黄滩镇初中2018-2019学年初中七年级上学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄滩镇初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•六盘水)下列说法正确的是()
A. |﹣2|=﹣2
B. 0的倒数是0
C. 4的平方根是2
D. ﹣3的相反数是3
2.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()
A. 2.3×105辆
B. 3.2×105辆
C. 2.3×106辆
D. 3.2×106辆
3.(2分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()
A. 0.675×105
B. 6.75×104
C. 67.5×103
D. 675×102
4.(2分)计算的结果为
A. -5x2
B. 5x2
C. -x2
D. x2
5.(2分)(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()
A. 2.7×105
B. 2.7×106
C. 2.7×107
D. 2.7×108
6.(2分)(2015•烟台)﹣的相反数是()
A. -
B.
C. -
D.
7.(2分)(2015•广东)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()
A. 1.3573×
B. 1.3573×
C. 1.3573×
D. 1.3573×
8.(2分)(2015•毕节市)﹣的倒数的相反数等于()
A. ﹣2
B.
C. -
D. 2
9.(2分)-5的绝对值为()
A. -5
B. 5
C.
D.
10.(2分)(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.
A. 140
B. 120
C. 160
D. 100
11.(2分)(2015•淮安)2的相反数是()
A. B. - C. 2 D. -2
12.(2分)(2015•海南)﹣2015的倒数是()
A. B. C. ﹣2015 D. 2015
二、填空题
13.(1分)(2015•梧州)计算:3﹣4= ________.
14.(1分)(2015•湖州)计算:23×()2=________ .
15.(1分)(2015•湘西州)﹣2015的绝对值是________ .
16.(1分)(2015•梧州)如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 ________个圆组成.
17.(1分)(2015•湘西州)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为________ .
18.(1分)(2015•贺州)中国的陆地面积约为9600000km2,这个面积用科学记数法表示为
________km2.
三、解答题
19.(13分)阅读下面的材料:
如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:
如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B点,然后向右移动6cm到达C点,用1个单位长度表示1cm.
(1)请你在数轴上表示出A、B、C三点的位置:
(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;
(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);
(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.
20.(15分)已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值
(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?
(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问
的值是否发生变化,请说明理由.
21.(20分)任何一个整数N,可以用一个的多项式来表示:
N= .
例如:325=3×102+2×10+5.
一个正两位数的个位数字是x,十位数字y.
(1)列式表示这个两位数;
(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.
(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.
(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.
22.(7分)定义:若a+b=2,则称a与b是关于1的平衡数.
(1)3与________是关于1的平衡数,5﹣x与________是关于1的平衡数.(用含x的代数式表示)
(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1 的平衡数,并说明理由.23.(8分)(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.
(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?
(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.
三角形内点的个数图形最多剪出的小三角形个数
13
5
7
(1)【问题解决】
①当三角形内有4个点时,最多剪得的三角形个数为________;
②你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加________个;
③猜想:当三角形内点的个数为n时,最多可以剪得________个三角形;
像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.(2)【问题拓展】请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?
24.(15分)粮库天内进出库的粮食吨数如下(“ ”表示进库,“ ”表示出库):,,,,,.
(1)经过这天,库里的粮食是增多了还是减少了?
(2)经过这天,仓库管理员结算时发现库里还存吨粮食,那么天前库里存粮多少吨?
(3)如果进出的装卸费都是每吨元,那么这天要付多少装卸费?
25.(15分)已知x、y为有理数,现规定一种新运算※,
满足x※y=3y−6x+2.
(1)求2※3的值;
(2)求(※)※(−2)的值;
(3)化简a※(2a+3).
26.(20分)如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)的形状拼成一个正方形.
(1)你认为图(2)中的阴影部分的正方形边长是多少?
(2)请用两种不同的方法求图(2)阴影部分的面积;
(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.
(4)根据第(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.
黄滩镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)
一、选择题
1.【答案】D
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根
【解析】【解答】A、|﹣2|=2,错误;
B、0没有倒数,错误;
C、4的平方根为±2,错误;
D、﹣3的相反数为3,正确,
故选D.
【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.
2.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】2014年底机动车的数量为:3×105+2×106=2.3×106.
故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
3.【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】将67500用科学记数法表示为:6.75×104.
故选:B.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
4.【答案】D
【考点】合并同类项法则及应用
【解析】【分析】根据合并同类项法则计算:.
故选D
5.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】将27 000 000用科学记数法表示为2.7×107.
故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
6.【答案】B
【考点】相反数及有理数的相反数
【解析】【解答】解:﹣的相反数是.
故选B.
【分析】根据只有符号不同的两个数叫做互为相反数解答.
7.【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】将13 573 000用科学记数法表示为:1.3573×107.
故选:B.
8.【答案】D
【考点】相反数及有理数的相反数,有理数的倒数
【解析】【解答】﹣的倒数为﹣2,所以﹣的倒数的相反数是:2.
故选:D
【分析】根据倒数和相反数的定义分别解答即可.
9.【答案】B
【考点】绝对值及有理数的绝对值
【解析】
【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.
【解答】-5的绝对值为5,
故选:B.
【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
10.【答案】B
【考点】一元一次方程的实际应用-销售问题
【解析】【解答】设商品的进价为每件x元,售价为每件0.8×200元,由题意,得
0.8×200=x+40,
解得:x=120.
故选:B.
【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.11.【答案】D
【考点】相反数及有理数的相反数
【解析】【解答】2的相反数是2,
故选:D.
【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.
12.【答案】A
【考点】有理数的倒数
【解析】【解答】∵﹣2015×()=1,
∴﹣2015的倒数是
故选:A
【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.
二、填空题
13.【答案】-1
【考点】有理数的减法
【解析】【解答】解:3﹣4=3+(﹣4)=﹣1.
故答案为:﹣1.
【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.
14.【答案】2
【考点】有理数的乘法,有理数的乘方
【解析】【解答】解:23×()2=8×=2,
故答案为:2.
【分析】根据有理数的乘方,即可解答.
15.【答案】2015
【考点】相反数及有理数的相反数
【解析】【解答】解:∵﹣2015的绝对值等于其相反数,
∴﹣2015的绝对值是2015;
故答案为:2015.
【分析】根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.
16.【答案】51
【考点】探索图形规律
【解析】【解答】解:第⑥个图形中圆的个数是:6+7+8+9+10+11=51.
故答案为:51.
【分析】根据图形可得第n个图形一定有n排,最上边的一排有n个,下边的每排比上边的一排多1个,据此即可求解.
17.【答案】5.4×106
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将5400000用科学记数法表示为:5.4×106.
故答案为:5.4×106.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
18.【答案】9.6×106
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:9600000km2用科学记数法表示为9.6×106.
故答案为:9.6×106.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数
的绝对值<1时,n是负数.
三、解答题
19.【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,
(2)5;1或-7
(3)-3+x
(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,
∵点C的速度比点A的速度快,
∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,
∵点B向左移动,点A向右移动,
∴点A在点B的右侧,
∴AB=(-3+t)-(-4-3t)=1+4t,
∴CA-AB=(5+4t)-(1+4t)=4.
【考点】数轴及有理数在数轴上的表示,两点间的距离
【解析】【解答】(2)CA=2-(-3)=2+3=5;
当点D在点A右侧时,点D表示的数是:4+(-3)=1;
当点D在点A左侧时,点D表示的数是:-3-4=-7;
故答案为5;1或-7.
(3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.
【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;
(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);
由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D在点A左侧时,两种情况;
(3)向右移动x,在原数的基础上加“x”;
(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.
20.【答案】(1)解:a=-3,b=9
(2)解:设3秒后,点C对应的数为x
则CA=|x+3|,CB=|x-9|
∵CA=3CB
∴|x+3|=3|x-9|=|3x-27|
当x+3=3x-27,解得x=15,此时点C的速度为
当x+3+3x-27=0,解得x=6,此时点C的速度为
(3)解:设运动的时间为t
点D对应的数为:t
点P对应的数为:-3-5t
点Q对应的数为:9+20t
点M对应的数为:-1.5-2t
点N对应的数为:4.5+10t
则PQ=25t+12,OD=t,MN=12t+6
∴为定值.
【考点】线段的长短比较与计算,一元一次方程的实际应用-几何问题,几何图形的动态问题
【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。

(2)根据点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,可表示出CA=|x+3|,CB=|x-9|,再由CA=3CB,建立关于x的方程,求出方程的解,然后求出点C的速度即可。

(3)根据点的运动速度和方向,分别用含t的代数式表示出点D、P、Q、M、N对应的数,再分别求出PQ、
OD、MN的长,然后求出的值时常量,即可得出结论。

21.【答案】(1)解:10y+x
(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除
(3)解:∵- =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数
(4)解:∵+ + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<
1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时=748成立,这个三位数为748.
【考点】列式表示数量关系,整式的加减运算
【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。

(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

22.【答案】(1)﹣1;x﹣3
(2)解:a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.
【考点】整式的加减运算,一元一次方程的其他应用,定义新运算
【解析】【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,
∴3与﹣1是关于1的平衡数,
设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,
∴5﹣x与x﹣3是关于1的平衡数,
故答案为:﹣1;x﹣3;
【分析】(1)根据平衡数的定义,可设3的关于1的平衡数为a,因此可得出3+a=2,解方程求出a的值,即可得出答案;设5﹣x的关于1的平衡数为b,建立方程为5﹣x+b=2,解方程求出b的值。

(2)利用平衡数的定义,求出a+b,将a、b代入化简,若a+b=2那么a与b是关于1的平衡数,否则就不是。

23.【答案】(1)9;2;2n+1
(2)解:1+3+5+7+…+(2n-1)+(2n+1)=
= (n+1)(1+2n+1)
=(n+1)2
=n2+2n+1.
【考点】探索图形规律
【解析】【解答】解:(1)①∵当三角形内点的个数为1时,最多可以剪得3个三角形;
当三角形内点的个数为2时,最多可以剪得5个三角形;
当三角形内点的个数为3时,最多可以剪得7个三角形;
∴当三角形内点的个数为4时,最多可以剪得9个三角形;
故答案为:9;
②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;
故答案为:2;
③∵1×2+1=3,2×2+1=5,3×2+1=7,
∴当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
故答案为:2n+1;
【分析】(1)①探索图形规律的题,根据题意画出图形即可得出答案;②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;③通过观察,三角形内的点每增加1个,所剪出的三角形的个数就增加两个,而所剪出的三角形的个数是从1开始的连续奇数个,根据奇数的表示方法,当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
(2)根据补项法,1+3+5+7+…+(2n-1)+(2n+1)=
,根据连续奇数和
的计算方法,用首加尾的和为(2n+1+1)共有这样的加数和的个数为,从而利用用首加尾的和再乘以这样的和的个数即可算出答案。

24.【答案】(1)解:
答:减少了
(2)解:设原存量吨
答:天前存吨
(3)解:吨

答:要付吨
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)根据有理数的加法法则将进出库的数据相加,若结果为正,库里的粮食增多;若结果为负,库里的粮食减少;
(2)根据题意可得相等关系:天前库里存粮的吨数- 库里的粮食减少的吨数=480,列出非常即可求解;
(3)将进出库的数据的绝对值相加,再乘以每吨的装卸费即可求解。

25.【答案】(1)解:2※3=3×3-6×2+2
=9-12+2
=-1
(2)解:(※)※(−2)
= ※(-2)
=1※(-2)
=3×(-2)-6×1+2
=-6-6+2
=-10
(3)解:a※(2a+3).
=3(2a+3)-6a+2
=6a+9-6a+2
=11
【考点】定义新运算,含括号的有理数混合运算
【解析】【分析】(1)根据新定义运算法则:x※y=3y−6x+2,列式计算出2※3的值。

(2)利用新定义运算法则,先算括号里的※=1,再列式算出1※(-2)的值。

(3)根据新定义运算法则,列式,然后化简即可。

26.【答案】(1)解:图(2)中的阴影部分的正方形边长是:m-n
(2)解:方法(1):图(2)阴影部分的面积=(m-n)2;
方法(2):图(2)阴影部分的面积=(m+n)2-4mn;
(3)解:(m+n)2=(m﹣n)2+4mn,或(m-n)2=(m+n)2-4mn,或(m+n)2-(m﹣n)2=4mn。

(4)解:∵(a﹣b)2=(a+b)2-4ab,a+b=7,ab=5,
∴(a﹣b)2=72-4×5=29.
【考点】整式的加减运算
【解析】【分析】(1)通过图形观察即可得出:图(2)中的阴影部分的正方形边长是:m-n;
(2)方法(1)利用正方形的面积等于边长的平方可以直接得出;方法(2)利用大正方形的面积减去4个小矩形的面积可以算出;
(3)根据用两种不同的方法表示同一个图形的面积,其结果应该相等即可得出;再根据等式的性质即可得出其它积中情况;
(4)利用(3)的关系式,整体代入即可得出答案。

相关文档
最新文档