壁是设计中钣金件材料的任何截面

合集下载

UG实用教程钣金

UG实用教程钣金
4、筋:沿仿真冲压工具的草图轮廓提升材料。 方法:选择需要草绘的平面,草绘一封闭或开放截面,钣金件将以草绘线为中心进行压筋成型。 成型方式结束条件有成型、切口、冲压三类,分别为调整压筋终端成型方式。 设置参数:压筋横截面、深度、半径、角度、成型/切口/冲压三种成型条件、凹模半径。
5、实体冲压:添加从冲压类型共具体继承形状的钣金特征。 方法:从钣金模块进入到建模模块,“开始”-“建模”,然后绘制相应实体用作凸模共具体。然后从建
3、调整中性因子大小:更改中性因子值,替代添加了折弯的特征。 方法:选择折弯面,输入新中性因子。 设置参数:中性因子大小。
ቤተ መጻሕፍቲ ባይዱ
1、矫直:展平折弯以及和折弯相邻的材料。 方法:选择固定面或边,然后在选择需要展平的折弯。
2、重弯:将一个展开特征恢复成其上一个折弯状态,矫直特征之后添加的任何其他特征也恢复成上一个折 弯状态。
可设置参数:折弯角度、止裂口、半径、提升高度等
1、封闭拐角:在通过延伸折弯和弯边使两个相邻弯边相连的地方。 方法:选择相邻的两个折弯圆角。 设置参数:拐角处形态、止裂口参数等。
2、三折弯角:在通过延伸折弯和弯边使三个相邻弯边相连的地方封闭拐角。 方法: 设置参数:
2、倒角:对平板或弯边的尖角进行倒圆或倒斜角。 方法:选择需要倒角的面或边。则选中的边或面上所有的尖角将被倒圆或斜角。 注意:仅对平板或弯边的尖角起作用。即钣金件的面尖角。 设置参数:倒圆或倒斜角、半径。
1、调整折弯半径大小:更改折弯半径,替代添加折弯的特征。 方法:固定折弯长度:选择需要调整的折弯半径进行半径调整。固定展开长度:选择需要固定的面/边,
调整折弯半径时,所选中的面/边长度不变,然后选择需要调整的折弯半径面,进行半径调整。 设置参数:固定折叠长度/固定展开长度、折弯半径的重新输入。

中文版Creo基础教程钣金特征

中文版Creo基础教程钣金特征

凹模成形特征
8.5.2 凸模成形
凸模成形是通过从标准模型库或用户定义的模型库中装配凸模模型来模制钣 金件几何。
“凸模”操控板
中文版Creo3.0基础教程
选择模型及放置方式
8.5.2 凸模成形
中文版Creo3.0基础教程
约束设置 新建约束
8.5.2 凸模成形
完成约束
中文版Creo3.0基础教程
凸模成形特征
中文版Creo3.0基础教程
调整厚度方向
绘制草图 拉伸壁特征
8.2.2 平面壁
平面壁也称分离的平整壁。
“平面”操控板
绘制草图
中文版Creo3.0基础教程
平面壁特征
8.2.3 旋转壁
旋转壁是由特征截面绕旋转中心线旋转而成的一类特征,它适合于构造回转 体零件特征。
“旋转”操控板
绘制旋转特征截面
中文版Creo3.0基础教程
本章将对Creo3.0的钣金模块进行详细介绍,主要介绍钣金特征的创建方法 ,钣金折弯、展平及成形的方法,以及几种钣金操作方式等。
通过本章的学习,读者需要掌握的内容如下: 基本钣金特征及后继钣金特征的创建 钣金折弯和展平 钣金成形的方法 钣金操作方式
中文版Creo3.0基础教程
8.1 钣金概述
选取扭转壁附着边 “扭转轴点”菜单管理器
输入起始宽度
中文版Creo3.0基础教程
输入终止宽度
图8-49 输入扭转长度
8.3.3 扭转壁特征
输入扭转角度
输入扭曲发展长度
扭转壁
中文版Creo3.0基础教程
各参数意义
8.3.4 延伸壁特征
在绘图区选择延伸边,单击“编辑”面板中的“延伸”按钮 开 “延伸”操控板。

钣金件下料尺寸计算方法

钣金件下料尺寸计算方法

钣金件下料尺寸计算方法钣金件的下料尺寸计算方法是指确定钣金件加工前的原始材料尺寸,以便进行定位、切割和成型等加工操作。

下料尺寸的准确计算对于钣金件的制造非常重要,它直接影响到钣金件的质量和加工效率。

下面将介绍常用的钣金件下料尺寸计算方法。

平板料是指钣金件的加工材料为平板形状的金属板材。

计算平板料下料尺寸的方法有两种:余料法和全尺寸法。

(1)余料法余料法是根据钣金件的设计尺寸和加工要求,通过减去所需加工的余料尺寸,得到平板料的下料尺寸。

余料尺寸一般包括余白(用于定位和调整),加工误差(如弯曲和焊接引起的尺寸误差)和折弯要求(如折弯长度和余料)等。

(2)全尺寸法全尺寸法是根据钣金件的设计尺寸和加工要求,通过根据材料弹性模量和弯曲半径等参数,计算得到平板料的下料尺寸。

这种方法需要一定的工程经验和计算公式。

弯曲件是指钣金件的加工材料经过冲压、切割和折弯等工序制成的弯曲形状。

计算弯曲件下料尺寸的方法有两种:开料尺寸法和转换尺寸法。

(1)开料尺寸法开料尺寸法是根据弯曲件的设计尺寸和加工要求,通过确定弯曲件的几何形状和长度,计算得到弯曲件的下料尺寸。

这种方法需要绘制弯曲件的展开图,并根据展开图计算得到下料尺寸。

(2)转换尺寸法转换尺寸法是根据弯曲件的设计尺寸和加工要求,通过确定弯曲件的转弯角度、弯曲半径和材料横截面的展开长度,计算得到弯曲件的下料尺寸。

这种方法需要一定的工程经验和计算公式。

除了以上介绍的方法,还有一些特殊形状的钣金件需要使用其他的下料尺寸计算方法,如复杂形状件的拟定加工法、镂空件的剪切法等。

这些方法需要根据具体的钣金件形状和加工要求选择合适的计算方法。

总之,钣金件下料尺寸的计算方法是根据钣金件的设计尺寸和加工要求,通过减去余料尺寸或者根据材料的物理性质和加工参数计算得到的。

这些方法需要综合考虑钣金件的形状、材料特性和加工要求等因素,确保下料尺寸的准确性和合理性,以提高钣金件的质量和加工效率。

Proe钣金展平技巧

Proe钣金展平技巧

Pro/ENGINEER 钣金件展平得技巧总结关于展平展平特征展平钣金件上得任何弯曲曲面, 无论它就是折弯特征还就是弯曲得壁。

•有三种展平类型可用:•规则 (Regular) - 展平零件中得大多数折弯。

选取要展平得现有折弯或壁特征。

如果选取所有折弯, 则创建零件得平整形态。

过渡 (Transition) - 展平不可展开得曲面, 如混合壁。

选取固定曲面并指定横截面曲线来决定展平特征得形状。

剖截面驱动 (Xsec Driven) - 展平不可展开得曲面, 如折边及法兰。

选取固定曲面并指定横截面曲线来决定展平特征得形状。

创建展平时, 要求指定要保持固定得曲面或边。

您得选择会改变模型得缺省视图。

尝试并拾取要保持在同一位置得主要曲面。

如果可能, 在创建几个展平特征时, 要保持一致, 并使用同一曲面。

设置自动固定得几何元素(“设置”(Set Up)>“固定几何”(Fixed Geom)), 可节省设计时间与保持一致性。

在展平后所创建得特征都就是该展平得子项/从属于该展平。

如果只就是临时展平零件, 并不需要该展平来保持设计意图, 则应删除该展平。

如果保持该展平, 只会在模型树中挤满多余特征, 这将延长零件再生时间。

切记, 如果删除得展平中含有在其后创建得特征, 这些附加特征也将被删除。

要草绘那些由于几何复杂与不规则而不能展平得壁得平整状态, 可使用 Metamorph 选项。

利用“变形控制”(DEFORM CONTROL) 菜单, 可加亮与草绘相应变形区域得轮廓。

展平特征创建后, 壁得成形状态隐含, 而平整状态处于活动状态。

当选取“展平全部”(Unbend All) 时, 就可使用展平对话框中得“变形控制”(DEFORM CONTROL) 菜单。

展平不可展开得曲面未展开(变形得)得曲面, 如具有复杂弯曲曲面得壁特征, 通常必须展平后才能制造。

要展平变形得材料, 该展平必须要简单。

定义得规则为所有要被展平得曲面必须具有外侧边或与一个有外侧边得区域相邻。

PROE钣金操作培训(建议收藏)

PROE钣金操作培训(建议收藏)
17
1.进入钣金件模式方法
当用实体零件通 过“驱动曲面”转换 为钣金件时,应注意 要增加一个关系,使 驱动曲面壁厚等于拉 伸零件板厚 ,以避免 修改板厚时漏改。
18
1.进入钣金件模式方法
组件模式:PRO/E 5.0允许在装配模式下创建钣金件。在组件 设计模式下,单击工具条中的“在组件模式下创建元件”按钮, 在弹出的“元件创建”对话框中选择“钣金件”。
8
2、钣金成型基础-弯曲 弯曲件的工艺性
防止弯曲根部裂纹 在局部弯曲某一边缘时,为避免弯曲根部撕裂,应减 小不弯曲部分长度,使其退出弯曲线之外。如果零件的长 度不能减小,应在弯曲部分与不弯曲部分之间切槽,或在 弯曲前冲出工艺孔。
9
2、钣金成型基础-弯曲 弯曲件的工艺性
弯曲件孔边距离 弯曲有孔的工序件时,如果孔位于弯曲变形区内,则弯 曲时孔要发生变形,为此必须使孔处于变形区之外,或在弯 曲后再冲孔。
3
1、钣金成型基础-冲裁 冲裁的概念
从广义上来说,利用冲模使材料相互分离的工序叫冲 裁。一般来说,冲裁工艺指落料和冲孔。下图中剖面线部 分为所需要的零件部分。
4
1、钣金成型基础-冲裁 冲裁的工艺性
冲裁的工艺性是指冲裁件对冲压工艺的适应性。 冲裁件形状尽量简单、对称、排样废料少。 为避免冲裁件变形,最小孔边距满足如下要求:
折弯侧概念:即为折弯后变形区域的位置。以下图为例,标注 为箭头侧为折弯变形区域。
46
4.钣金件中壁的编辑——角度折弯(常规)
确定是否使用止裂槽及使用止裂槽的具体形式。
47
4.钣金件中壁的编辑——角度折弯(常规)
定义折弯角度及折弯方向。
最后定义折弯半径。
48
4.钣金件中壁的编辑——角度折弯(常规)

中文版Creo 3.0基础教程 第8章 钣金特征

中文版Creo 3.0基础教程 第8章 钣金特征

凸模成形是通过从标准模型库或用户定义的模型库中装配凸模模型来模制钣 金件几何。
“凸模”操控板
选择模型及放置方式
中文版Creo3.0基础教程
约束设置
新建约束
中文版Creo3.0基础教程
完成约束
凸模成形特征
中文版Creo3.0基础教程
平整成形将展平凸模或凹模,并将特征返回其原始状态。为创建存在凸模或 凹模的平整钣金件曲面,需要使用平整成型特征。可同时平整多个成型特征。 平整成型特征一般创建于设计结束阶段。
输入终止宽度
图8-49 输入扭转长度
中文版Creo3.0基础教程
输入扭转角度
输入扭曲发展长度
扭转壁
各参数意义
中文版Creo3.0基础教程
在绘图区选择延伸边,单击“编辑”面板中的“延伸”按钮 开 “延伸”操控板。
,系统打
选取延伸边
“延伸”操控板
延伸壁1
中文版Creo3.0基础教程
选取延伸边
选取平面
边折弯
中文版Creo3.0基础教程
展平特征可以展平钣金件上的任何弯曲曲面,无论是折弯特征还是弯曲的壁 。
“展平”操控板
展平特征
中文版Creo3.0基础教程
平整形态相当于展平全部特征,它展平任何弯曲曲面,无论它是折弯特征还 是弯曲壁。然而,与展平全部不同,平整形态特征自动跳到模型树的结尾,以 保持平整模型视图。
“第一壁”操控板
中文版Creo3.0基础教程
设置“壳”操控板
创建第一壁特征
“转换”操控板
中文版Creo3.0基础教程
“边扯裂”操控板
选取棱边
转换特征
中文版Creo3.0基础教程
本练习学习绘制机柜抽屉左侧板钣金模型。

《CATIA V5R21基础与应用案例教程》教学课件 第七章

《CATIA V5R21基础与应用案例教程》教学课件 第七章

surface】选项,将截面轮廓拉伸至指定的曲面处。
下拉列表框:用于定义拉伸第二方向属性,其中的各选项的作用与
下拉列
表框中的相同。
【Mirrored extent】复选框:选中此复选框,可对称拉伸以生成钣金壁。
【Automatic bend】复选框:选中此复选框后,当轮廓截面中有尖角时,系统自动创建圆角。
边线侧壁只能附着在已有钣金壁的直线边上。 默认情况下,边线侧壁带有折弯。
7.2.3 创立边线侧壁
如图7-22所示的【Height & Inclination】选项卡,用于定义边线侧壁的高度和倾斜角度,该选项卡中各选项 的作用如下。
【Height:】下拉列表框:用于设置侧壁的高度类型。其中,【Height:】选择表示通过指定的高度值限制
1.自动形式的边线侧壁
下面看一个创立自动形式的边线侧壁的实例。
步骤1 翻开本书配套素材文件“CH07〞>“7-2-3a.CATPart〞,如图7-21所示
选择此棱边(上侧 的边)作为附着边
图7-21 素材
7.2.3 创立边线侧壁
步骤:
步骤1 翻开本书配套素材文件“CH07〞>“7-2-3a.CATPart〞,如图7-21所示 步骤2 单击【Walls】工具栏中的【Wall On Edge】按钮 ,或选择【插入】>【Walls】 >【Wall On Edge】菜单项,弹出【Wall On Edge Definition】对话框。 步骤3 此时,【Type】下拉列表框中的【Automatic】选项被选中,然后选取如图7-21 所示的棱边为附着边。
钣金设计根底 创立钣金壁 折弯与展平钣金件 创立成型特征 其他钣金操作
7.1 钣金设计根底

ProE(钣金)

ProE(钣金)
所有的绿色固定面
所有的绿色及白色转折面
注:选择固定面时,所有的绿色固定面都要选择,而选择转折面时,所有的绿色及白色转折面都要选择。
钣金展开——剖面驱动
剖面驱动的展开:展开钣金时,先选取固定面,再指定一条剖面线,来决定变形曲面展开的形状。此方式常用以展开具不规则外形的薄壁及薄壁上的薄唇或凸缘。 固定边线:此为固定面与想要展开面的交接线。 剖面线:为钣金的边界线或曲线,用以控制展开的几何形状,此曲线必须与固定面共面。 固定侧:钣金展开时在固定线的两侧想要保持不动的那一侧,此侧必须为平面。 当指定完上述数据后,Pro/E即在剖面线的垂直方向产生众多的2D切面,然后以固定边线为旋转轴,将这些切面展开摊平至固定面。
创建钣金零件的工具
钣金件薄壁工具 分离壁 连接壁 带半径 无半径 延伸 折弯操作工具 折弯 展平 折弯回去 平整形态 变形区域 钣金件切割工具
造型工具 成形 平整成形 缝 切口 冲压 其它工具 合并壁 转换 边折弯 止裂槽 拐角止裂槽 壁止裂槽 边止裂槽
3 展平钣金零件 3.1展平钣金件零件–概述 3.2展平可延展曲面 3.3展平不可延展几何 3.4创建可延展几何 向几何添加裂缝 创建变形区域 使用钣金件转换工具 3.5创建折弯回去特征
6 折弯钣金零件 6.1创建折弯特征 6.2使用折弯选项 6.3定义折弯线 6.4定义缺省折弯半径
5 钣金零件成形 5.1创建成形特征概述——造型的印贴 5.2模具和冲孔 5.3参照零件 5.4使用多个成形 5.5参考零件的影响 5.6排除面的使用 5.7使模型恢复平整 5.8使用特征平整边
die参考零件
模具和冲孔
1、利用模具或冲孔来生成钣金上的印贴特征时,首先须指定模具或冲孔在钣金上的位置,其指 定方式与零件的装配方式相同:

中文版Creo 基础教程 钣金特征

中文版Creo 基础教程 钣金特征

钣金增厚方向
创建旋转壁特征
8.3 创建后继钣金特征
创建钣金零件在创建完第一壁之后,还需要在第一壁的基础上再创建其他额 外的钣金壁特征,以完成整个零件的创建。 平整壁 法兰壁 扭转壁特征 延伸壁特征
中文版Creo3.0基础教程
8.3.1 平整壁
平整壁只能附着在已有钣金壁的直线边上,壁的长度可以等于、大于或小于 被附着壁的长度。
选取扭转壁附着边 “扭转轴点”菜单管理器
输入起始宽度
中文版Creo3.0基础教程
输入终止宽度
图8-49 输入扭转长度
8.3.3 扭转壁特征
输入扭转角度
输入扭曲发展长度
扭转壁
中文版Creo3.0基础教程
各参数意义
8.3.4 延伸壁特征
在绘图区选择延伸边,单击“编辑”面板中的“延伸”按钮 开 “延伸”操控板。
8.5.3 平整成形
平整成形将展平凸模或凹模,并将特征返回其原始状态。为创建存在凸模或 凹模的平整钣金件曲面,需要使用平整成型特征。可同时平整多个成型特征。 平整成型特征一般创建于设计结束阶段。
“平整成型”操控板
中文版Creo3.0基础教程
平整成形特征
8.6 钣金操作
钣金切口 转换特征
中文版Creo3.0基础教程
“平整形态”操控板
中文版Creo3.0基础教程
平整形态
8.4.5 折弯回去
折弯回去与展平命令是相反的操作。可用折弯回去特征将展平曲面返回到成 形位置。作为一条规则,应该只折弯回去完全展平的区域。
“折回”操控板
中文版Creo3.0基础教程
折弯回去
8.5 创建成型特征
成形是钣金件壁用模板(参考零件)冲压成形的工艺。将参考零件的几何合 并到钣金零件来创建成形特征。模板的定位与零件装配相同。 凹模成形 凸模成形 平整成形

UG-钣金设计全教程

UG-钣金设计全教程

第1章UG NX6.0钣金设计基础UG NX是Unigraphics Solutions公司推出的集CAD/CAM/CAE于一体的三维参数化设计软件,在汽车、交通、航空航天、日用消费品、通用机械及电子工业等工程设计领域得到了大规模的应用。

UG NX6是NX系列的最新版本,在原有基础上做了大量的改进。

由于钣金具有广泛用途,UG NX6.0设置了钣金设计模块,专用于钣金的设计工作钣金件一、钣金设计的基本概念钣金是针对金属薄板(通常在6mm以下)一种综合冷加工工艺,包括剪、冲/切/复合、折、焊接、铆接、拼接、成型(如汽车车身)等。

其显著的特征就是同一零件厚度一致。

钣金零件在航空航天、汽车、船舶、机械和化工等工业领域应用广泛n钣金加工容易,有利于复杂成形品的加工n产品壁薄、重量轻又坚固n零件组装便利n成本价格低n成品表面光滑美观,表面处理和后处理容易二、钣金设计的基础UG NX钣金设计模块使用基于实体和特征的方法来定义钣金零件在初始界面中,单击【建模】,进入UG 设计模块,添加【钣金特征】。

在初始界面中,单击【新建】,选择【NX 钣金】模块,进入NX 钣金模块。

三、钣金参数预设值为了避免在钣金设计中或设计完成后,改变钣金的设置参数,从而导致钣金件不能加工或不能精确定义平面展开,在设计之前通常需要根据钣金件的标准参数进行钣金参数预设置。

钣金件参数预设值钣金件标准参数预设值钣金件特征标准预设值指贯穿于整个钣金设计过程的属性和表达式,如材料厚度和材料类型的特征用来定义特征的尺寸参数,如折弯角度、弯边宽度和折弯展开计算公式等在菜单中选择【首选项】,单击【钣金(H)】命令。

n 建模模块指系统根据造型的钣金厚度推断出钣金折弯等特征设置的厚度值使用设置特定的值来指定钣金设计的厚度值,钣金设计过程中就可以使用此标准值进行设计在钣金设计过程中将可以使用全程折弯展开计算公式进行设计n钣金模块在菜单中选择【首选项】,单击【NX 钣金(H)】命令。

03创建主要钣金件壁特征

03创建主要钣金件壁特征

创建主要钣金件壁特征模块概述:对于每个钣金件模型而言,一个重要的组成部分就是创建主要壁特征。

因为它是模型中的第一个钣金件特征,所以不需要参考任何其他钣金件特征。

它还会设置整个钣金件模型的厚度。

在本模块中,您将了解创建主要壁的多种不同方法。

您还将了解在已存在初始主要壁的情况下,如何创建其他主要壁类型,即分离壁。

目标:成功完成此模块后,您将能够:∙了解主要壁和次要壁之间的不同。

∙了解连接壁和分离壁之间的不同。

∙创建平面主要壁。

∙创建拉伸主要壁。

∙创建旋转主要壁。

∙创建混合主要壁。

∙创建偏移主要壁。

了解主要壁的其他较不常见的类型。

概念: 了解钣金件壁特征了解钣金件壁特征钣金件壁是将实体几何添加到钣金件模型中的主要方法。

其与普通非钣金件实体模型中的“伸出项”特征类似。

在钣金件模型中可创建的壁类型主要有两种:主要壁特征和次要壁特征。

主要壁主要壁是不需要参考现有钣金件特征的钣金件壁特征。

其始终是钣金件模型中的第一钣金件特征:用于生成其他钣金件特征可以参考的钣金件几何。

除了主要壁特征,其他钣金件特征在主要钣金件特征未创建前都是不可用的。

创建完初始主要壁后可继续创建其他主要壁,但是后创建的这些壁将是分离的主要壁,且之后可将它们连接到现有钣金件几何。

图 1 - 无参考主要壁次要壁与主要壁特征不同,次要壁特征需要参考现有钣金件几何。

一般来说,创建一个次要壁的第一步是选择一个您想让次要壁与之连接的现有钣金件壁上的一条边。

图 2 - 沿绿色边连接的次要壁“连接壁”与“分离壁”根据定义,次要壁为连接壁,顾名思义,其会连接到现有壁上。

但是,因为可在不参考其他现有钣金件几何的情况下创建主要壁,所以,可以在钣金件设计中创建多个主要壁。

图 3 和图 4 中所示即为这样的示例。

创建的第一个壁为主要壁(在图 3 中标记为1)图 3 - 两个分离的主要壁,其后又创建了另一个主要壁(在图 3 中标记为2)。

带有壁凸缘的次要壁(在图 4 中标记为3)图 4 - 两端合并的次要壁之所以会被连接到壁 1 (如绿色箭头所示),是因为绿色箭头所在的壁 1 顶边已被选作该次要壁的参考。

钣金结构设计及制造工艺分析

钣金结构设计及制造工艺分析

钣金结构设计及制造工艺分析摘要:钣金凭借其自身的诸多优点随着经济的发展在我国的应用越来越广泛。

本文阐述了饭金结构设计在制造业中的地位, 从三个方面分析了饭金结构设计符合工艺性的重要性, 并给出了相应的设计参考依据。

为做好钣金结构的设计工作提供一定的指导。

关键词:钣金结构;设计;制造;工艺1.引言随着我国工业化程度的不断增强,钣金结构在制造业各个领域应用范围较广。

做好钣金结构的设计工作,对于增强钣金加工制造业的工作效率、提高其品质具有重要意义。

饭金结构件具有劳动生产率和材料利用率高、结构灵活、易形成生产力的优点,尤其最近几年, 我国电子技术迅速发展, 各种电子类高科技公司如雨后春笋般地出现, 使得饭金结构在机械行业中所占的比重越来越大, 对从事电子结构设计的人才需求更为迫切, 许多大学生直接进入公司或企事业单位的设计部门, 很少甚至没有在生产一线进行过实践, 使得设计出的产品工艺性不尽合理, 给生产带来极大的困难, 不仅加大了产品的原材料成本、增加的加工成本还使产品的工艺性和美观大打折扣, 而且延长了产品的开发周期, 最终使产品在市场上缺乏竞争力。

众所周知, 产品的性能、品质主要取决于设计,结构设计是其最重要的部分。

所以,需要保证产品易制造、保证品质的情况下,价格相对便宜. 而想要生产出这样的产品, 钣金结构设计就非常重要和制造工艺就非常重要。

众所周知, 金属钣料折弯以后, 板料截面的形状发生了根本性地变化—刚性得到大幅度地提高, 截面抗弯惯性矩大大增加。

因此, 金属薄板零件的加工经常采用折弯加工工艺。

但是, 折弯零件的截面形式与外形尺寸往往受到板料折弯机上刀口、下模体的结构和尺寸的限制。

为了使设计的析弯零件的工艺性较好,加工制造中不能与板料折弯机的上刀口或下模体发生干涉( 又称之为抗刀) , 设计人员在设计折弯零件的结构形式与尺寸时及工艺人员在审查图纸发解对应折弯机的工艺能力、编制加工工艺过程时, 都必须首先确定和判断其合理的截面形式及相应的尺寸。

proe钣金冲压设计

proe钣金冲压设计
成形工序主要有弯曲(压弯、卷边和扭曲)、拉深、 翻孔、翻边、胀形、扩口、缩口、起伏、较平和整 形等。
在 Pro/ENGINEER 中,钣金件是具有恒定厚度的实体模 型,可表示为钣金件成型或平整模型,并可用特征来修 改。
钣金件的特征包括壁、切口、冲孔、折弯以及拐角 止裂槽等。可获得零件信息,并 计算其质量和进行工 程分析。
可选用3种模式进行钣金件的创建:钣金件模式、转换 模式和组件模式。
转换模式是在实体模式下将实体零件转换为 钣金件。
组件模式是在装配模式中以自上向下的方式 创建钣金件。
钣金件模式,即 在Pro/ENGINEER的可选模块 Pro/SHEETMETAL中进行钣金件设计,它 是钣 金件设计的专用模块,具备设计基本和复杂 钣金零件的能力。
分离工序是指坯料在模具工作零件刃口的冲压力作 用下,变形部分的应力达到强度极限以后,坯料沿一 定的轮廓线发生断裂产生分离而获得冲件的加工方 法。分离工序主要有冲孔、落料、切断、切边等。
成形工序是指坯料在模具压力冲压力作用下,变 形 部分的应力达到屈服极限,但未达到强度极限,使坯 料产生塑性变形,且不产生分离而获得具有一定形状 和尺寸精度的冲件的加工方法。
展平是将弯曲的钣金件转换为平面,这样可以根据展
平的形状来进行下料或排样等工作。
折弯回去是将已经展平的钣金零件全部或部分恢复 为折弯状态。
平整形态是将全部特征展平,它可以展平任何弯曲面。它与展 平特征的差别在于,平整形态总是在模型的最后一个特征。
单击右侧工具栏中“平整形态”按钮, 选择需要保持固定的平 面或边,即可完成钣金件的平整形态操作。
法兰壁主要用于创建常见的折边和替代简单的扫描 壁,其壁厚与第一壁相同,使用这个命令能加快设计速 度,减少繁琐的步骤。

常见钣金件的材料选用和表面处理

常见钣金件的材料选用和表面处理

常见钣金件的材料选用和表面处理第一篇:常见钣金件的材料选用和表面处理常见钣金件的材料选用和表面处理一材料的选用冷轧钢SPCC,主要用于电镀和烤漆件,成本低,易成型,材料厚度为≤3.2mm。

热轧钢SHCC,材料T≥3.0mm,也是用电镀,烤漆件。

成本低,但难成型,主要用平板件。

镀锌板SECC,SGCC。

SECC电解板分N料,P料。

N料主要不作表面处理,成本高,P料用于喷涂件。

铜,主要用导电作用料件,其表面处理是镀镍,镀鉻,或不作处理,成本高。

铝板,一般用表面鉻酸盐(J11-A),氧化(导电氧化,化学氧化),成本高,有镀银,镀镍。

铝型材,截面结构复杂的料件,大量用于各种插箱中,表面处理同铝板。

不锈钢,不作任何表面处理,成本高。

二钣金常用的表面处理电镀,利用电解作用在机械制品上沉积出附着良好的、是性能基体材料不同的金属覆层的技术。

电镀层比热浸层均匀,一般都较薄,从几个微米到几十微米不等。

通过电镀,可以在机械制品上获得装饰保护性和各种功能性的表面层,还可以修复磨损和加工失误的工件。

此外,依各种电镀需求还有不同的作用。

举例如下:1)镀铜:打底用,增进电镀层附着能力,及抗蚀能力。

2)镀镍:打底用或做外观,增进抗蚀能力及耐磨能力,(其中化学镍为现代工艺中耐磨能力超过镀铬)。

3)镀金:改善导电接触阻抗,增进信号传输。

4)镀钯镍:改善导电接触阻抗,增进信号传输,耐磨性高于金。

5)镀锡铅:增进焊接能力,快被其他替物取代(因含铅现大部分改为镀亮锡及雾锡)。

喷粉1)一次涂装可以得到较厚的涂层,例如涂覆100~300μm的涂层,用一般普通的溶剂涂料,约需涂覆4~6次,而用粉末涂料则一次就可以达到该厚度。

涂层的耐腐性能很好。

2)粉末涂料不含溶剂,无三废公害,改善了劳动卫生条件。

3)采用粉末静电喷涂等新工艺,效率高,适用于自动流水线涂装;粉末利用率高,可回收使用。

4)除热固性的环氧、聚酯、丙烯酸外,尚有大量的热塑性耐脂可作为粉末涂料,如聚乙烯、聚丙烯、聚苯乙烯、氟化聚醚、尼龙、聚碳酸脂以及各类含氟树脂等。

SolidWorks2012中文版从入门到精通——第9章:钣金设计

SolidWorks2012中文版从入门到精通——第9章:钣金设计

SOLIDWORKS_2012中文版从入门到精通——读后感笔记SolidWorks钣金设计功能较强,而且简单易学,设计者使用此软件可以在较短时间内完成较复杂的钣金零件的设计。

本章向读者介绍SW软件钣金设计的功能特点,系统设置的方法,基本特征工具的使用方法及其设计步骤等入门知识,为以后进行钣金零件设计的具体操作打下基础,同时,对本章内容的熟练掌握可以大大提高后续操作的工作效率。

知识点钣金特征工具与钣金菜单转换钣金特征钣金特征钣金成型第九章钣金设计一、概述使用SW2012软件进行钣金零件的设计,常用的方法基本上分为2种:(1)使用钣金特有的特征来生成钣金零件这种设计方法将直接考虑作为钣金零件来开始建模,从最初的基体法兰特征开始,利用了钣金设计软件的所有功能和特殊工具,命令和选项。

对于几乎所有的钣金零件而言,这是最佳的方法,因为用户从最初设计阶段开始就生成零件作为钣金零件,所以消除了多余步骤。

(2)将实体零件转换成钣金零件在钣金的设计过程中,也可以按照常见的设计方法设计零件实体,然后将其转换为钣金零件。

也可以在设计过程中,先将零件展开,以便于应用钣金零件的特定特征,由此可见,将一个已有的零件实体转换成钣金零件是本方法的典型应用。

2、生成二维工程图和三维零件、装配体二、钣金特征工具与钣金菜单1、启动钣金特征工具栏工具——自定义,出现“自定义”对话框,单击其中的“钣金”选项并确定。

用户界面将显示钣金特征工具栏,如下图所示:2、钣金菜单插入——钣金菜单命令,即可找到“钣金”下拉菜单,如下所示:三、转换钣金特征1、使用基体-法兰特征利用基体法兰命令生成一个钣金零件后,钣金特征将出现在下图所示的特征管理器中。

在该特征管理器中包含3个特征,它们分别代表钣金的3个基本操作。

——钣金特征:包含了钣金零件的定义,此特征保存了整个零件的默认折弯参数信息,如折弯半径、折弯系数、自动切释放槽(预切槽)比例等。

——基体--法兰特征:该项是钣金零件的第一个实体特征,包括深度和厚度等信息。

Inventor机械设计实战教程04钣金技术

Inventor机械设计实战教程04钣金技术

Inventor机械设计实战教程04钣金技术节 1 .0 1AIP2008 实战教程–04 第 4 章钣金技术总体上说,Inventor 还没有完全覆盖经典的“钣金”设计需要,现在能处理冲压加工中的冲裁、弯折、卷边,并在此基础上完成展开。

目前的钣金功能参见图 4-1。

1. 钣金设计图 4-1 钣金工具面板1 . 1 钣金设计环境在 Inventor 中创建钣金零件可以使用以下两种方式: 创建一般零件,在菜单栏中选择“转换(C) ” ”gt“钣金(S),将弹出提示,(参见图 4-2),只有零件的厚度与钣金样式中的料厚一致,才能正确展开零件,确认后就可以进入钣金零件设计环境。

图 4-2 转换为钣金件新建文件时选择钣金模板 Sheet Metalmm.ipt参见图 4-3 左,双击后就进入钣金零件的设计环境(参见图 4-3 右)。

图 4-3 钣金模板和钣金设计环境1 . 2 体验钣金功能 1AIP2008 实战教程–04 为了直接进入和理解钣金功能,借用一个简单的钣金零件进行示例,参见图 4-4 的零件,要求板厚度 0.5mm。

图 4-4 钣金工程图下面体验一下创建这个钣金模型的过程: 开始新建零件,双击钣金模板 Sheet Metal(mm).ipt 进入钣金设计环境; 结束草图,在钣金特征工具面板中单击“钣金样式” (参见图 4-5),然后弹出“钣金样式”对话框; 在“钣金样式”对话框的“图纸”选项卡中设置参数,材图 4-5 钣金特征工具面板料为低碳钢,料厚为 0.5mm,参见图 4-6; 4-6 钣金参数设置在“折弯”选项卡中设置“释压形状S”为圆角,“折弯过渡T”类型为圆弧,参见图 4-7 上;在“拐角”选项卡中,将“释压形状R”设置为“圆形”,参见图 4-7 下; 2AIP2008 实战教程–04 4-7 钣金参数设置“保存”设置参数,“完成”。

编辑草图,创建矩形草图,尺寸50x80mm; 结束草图,在钣金特征工具面板中点击“ 平板” ,选定草图,创建基础板; 在基础板侧面新建草图,绘制侧板的轮廓,参见图 4-8; 图 4-8 侧面板草图结束草图,在钣金特征工具面板中点击“ 平板” ,选定新草图,方向向内创建侧板; 因为另一个侧板是对称的,按特征造型的习惯可以“镜像”,但是在Inventor 钣金设计中最好不使用“镜像”。

钣金材料力学性能要点

钣金材料力学性能要点

钣金材料力学性能要点钣金是针对金属薄板(通常在6mm以下)一种综合冷加工工艺,包括剪、冲/切/复合、折、铆接、拼接、成型(如汽车车身)等。

下面是为大家的钣金材料力学性能要点,欢迎大家阅读阅读。

①抗拉强度(tensilestrength)是指材料在拉断前所承受的最大应力。

单位是:N/mm2或MPa符号是σb.是金属强度指标之一.②抗弯强度(bendingstrength)是指在试件的两支点之间施加载荷,使其折断时截面所承受的最大应力。

单位是:N/mm2或MPa符号是σbb.是金属强度指标之一.③抗压强度(pressivestrength)是指材料在压力作用下不发生的破裂,破碎所能承受的最大应力。

单位是:N/mm2或MPa符号是σbc④屈从强度(Yieldstrength)是指金属试样在拉伸过程中,负荷不再增加而试样仍继续发生变形时的应力。

单位是:N/mm2或MPa符号是σs对于屈从现象明显的材料,屈从强度就是屈从点的压力值;对于屈从现象不明显的材料,通常把产生0.2%永久变形的应力值称为屈从强度。

⑤抗剪强度(shearstrength)是指试样剪断前,受剪部位原横截面积上所承受的最大负荷。

单位是:N/mm2或MPa符号是στ⑥弹性极限是指金属试件在外力消失后试件变形消失能恢复原状的条件下,试件所承受的最大应力。

单位是:N/mm2或MPa符号是σe⑦断面收缩率是指试样材料在受拉伸载荷拉断后,断面缩小的面积同原截面面积的百分比。

符号:φ是材料的塑性指标之一。

⑧伸长率是指试样材料拉断后,试样材料的伸长量与原始长度的百分比。

伸长率也是材料的塑性指针之一,符号为:δ⑨硬度(hardness)是指材料部分抵抗硬物压入其外表的才能。

常用的硬度表示方法有布氏硬度,洛氏硬度及维氏硬度三种。

通常状况下钢的硬度随着钢中含碳量的增加而增加。

⑩布氏硬度(HB)硬度的表示方法之一,其测量方法是:将经淬火后的钢球压入试样材料外表并在规定载荷下保持一段时间后,计算压力载荷与压痕面积的比值。

汽车精密钣金件常见缺陷与控制方法

汽车精密钣金件常见缺陷与控制方法

汽车精密钣金件常见缺陷与控制方法摘要:分析讨论了汽车精密钣金件在成型过程中常见的垫废料缺陷、拉裂、起皱、变薄、拉毛(拉痕)、回弹等主要缺陷及其主要影响因素,指出每种缺陷的产生均是材料、模具(设备)、方法3个方面共同作用的结果。

在实际生产过程中,应首先从材料性能、模具结构、工艺参数3个方面优化设计,并针对产品的具体缺陷类型的主要影响因素加以调控,在根本上降低成型缺陷的产生,提高产品合格率,提升产品质量,提升我国汽车工业的竞争力。

关键词:钣金件;成型缺陷;影响因素;控制方法近年来,中国宏观经济持续快速增长,汽车工业成为国民经济重要的支柱产业,取得了令人瞩目的成绩,中国已成为全球汽车产销量第一的国家。

汽车钣金件既是汽车的外观装饰性零件,又是封闭薄壳状的受力零件;内部钣金件更是具有骨架作用,用于提高车身的刚性,并连接或固定内饰件及其它零件。

可以说,汽车钣金件兼有保护乘员安全和提升汽车美观性的重要功能。

因此,分析汽车钣金件常见缺陷、产生原因及其解决措施,有助于实现质量、性能、价格、美观的高度统一。

1钣金件常见缺陷及其控制方法1.1垫废料缺陷汽车钣金件一般采用冲压工艺制造,在连续的冲压过程中如果没有及时清理冲床内上道工序留下的残渣(如冲压件的毛刺残余),或者冲模在连续使用中没有及时清洁、保养,在模具或设备上留下污垢等杂质,易使上下模具间隙在作业时掉落异物,从而造成冲压时钣金件上形成垫废料缺陷。

垫废料缺陷的形成导致钣金件表面凹凸不平,影响钣金件的外观、表面质量和尺寸精度,严重时甚至会影响到钣金件的力学性能。

因此,在作业时为了避免垫废料缺陷的产生应及时清除模具和设备中的废料和表面残渣等异物。

1.2拉裂拉裂是深冲工艺产生的常见缺陷,在企业生产实际中,拉裂钣金件通常可区别为两种情况:一种是钣金件产生清晰可辨的宏观裂纹或是断裂;另一种是裂纹仅出现在钣金件表面,裂纹深度很浅,即表面微裂纹。

表面微裂纹通常不易被肉眼所辨识,但此时局部材料已经失效,在受载条件下,表面微裂纹极易迅速扩展并引起零件断裂。

【机械设计教程】第07章 钣金设计

【机械设计教程】第07章 钣金设计

折弯线 折弯半径
折弯角度
图7.4.1 折弯特征三个要素
7.4.2选取钣金折弯命令
选取钣金折弯命令有如下两种方法: 方法一:在“Bending”工具栏中单击按钮。 方法二:选择下拉菜单命令。
7.4.3折弯操作
a)创建前
图7.4.2 折弯
b)创建后
7.5钣金的折叠
7.5.1关于钣金折叠
可以将展开钣金壁部分或全部重新折弯,使其还 原至展开前的状态,这就是钣金的折叠,
图7.6.1 钣金件模型及模型树
7.3.3创建附加钣金壁 1.平整附加钣金壁
a)创建前
2.凸缘
a)创建前
完全平整壁
b)创建后
凸缘
b)创建后
3.用户凸缘
a)创建前
用户凸缘
b)创建后
7.4钣金的折弯
7.4.1钣金折弯概述
钣金折弯是将钣金的平面区域弯曲某个角度,图 7.4.1是一个典型的折弯特征。在进行折弯操作 时,应注意折弯特征仅能在钣金的平面区域建立, 不能跨越另一个折弯特征。
第7章 钣 金 设 计
本章内容主要包括: 钣金设计概述。 创建钣金壁。 钣金的折弯。 钣金综合范例。
7.1 钣金设计概述
钣金件一般是指具有均一厚度的金属薄板零件,机电设 备的支撑结构(如电器控制柜)、护盖(如机床的外围护罩) 等一般都是钣金件。与实体零件模型一样,钣金件模型的各种 结构也是以特征的形式创建的,但钣金件的设计也有自己独特 的规律。
7.3.2创建第一钣金壁
图7.3.1 “Sheet Metal Parameters”对话框
1.第一钣金壁——平整钣金壁
图7.3.8 “Walls”子菜单和“Rollde Walls”子菜单
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

壁是设计中钣金件材料的任何截面
壁是设计中钣金件材料的任何截面。

在 Pro/SHEETMETAL 中,有两种主要壁类型: ∙ 主要壁 (Primary walls) - 是独立的壁,不需要有其它壁。

主要壁可以是“分离的”(Unattached)、“平整”(Flat)、“拉伸”(Extruded)、“旋转”(Revolve)、“混合”(Blend)、“偏移”(Offset)、“可变截面扫描”(Variable Section Sweep)、“扫描混合”(Swept Blend)、“螺旋扫描”(Helical Sweep)、“自边界”(From Boundaries)、“将剖面混合到曲面”(Blend Section To Surfaces)、“在曲面间混合”(Blend Between Surfaces)、“从文件混合”(Blend from File)、“将切面混合到曲面”(Blend Tangent to Surfaces)。

∙ 次要壁 (Secondary walls) - 至少从属于一个主要壁。

它们是主要壁的子项。

次要壁包括所有主要壁,以及“平整”(Flat)、“法兰”(Flange)、“延伸”(Extend)、“扭转”(Twist) 和“合并”(Merge)。

如果是在从头开始设计零件,主要壁则必须是第一个特征。

只有在创建主要壁之后,所有特征选项才可用。

然后可将任何适用的钣金件和实体类特征添加到设计中。

创建次要壁时,可选择使壁为连接或未连接的。

除延伸壁外,次要壁可以连接到整个边,也可以连接到一部分边(它是壁一部分)。

连接的次要壁可使用:
自动生成的有折弯角度的壁
没有折弯的壁
可用非连接壁选项创建独立于主要壁的壁。

在知道中间截面外观前就可能创建侧壁。

但要切记次要壁从属于主要壁。

如果删除主要壁,次要壁也随之删除。

注意:虽然非连接壁选项看似组件,但它并不是组件。

最后,必须连接或合并壁。

非连接
钣金件壁具有恒定的厚度。

壁的厚度是通过自钣金件零件的驱动曲面偏移其偏移曲面而形成的。

零件完全再生后,形成侧曲面。

许多钣金件壁都需要某种止裂槽。

没有止裂槽,就可能出现一些不希望的裂缝或拉伸。

对于各种壁,都可使用自动止裂槽。

相关文档
最新文档