的人数最多,中间的月销售额为20万元,平均月销售额为22万元 ························································································································ 7分 ②目标应定为20万元,因为样本数据的中位数为20 ··················································· 9分 23.(1)由112C ⎛⎫
⎪⎝⎭
,得(12)A ,,代入反比例函数m
y x
=中,得2m = ∴反比例函数解析式为:2
(0)y x x
=
> ·
··································································· 2分 解方程组1522
2
y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩由15222x x -+=化简得:2540x x -+=
(4)(1)0x x --=
O
-1 1 2
1 -2
y x
1241x x ==,
所以142B ⎛
⎫ ⎪⎝⎭
, ····································································································· 5分 (2)无论P 点在AB 之间怎样滑动,PMN △与CAB △总能相似.因为B C 、两点纵坐标相等,所以BC x ∥轴.
又因为AC y ∥轴,所以CAB △为直角三角形.
同时PMN △也是直角三角形,AC PM BC PN ∥,∥. ∴PMN CAB △∽△. ··············································································· 8分 (在理由中只要能说出BC x ∥轴,90ACB ∠=°即可得分.) 24.(1)解:∵直角梯形ABCD ,AD BC ∥
PD QC ∴∥
∴当PD QC =时,四边形PQCD
为平行四边形.
由题意可知:2AP t CQ t ==,
82t t ∴-=
38t = 83
t =
∴当8
3
t s =时,四边形PQCD 为平行四边形. ························································ 3分
(2)解:设PQ 与O ⊙相切于点H , 过点P 作PE BC ⊥,垂足为E 直角梯形ABCD AD BC ,∥ PE AB ∴=
由题意可知:2AP BE t CQ t ===,
222BQ BC CQ t ∴=-=-
222223EQ BQ BE t t t =-=--=-
AB 为O ⊙的直径,90ABC DAB ∠=∠=° AD BC ∴、为O ⊙的切线
AP PH HQ BQ ∴==,
22222PQ PH HQ AP BQ t t t ∴=+=+=+-=- ············································· 5分 在Rt PEQ △中,2
2
2
PE EQ PQ +=
O
A
P
D
B
Q C
O
A
P D
B
Q
C
H
E
22212(223)(22)t t ∴+-=-
即:28881440t t -+=
211180t t -+= (2)(9)0t t --=
1229t t ∴==, ····························································································· 7分
因为P 在AD 边运动的时间为8
811
AD ==秒 而98t =>
9t ∴=(舍去)
∴当2t =秒时,PQ 与O ⊙相切. ···································································· 8分
25.解:(1)50010(50)y x =--
=100010(50100)x x -≤≤ ······················································· 3分
(2)(40)(100010)S x x =--
210140040000x x =-+-
210(70)9000x =--+
当5070x ≤≤时,利润随着单价的增大而增大. ····················································· 6分 (3)2101400400008000x x -+-=
2101400480000x x -+= 214048000x x -+= (60)(80)0x x --=
126080x x ==, ································································································ 8分
当60x =时,成本=[]4050010(6050)1600010000⨯--=>不符合要求,舍去. 当80x =时,成本=[]4050010(8050)800010000⨯--=<符合要求.
∴销售单价应定为80元,才能使得一周销售利润达到8000元的同时,投入不超过10000
元. ········································································································· 10分。