四阶行列式的三种计算方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四阶行列式的三种计算方法
三阶行列式性质性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面
利用对角线法则。

在已给的行列式的右边添加已给行列式的第一列和第二列,把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线成为次对角线。

这时候行列式的值就等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。

利用对角线法则进行计算时,将实线上的三个元素的乘积冠正号,虚线上的三个元素乘积冠名负号,利用余子式。

将矩阵划去第i行和第j列所产生的的n-1阶行列式叫做矩阵a的元素aij的余子式,记为mij。

然后利用改写余子式的方法,将行列式的第二行和第三行也同样改写展开,最后按照+-+-+-的规律给每一项添加符号即可。

提出了一种计算三阶行列式的新方法,把三阶行列式的计算转化为两阶行列式的计算,并且与行列式按行(列)展开有很大的区别.1预备知识通过文献我们知道三阶矩阵的行列式的基本算法.现在我们看一看如何计算一个三阶矩阵的行列式。

相关文档
最新文档