上海市高考数学试卷(理科)甄选
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市高考数学试卷(理科)(优选.)
2014年上海市高考数学试卷(理科)
一、填空题(共14题,满分56分)
1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是_________.
2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=_________.
3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为_________.
4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为_________.5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为_________.
6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为_________(结果用反三角函数值表示).
7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是_________.
8.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=_________.9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是_________.
10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_________(结果用最简分数表示).
11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=_________.
12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则
x1+x2+x3=_________.
13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为_________.
14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q 使得+=,则m 的取值范围为_________.
二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分
15.(5分)(2014•上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的()
A .充分非必
要条件
B
.
必要非充
分条件
C .充要条件D
.
既非充分
又非必要
条件
16.(5分)(2014•上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()
A .1B
.
2C
.
3D
.
4
17.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()
A .无论k,
P1,P2如
何,总是
无解
B
.
无论k,
P1,P2如
何,总有
唯一解
C .存在k,
P1,P2,使
之恰有两
解
D
.
存在k,
P1,P2,使
之有无穷
多解
18.(5分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()
A .[﹣1,2]B
.
[﹣1,0]C
.
[1,2]D
.
[0,2]
三、解答题(共5题,满分72分)
19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.
20.(14分)(2014•上海)设常数a≥0,函数f(x)=.
(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);
(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.
21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.
(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?
(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).
22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.
(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;
(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;
(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.
23.(16分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.
(1)若a2=2,a3=x,a4=9,求x的取值范围;
(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.
(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.
2014年上海市高考数学试卷(理科)
参考答案与试题解析
一、填空题(共14题,满分56分)
1.(4分)(2014•上海)函数y=1﹣2cos2(2x )的最小正周期是.
2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.
3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=﹣2.
4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2].5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为2.
6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).
7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.
8.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.
9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).
10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).
11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=﹣1.
12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则
x1+x2+x3=.
13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为0.2.
14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].
二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分
15.(5分)(2014•上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的()
A .充分非必
要条件
B
.
必要非充
分条件
C .充要条件D
.
既非充分
又非必要
条件
解答:解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,
若a>2且b>2,则必有a+b>4,即必要性成立,
故“a+b>4”是“a>2且b>2”的必要不充分条件,
故选:B.
16.(5分)(2014•上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()
解答:解:如图建立空间直角坐标系,
则A(2,0,0),B(2,0,1),P1(1,0,1),P2(0,0,1),P3
(2,1,1),P4(1,1,1),P5(0,1,1),P6(2,2,1),P7
(1,2,1),
P8(0,2,1),
,=(﹣1,0,1),=(﹣2,0,1),=(0,
1,1),=(﹣1,1,1),=(﹣2,1,1),=(0,2,
1),
=(﹣1,2,1),=(﹣2,2,1),
易得•=1(i=1,2,…,8),
∴•(i=1,2,…,8)的不同值的个数为1,
故选A.
17.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()
解答:解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个
不同的点,直线y=kx+1的斜率存在,
∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2
﹣ka1a2+a2﹣a1=a2﹣a1
,
①×b2﹣②×b1得:(a2b1﹣a1b2)x=b2﹣b1,
即(a2﹣a1)x=b2﹣b1.∴方程组有唯一解.
故选:B.
18.(5分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为
()
解答:解;当a<0时,显然f(0)不是f(x)的最小值,
当a≥0时,f(0)=a2,
由题意得:a2≤x++a≤2+a,
解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,
∴0≤a≤2,
故选:D.
点评:本题考察了分段函数的问题,基本不等式的应用,渗透了分类
讨论思想,是一道基础题.
三、解答题(共5题,满分72分)
19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.
解答:解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,
∠ABC=60°,
∴∠ABP1=∠BAP1=∠CBP2=60°,
∴∠P1=60°,同理∠P2=∠P3=60°,
∴△P1P2P3是等边三角形,P﹣ABC是正四面体,
∴△P1P2P3的边长为4,
V P﹣ABC==
20.(14分)(2014•上海)设常数a≥0,函数f(x)=.
(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);
(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.
解答:解:(1)∵a=4,
∴
∴,
∴,
∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪
(1,+∞).
(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,
∴=,整理可得a(2x﹣2﹣x)=0.
∵2x﹣2﹣x不恒为0,
∴a=0,此时f(x)=1,x∈R,满足条件;
若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,
∴=﹣,整理可得a2﹣1=0,
∴a=±1,
∵a≥0,
∴a=1,
此时f(x)=,满足条件;
综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.
点评:本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的
思想,属于中档题.
21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.
(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?
(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).
解答:解:(1)设CD的长为x米,则tanα=,tanβ=,
∵0,
∴tanα≥tan2β,
∴tan,
即=,
解得0≈28.28,
即CD的长至多为28.28米.
(2)设DB=a,DA=b,CD=m,
则∠ADB=180°﹣α﹣β=123.43°,
由正弦定理得,
即a=,
∴m=≈26.93,
答:CD的长为26.93米.
22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.
(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;
(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;
(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.
分析:(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<
0,得出结论.
(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程
无解,可得1﹣4k2≤0,从而求得k的范围.
(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1
①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入
x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.
解答:(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2
﹣1)(﹣1﹣1)=﹣4<0,
∴点(1,2)、(﹣1,0)被直线 x+y﹣1=0分隔.
(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,
根据题意,此方程无解,故有 1﹣4k2≤0,
∴k≤﹣,或k≥.
(3)证明:设点M(x,y),则•|x|=1,故曲线E的
方程为[x2+(y﹣2)2]x2=1 ①.
y轴为x=0,显然与方程①联立无解.
又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有
η=1×(﹣1)=﹣1<0,
故x=0是一条分隔线.
若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,
可得[x2+(kx﹣2)2]x2=1,
令f(x)=[x2+(kx﹣2)2]x2﹣1,
∵f(0)f(2)<0,
∴f(x)=0有实数解,即y=kx与E有公共点,
∴y=kx不是E的分隔线.
∴通过原点的直线中,有且仅有一条直线是E的分隔线.
23.(16分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.
(1)若a2=2,a3=x,a4=9,求x的取值范围;
(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.
(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.
分析:(1)依题意:,又将已知代入求出x
的范围;
(2)先求出通项:,由求出,对q分
类讨论求出S n分别代入不等式S n≤S n+1≤3S n,得到关于q的不等式
组,解不等式组求出q的范围.
(3)依题意得到关于k的不等式,得出k的最大值,并得出k取
最大值时a1,a2,…a k的公差.
解答:解:(1)依题意:,
∴;又
∴3≤x≤27,
综上可得:3≤x≤6
(2)由已知得,,,
∴,
当q=1时,S n=n,S n≤S n+1≤3S n,即,成立.
当1<q≤3时,,S n≤S n+1≤3S n,即
,
∴
不等式
∵q>1,故3q n+1﹣q n﹣2=q n(3q﹣1)﹣2>2q n﹣2>0对于不等
式q n+1﹣3q n+2≤0,令n=1,
得q2﹣3q+2≤0,
解得1≤q≤2,又当1≤q≤2,q﹣3<0,
∴q n+1﹣3q n+2=q n(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0
成立,
∴1<q≤2,
当时,
,S n≤S n+1≤3S n,即,
∴此不等式即,
3q﹣1>0,q﹣3<0,
3q n+1﹣q n﹣2=q n(3q﹣1)﹣2<2q n﹣2<0,
q n+1﹣3q n+2=q n(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0
∴时,不等式恒成立,
上,q的取值范围为:.
(3)设a1,a2,…a k的公差为d.由,且a1=1,
得
即
当n=1时,﹣≤d≤2;
当n=2,3,…,k﹣1时,由,得d≥,
所以d≥,
所以1000=k,即k2﹣
2000k+1000≤0,
得k≤1999
所以k的最大值为1999,k=1999时,a1,a2,…a k的公差为﹣.
感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)
------------------------------------------------------------------------------------------------------------。