人教版初一数学上册期末考试试题及答案 (6)
(完整版)人教版七年级数学上册期末试卷及答案doc

(完整版)人教版七年级数学上册期末试卷及答案doc一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70C .182D .2062.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=- D .235a b ab +=5.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃6.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣77.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +18.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =139.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯ C .70.1510⨯ D .61.510⨯10.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0m B .0.8m C .0.8m - D .0.5m - 11.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定12.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==13.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.17.已知x=5是方程ax ﹣8=20+a 的解,则a= ________18.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______. 19.已知23,9n mn aa -==,则m a =___________.20.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 21.15030'的补角是______.22.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.23.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.24.计算:3+2×(﹣4)=_____.25.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.26.8点30分时刻,钟表上时针与分针所组成的角为_____度. 27.-2的相反数是__.28.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.29.钟表显示10点30分时,时针与分针的夹角为________. 30.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、压轴题31.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.32.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.33.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.34.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a++|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.35.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.36.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.37.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.38.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.2.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.B解析:B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x ,故该选项计算错误,不符合题意,B.2ab ab ab -=,计算正确,符合题意,C.-2a+3a=a ,故该选项计算错误,不符合题意,D.2a 与3b 不是同类项,不能合并,故该选项计算错误,不符合题意, 故选:B. 【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.5.D解析:D 【解析】 【分析】这天的温差就是最高气温与最低气温的差,列式计算. 【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃), 故选:D . 【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.6.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.7.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.D解析:D 【解析】 【分析】方程移项,把x 系数化为1,即可求出解. 【详解】解:方程3x ﹣1=0, 移项得:3x =1,解得:x =13, 故选:D . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.D解析:D 【解析】 【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】150万=1500000=61.510⨯, 故选:D. 【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.10.C解析:C 【解析】 【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可. 【详解】解∵水位升高0.6m 时水位变化记作0.6m +, ∴水位下降0.8m 时水位变化记作0.8m -,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.13.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.14.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.15.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题16.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.17.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.18.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键19.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.20.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键21.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.24.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14026.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.27.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.28.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm ,AM :BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm .BM=12cm ,根据线段中点的定义得到AP=12AM=2cm ,AQ=12AB=8cm ,从而得到答案. 【详解】 解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ-AP=6cm ;故答案为:6cm .【点睛】 本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.29.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°. 解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°. 解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°. 故答案为:135°. 30.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、压轴题31.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12AE , ∴BE=AB=4, ∴点E 表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n 节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.32.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+.()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 33.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.34.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.35.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE =6∠BOC+6∠COD=4(∠AOE ﹣∠BOD )+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,36.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23,。
人教版七年级上册数学期末考试试卷(含参考答案)

人教版七年级上册数学期末考试试卷一、选择题(本题共8小题,每小题3分,共24分)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣33.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.25.8×105B.2.58×105C.2.58×106D.0.258×1074.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b5.如图所示几何体的俯视图是()A.B.C.D.6.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类B类C类50200400252015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡7.下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行8.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100二、填空题(本题共10小题,每小题3分,共30分)9.﹣1.5的绝对值是,﹣1.5的倒数是.10.在,3.14,0.161616…,中,分数有个.11.|x﹣3|+(y+2)2=0,则y x为.12.一个几何体的表面展开图如图所示,则这个几何体是.13.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.14.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为.15.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是.16.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为cm.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设,可得方程.18.如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为.三、解答题(本题共9小题,共96分)19.计算(12)(1)4×(﹣5)﹣16÷(﹣8)﹣(﹣10)(2)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2].20.(12分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.21.解方程(12)(1)4(2x﹣3)﹣(5x﹣1)=7(2).22.(12分)如图,已知OD是∠AOB的角平分线,C点OD上一点.(1)过点C画直线CE∥OB,交OA于E;(2)过点C画直线CF∥OA,交OB于F;(3)过点C画线段CG⊥OA,垂足为G.根据画图回答问题:①线段长就是点C到OA的距离;②比较大小:CE CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD∠ECO.23.(12)如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:cm3.24.(12分)如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)图中共有对互补的角.(2)若∠AOD=50°,求出∠BOC的度数;(3)判断OE是否平分∠BOC,并说明理由.25(12分).甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时km;快车的速度为每小时km;(2)当两车相距300km时,两车行驶了小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.26.(12分)已知△ABC中,∠ABC=∠ACB,D为射线CB上一点(不与C、B重合),点E为射线CA上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=40°,∠DAE=30°,则α=,β=.②写出α与β的数量关系,并说明理由;(2)如图(2),当D点在BC边上,E点在CA的延长线上时,其它条件不变,写出α与β的数量关系,并说明理由.(3)如图(3),D在CB的延长线上,根据已知补全图形,并直接写出α与β的关系式.七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题2分,共16分)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个【考点】正数和负数.【专题】探究型.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣3【考点】有理数大小比较;有理数的加法.【专题】计算题.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.25.8×105B.2.58×105C.2.58×106D.0.258×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将258000用科学记数法表示为2.58×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.5.如图所示几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从几何体的上面看所得到的图形即可.【解答】解:从几何体的上面看可得,故选:C.【点评】此题主要考查了简单几何体的三视图,关键是所看到的线都要用实线表示.y6.一家游泳馆的游泳收费标准为 30 元/次,若购买会员年卡,可享受如下优惠:会员年卡类型A 类B 类C 类办卡费用(元)50200400 每次游泳收费(元)252015例如,购买 A 类会员年卡,一年内游泳 20 次,消费 50+25×20=550 元,若一年内在该游泳馆游泳的次数介于 45~55 次之间,则最省钱的方式为()A .购买 A 类会员年卡B .购买 B 类会员年卡C .购买 C 类会员年卡D .不购买会员年卡【考点】一次函数的应用.【分析】设一年内在该游泳馆游泳的次数为 x 次,消费的钱数为 y 元,根据题意得: =50+25x ,y =200+20x , ABy =400+15x ,当 45≤x ≤55 时,确定 y 的范围,进行比较即可解答.C【解答】解:设一年内在该游泳馆游泳的次数为 x 次,消费的钱数为 y 元,根据题意得:y =50+25x ,Ay =200+20x ,By =400+15x ,C当 45≤x ≤55 时,1175≤y ≤1425;A1100≤y ≤1300;B1075≤y ≤1225;C由此可见,C 类会员年卡消费最低,所以最省钱的方式为购买 C 类会员年卡.故选:C .【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.7.下列结论中,不正确的是()A .两点确定一条直线B .两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行【考点】命题与定理.【分析】利用确定直线的条件、线段公理、对顶角的性质及平行线的定义分别判断后即可确定正确的选项.【解答】解:A、两点确定一条直线,正确;B、两点之间的所有连线中,线段最短,正确;C、对顶角相等,正确;D、过直线外一点有且只有一条直线与已知直线平行,故错误,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解确定直线的条件、线段公理、对顶角的性质及平行线的定义,属于基础题,难度不大.8.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【考点】一元一次方程的应用.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.二、填空题(本题共10小题,每小题2分,共20分)9.﹣1.5的绝对值是 1.5,﹣1.5的倒数是.【考点】倒数;绝对值.【分析】根据倒数和绝对值的定义解答即可.【解答】解:﹣1.5的绝对值是1.5,﹣1.5的倒数是,故答案为:1.5;.【点评】本题考查了倒数、绝对值的定义,熟练掌握定义是解题的关键.10.在,3.14,0.161616…,中,分数有3个.【考点】有理数.【分析】根据整数和分数统称为有理数解答即可.【解答】解:,3.14,0.161616…是分数,故答案为:3.【点评】本题考查的是有理数的概念,掌握整数和分数统称为有理数是解题的关键.11.|x﹣3|+(y+2)2=0,则y x为﹣8.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以y x=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个几何体的表面展开图如图所示,则这个几何体是四棱锥.【考点】几何体的展开图.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥;故答案为:四棱锥.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.13.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是C.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“E”是相对面,“B”与“D”是相对面,“C”与盒盖是相对面.故答案为:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.如果一个角是23°15′,那么这个角的余角是66.75°.【考点】余角和补角;度分秒的换算.【分析】根据余角的定义即可得出结论.【解答】解:∵一个角是23°15′,∴这个角的余角=90°﹣23°15′=66°75′=66.75°.故答案为:66.75.【点评】本题考查的是余角和补角,熟知如果两个角的和等于90°(直角),就说这两个角互为余角是解答此题的关键.15.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是﹣5.【考点】代数式求值.【分析】直接将代数式变形进而化简求值答案.【解答】解:∵代数式x+2y的值是3,∴代数式1﹣2x﹣4y=1﹣2(x+2y)=1﹣2×3=﹣5.故答案为:﹣5.【点评】此题主要考查了代数式求值,正确将所求代数式变形是解题关键.16.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为20cm.【考点】两点间的距离.【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故答案为:20.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设这堆糖果有x个,可得方程.【考点】由实际问题抽象出一元一次方程.【分析】设这堆糖果有x个,根据不同的分配方法,小朋友的人数是一定的,据此列方程.【解答】解:设这堆糖果有x个,若每人2颗,那么就多8颗,则有小朋友人,若每人3颗,那么就少12颗,则有小朋友人,据此可知=.故答案为这堆糖果有x个.【点评】本题考查了由实际问题抽象出的一元一次方程,比较简单,关键是根据题意设出未知数,此题还可以设糖果的总量为x,这样得出的方程会不一样,但最终的结果是一样的.18.如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为.【考点】列代数式.【分析】利用割补法可得阴影部分的面积等于正方形面积的一半.【解答】解:如图所示,S阴影=S=AC×BD=a2,正方形ABCD故答案为:a2.【点评】此题主要考查了列代数式的能力,利用割补法判断出阴影部分的面积是解决本题的难点.三、解答题(本题共9小题,共64分)19.计算(1)4×(﹣5)﹣16÷(﹣8)﹣(﹣10)(2)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣20+2+10=﹣20+12=﹣8;(2)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值;合并同类项.【专题】计算题.【分析】先去括号,然后合并同类项,从而得出最简整式,然后将x及y的值代入即可得出答案.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=﹣ab2,当a=﹣1,b=﹣2时,原式=4.【点评】此题考查了整式的加减及化简求值的知识,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.21.解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.如图,已知OD是∠AOB的角平分线,C点OD上一点.(1)过点C画直线CE∥OB,交OA于E;(2)过点C画直线CF∥OA,交OB于F;(3)过点C画线段CG⊥OA,垂足为G.根据画图回答问题:①线段CG长就是点C到OA的距离;②比较大小:CE>CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD=∠ECO.【考点】作图—复杂作图;角的大小比较;垂线段最短;点到直线的距离.【分析】根据已知条件画出图形,然后根据图形即可得到结论.【解答】解:①线段CG长就是点C到OA的距离;②比较大小:CE>CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD=∠ECO.故答案为:CG,>,=.【点评】本题考查了作图﹣复杂作图,角的大小的比较,垂线段的性质,点到直线的距离,熟记各概念是解题的关键.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:12cm3.【考点】展开图折叠成几何体.【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、2厘米和2厘米,将数据代入长方体的体积公式即可求解.【解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的容积为:3×2×2=12(cm3).故答案为:12.【点评】本题考查了平面图形的折叠与长方体的展开图及其体积的计算,比较简单.24.如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)图中共有5对互补的角.(2)若∠AOD=50°,求出∠BOC的度数;(3)判断OE是否平分∠BOC,并说明理由.【考点】余角和补角.【分析】(1)根据角平分线的定义得到∠1=∠2,根据邻补角的性质解答即可;(2)根据角平分线的定义和补角的概念计算;(3)根据等角的补角相等证明.【解答】解:(1)∵OD平分∠AOC,∴∠1=∠2,∵∠DOE=90°,∴∠2+∠3=90°,∴∠1+∠4=90°,∴∠1与∠DOB互补,∠2与∠DOB互补,∠3与∠AOE互补,∠4与∠AOE互补,∠AOC与∠BOC,故答案为:5;(2)∵∠AOD=50°,∴∠AOC=2∠AOD=100°,∴∠BOC=180°﹣100°=80°;(3)∵∠1=∠2,∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4,∴OE平分∠BOC.【点评】本题考查的是余角和补角的概念、角平分线的定义,掌握如果两个角的和等于90°,这两个角互为余角.如果两个角的和等于180°,这两个角互为补角是解题的关键.25.如图,∠AOB=90°,在∠AOB的内部有一条射线OC.(1)画射线OD⊥OC.(2)写出此时∠AOD与∠BOC的数量关系,并说明理由.【考点】垂线.【分析】(1)根据垂线的定义,可得答案;(2)根据余角的性质,可得答案;根据角的和差,可得答案.【解答】解:(1)如图:,;(2)如图1:,∠AOD=∠BOC.因为∠AOB=90°,所以∠AOC+∠BOC=90°.因为OD⊥OC,所以∠AOD+∠AOC=90°.所以∠AOD=∠BOC;如图2:,∠AOD+∠BOC=180°.因为∠AOD=∠AOC+∠BOC+∠BOD,所以∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=180°.【点评】本题考查了垂线,利用了余角的性质,角的和差,要分类讨论,以防遗漏.26.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围不超过150千瓦时的部分超过150千瓦时,但不超过300千瓦时的部分超过300千瓦时的部分电费价格(单位:元/千瓦时)aba+0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费122.5元.(1)求上表中a、b的值.(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费277.5元?(3)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价等于0.62元/千瓦时?【考点】一元一次方程的应用.【分析】(1)利用居民甲用电100千瓦时,交电费60元,可以求出a的值,进而利用居民乙用电200千瓦时,交电费122.5元,求出b的值即可;(2)首先判断出用电是否超过300千瓦时,再根据收费方式可得等量关系:前150千瓦时的部分的费用+超过150千瓦时,但不超过300千瓦时的部分的费用+超过300千瓦时的部分的费用=交费277.5元,根据等量关系列出方程,再解即可;(3)根据当居民月用电量y≤150时,0.6≤0.62,当居民月用电量y满足150<y≤300时,0.65y﹣7.5≤0.62y,当居民月用电量y满足y>300时,0.9y﹣82.5≤0.62y,分别得出即可.【解答】解:(1)a=60÷100=0.6,150×0.6+50b=122.5,解得b=0.65.(2)若用电300千瓦时,0.6×150+0.65×150=187.5<277.5,所以用电超过300千瓦时.设该户居民月用电x千瓦时,则0.6×150+0.65×150+0.9(x﹣300)=277.5,解得x=400答:该户居民月用电400千瓦时.(3)设该户居民月用电y千瓦时,分三种情况:①若y不超过150,平均电价为0.6<0.62,故不合题意;②若y超过150,但不超过300,则0.62y=0.6×150+0.65(y﹣150),解得y=250;③若y大于300,则0.62y=0.6×150+0.65×150+0.9(y﹣300),解得.此时y<300,不合题意,应舍去.综上所述,y=250.答:该户居民月用电250千瓦时.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.27.甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时75km;快车的速度为每小时150km;(2)当两车相距300km时,两车行驶了或小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.【考点】一元一次方程的应用.【分析】(1)由速度=路程÷时间计算即可;(2)需要分类讨论:相遇前距离300km和相遇后相距300km;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:慢车在前和慢车在后.【解答】解:(1)慢车速度为:900÷12=75(千米/时).快车的速度:75×2=150(千米/时).故答案是:75,150;(2)①当相遇前相距300km时,②当相遇后相距300km时,==(小时);(小时);综上所述,当两车相距300km时,两车行驶了或小时;故答案是:或;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:①慢车在前,则75×3+75x﹣150=150x,21解得x=1.此时900﹣150×(3+1)﹣150×1=150.②慢车在后,则75×3+75x+150=150x,解得x=5.此时第一列快车已经到站,150×5=750.综上,第二列快车和慢车相距150km时,两列快车相距150km或750km.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意:分类讨论数学思想的应用.22。
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)

2024年最新人教版初一数学(上册)期末考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √3B. √2C. √5D. √94. 已知2x3=0,则x的值是()A. 0B. 1C. 2D. 35. 下列式子中,计算结果为0的是()A. 5x 5xB. 5x + 5xC. 5x 5xD. 5x / 5x二、判断题5道(每题1分,共5分)1. 任何两个有理数的和仍然是有理数。
()2. 任何两个有理数的积仍然是有理数。
()3. 任何两个整数的商仍然是有理数。
()4. 任何两个整数的和仍然是有理数。
()5. 任何两个整数的差仍然是有理数。
()三、填空题5道(每题1分,共5分)1. 已知a > b,且c > d,则a + c ______ b + d。
2. 若x为正数,则x为______数。
3. 任何数与0相乘,结果都为______。
4. 任何数与1相乘,结果都为______。
5. 任何数与1相乘,结果都为______。
四、简答题5道(每题2分,共10分)1. 简述有理数的定义。
2. 简述整数的定义。
3. 简述分数的定义。
4. 简述正数和负数的定义。
5. 简述相反数的定义。
五、应用题:5道(每题2分,共10分)1. 已知a > b,且c < d,求证:a + c > b + d。
2. 已知a > b,且c > d,求证:a c < b d。
3. 已知a > b,且c < d,求证:a c > b d。
4. 已知a > b,且c > d,求证:a c > b d。
人教版七年级上册数学期末考试卷及答案解析

人教版七年级上册数学期末考试卷及答案解析一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是()A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为()A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是()A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解.【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上【考点】规律型:数字的变化类.【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣>﹣0.4.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣|=,|﹣0.4|=0.4,∵<0.4,∴﹣>﹣0.4.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.计算:=﹣.【考点】有理数的乘方.【分析】直接利用乘方的意义和计算方法计算得出答案即可.【解答】解:﹣(﹣)2=﹣.故答案为:﹣.【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.13.若∠α=34°36′,则∠α的余角为55°24′.【考点】余角和补角;度分秒的换算.【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°2 4′,故答案为:55°24′.【点评】此题主要考查了余角,关键是掌握余角定义.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=1.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|=0.【考点】实数与数轴.【专题】计算题.【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c<b<0<a,|a|<|b|<|c|,∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1.【考点】代数式求值.【专题】计算题.【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.【解答】解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为2.【考点】同解方程.【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.【解答】解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,则AM= 13或7cm.【考点】两点间的距离.【专题】计算题.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB 的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM=AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC的中点,则AM=AC=7cm.故答案为:13或7.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为2.5cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【考点】展开图折叠成几何体.【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【考点】有理数的混合运算.【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣××6=﹣1﹣1=﹣2.【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.解方程:(1)4﹣x=3(2﹣x);(2)﹣=1.【考点】解一元一次方程.【分析】去分母,去括号,移项,合并同类项,系数化一.【解答】解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2),去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x=.【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到直线OA的距离,线段PC的长是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段P C、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.【分析】(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段O P的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH, CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH<PC<OC.【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间)豪华(元/间)三人间160400双人间140300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?【考点】一元一次方程的应用.【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为.根据题意,得160x+300×=4020.解得:x=12.从而=7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外)∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45°,∠COD 和∠AOB互余.【考点】余角和补角.【分析】(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA=8cmOB=4cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设CO的长是xcm,依题意有8﹣x=x+4+x,解得x=.故CO的长是cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.。
(完整版)人教版七年级数学上册期末试卷及答案doc

(完整版)人教版七年级数学上册期末试卷及答案doc一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元 2.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90° 3.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b4.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .5.4 =( )A .1B .2C .3D .46.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=- 7.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+8.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠9.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是()A.50°B.130°C.50°或 90°D.50°或 130°10.下列方程变形正确的是()A.方程110.20.5x x--=化成1010101025x x--=B.方程 3﹣x=2﹣5(x﹣1),去括号,得 3﹣x=2﹣5x﹣1 C.方程 3x﹣2=2x+1 移项得 3x﹣2x=1+2D.方程23t=32,未知数系数化为 1,得t=111.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④12.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.1202013.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查14.当x=3,y=2时,代数式23x y-的值是()A.43B.2 C.0 D.315.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题16.把53°24′用度表示为_____.17.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.18.9的算术平方根是________19.化简:2xy xy +=__________.20.已知23,9n m n a a -==,则m a =___________.21.计算:()222a -=____;()2323x x ⋅-=_____.22.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;23.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 24.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.25.化简:2x+1﹣(x+1)=_____.26.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.27.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.28.钟表显示10点30分时,时针与分针的夹角为________.29.用度、分、秒表示24.29°=_____.30.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.34.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.35.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.36.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?37.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.3.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.4.B解析:B【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.5.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.6.D解析:D【解析】【分析】设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x名工人生产螺栓,则(26-x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(26-x).故选:D.【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.解析:D【解析】【分析】方程两边同乘以6即可求解.【详解】12132x x +-=, 方程两边同乘以6可得,2x-6=3(1+2x ).故选D.【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.8.A解析:A【解析】【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,故选:A.【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.9.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.10.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.11.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.12.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.13.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.14.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果.【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.15.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.二、填空题16.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.17.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;18.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3=,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.19..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.20.27【解析】【分析】首先根据an =9,求出a2n =81,然后用它除以a2n−m ,即可求出am 的值.【详解】解:∵an =9,∴a2n =92=81,∴am =a2n÷a2n−m =81÷3=2解析:27【解析】【分析】首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值.【详解】解:∵a n =9,∴a 2n =92=81,∴a m =a 2n ÷a 2n−m =81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键22.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大23.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.24.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.26.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14027.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.28.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.29.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.30.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.33.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.34.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC ﹣BC =AB ,∴5x ﹣3x =22,解得:x =11,∴点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN =MP +NP =12AP +12BP =12(AP +BP )=12AB =12×22=11; ②当点P 运动到点B 的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.35.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速。
人教版七年级数学上册期末考试试卷含答案

人教版数学七年级上册期末考试试题一、选择题(每小题3分,共30分)1.a、b,在数轴上表示如图1,下列判断正确的是()A.0a>+bB.0+b1>C.0-b1<-D.01>a+2.如图2,在下列说法中错误的是()A.射线OA的方向是正西方向B.射线OB的方向是东北方向C.射线OC的方向是南偏东60°D.射线OD的方向是南偏西55°3.下列运算正确的是( )A.2+ C.ab2=ba2-ab=3a53-x5=bx B.abD.a=-)(-bba+4.如果有理数ba,满足0a,则下列说法正确的是( )+b<ab,0>A.0<ba D.0>b,0<,0<a>ba C.0a B.0,0>,0><b5.若0m+的值为( )+-n+m,如n1(2=||2)A.1-B.3- C.3 D.不确定6.若0a,那么( )|>|A.0≠a D.a为任意有理数a C.0a B.0><7.平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )A.2条B.3条C.4条D.1条或3条8.将长方形的纸ABCD沿AE折叠,得到如图3所示的图形,已知∠CED′=60º.则∠AED的是( )A.60ºB.50ºC.75ºD.55º9.在正方体的表面上画有如图4 a所示的粗线,图4 b是其展开图的示意图,但只在A面上有粗线,那么将图4 a中剩余两个面中的粗线画入图4 b中,画法正确的是()10.一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优惠”,乙旅行社告知家庭可按团体票计价,即每4收费。
若这两家旅行社每人原价相同,那么优惠条件是人均按全价5()A.甲比乙更优惠B.乙比甲更优惠C.甲与乙相同D.与原价有关二、填空题(每空3分,共30分)11.手枪上瞄准系统设计的数学道理是 。
人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.下列四个有理数中,绝对值最小的数是()A.-5B.0C.4D.-92.温度由﹣13℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃3.数据202万用科学记数法表示为()A.2.02×105B.0.202×107C.20.2×105D.2.02×1064.已知||1(2)312m m x--+=是关于x 的一元一次方程,则m 的值为()A.1m =B.2m =C.2m =-D.2m =±5.下列方程中,与13x x -=-+的解相同的是()A.20x +=B.230x -=C.22x x-=D.20x -=6.陈老师做了一个周长为()24a b +的长方形教具,其中一边长为()a b -,则另一边长为A.3b B.5a b +C.2a D.35a b-7.如图,点A,O,B 在一条直线上,OE⊥AB 于点O,如果∠1与∠2互余,那么图中相等的角有()A.6对B.5对C.4对D.3对8.若代数式2243(251)ax x y x bx y +-+--+-的值与x 的取值无关,则a b +的值为A.6B.-6C.2D.-29.如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD=2,则线段AB 的长是()A.10B.15C.20D.2510.一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2022次落下时,落点处表示的数为()A.-2022B.2022C.-1011D.1011二、填空题11.若点A、B、C、D 在数轴上的位置如图所示,则-3的相反数所对应的点是_________.12.计算:11||32-=_________.13.点A、B 在数轴上,若数轴上点A 表示-1,且AB=2,则点B 表示的数是_______.14.某企业对应聘人员进行专业考试,试题由50道不定项选择题组成,评分标准规定:每道题全选对得4分,不选得0分,选错或正确选项不全倒扣2分.已知某人有4道题未选,得了172分,则这个人全选对了_________道题.15.如图,将边长为m 的正方形纸片沿虚线剪成两块正方形和两块长方形,若拿掉边长为n 的小正方形后,再把剩下的三块图形拼成一块长方形,则这块长方形周长为_________.16.有一组数:(1,1,0),(2,4,7),(3,9,26),(4,16,63),…,按照其中的规律,第n 组数为_________.17.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=_____.18.如图,将一副三角尺的直角顶点O 重合在一起.若∠COB 与∠DOA 的比是2:7,OP 平分∠DOA,则∠POC=_________度.三、解答题19.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+320.解方程:(1)2121136x x +--=(2)1(35)2(5)2x x x --=+.21.先化简,再求值:2222734(2)2(32)a ab b b ab a ab --+---,其中2a =-,2b =.22.某同学在黑板上正确解答了一道整式的计算题,但被另一位同学不慎擦掉了算式中的一部分,如图所示:22(475)351x x x x +-+=--+.(1)求被擦掉的多项式;(2)若12x =-,求被擦掉多项式的值.23.已知x,y 为有理数,现规定一种新运算“⊗”,满足2021x y xy ⊗=-.(1)求(25)(4)⊗⊗-的值;(2)记()P a b c =⊗-,Q a b a c =⊗-⊗,请猜想P 与Q 的数量关系,并说明理由.24.如图,已知A、B 两点在数轴上,点A 表示的数为a,点B 表示的数为b,且a、b 满足2++-=,点P以每秒4个单位长度的速度从点A向右运动.点Q以每秒3个单(20)|60|0a b位长度的速度从点O向右运动(点P、点Q同时出发).(1)分别求出点A、B在数轴上对应的数;(2)经过几秒时,点P、点Q分别到原点O的距离相等?(3)当点P运动到什么位置时,恰好使AP=2BQ?25.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.26.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOC=70°,∠COE=50°,求∠BOD的度数;(2)如果∠AOE=160°,求∠BOD的度数;(3)如果OM平分∠AOE,∠COD:∠BOC=2:3,∠COM=15°,求∠BOD的度数.参考答案1.B【分析】根据负数的绝对值为负数的相反数,正数的绝对值是其本身,即可求解.【详解】解:55-=,00=,44=,99-=,且9540>>>,所以绝对值最小的数是0.故选:B.【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义即可求解.2.B【分析】根据题意列出算式,计算即可出值.【详解】解:由题意得上升后的温度为:﹣13+8=﹣5℃,故选:B.【点睛】本题考查有理数的加法,熟练掌握运算法则是解题的关键.3.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:202万62020000 2.0210==⨯.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C【分析】根据一元一次方程的定义可得到一个关于m 的方程,即可求出m 的值.【详解】解:根据一元一次方程的定义,可得:||11m -=,且20m -≠,可解得2m =-,故选:C.【点睛】本题主要考查一元一次方程的定义,解题的关键是掌握注意x 的系数不等于0.5.D【分析】先求出13x x -=-+的解为2x =,然后再分别求出每个选项中方程的解,即可求解.【详解】解:13x x -=-+,移项合并同类项得:24=x ,解得:2x =,A、20x +=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;B、230x -=,解得:32x =,与13x x -=-+的解不相同,故本选项不符合题意;C、22x x -=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;D、20x -=,解得:2x =,与13x x -=-+的解相同,故本选项符合题意;故选:D【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.6.A【分析】根据长方形周长公式表示另一边长即可.【详解】解:由题意得,另一边长为()2432a b a b b +--=故选:A.【点睛】此题考查了代数式的问题,解题的关键是掌握长方形周长公式.7.B【分析】根据互余的性质得出相等的角即可得出答案.【详解】解:图中相等的角有1,2,,,COA BOD AOE BOE COD BOE COD AOE ∠=∠∠=∠∠=∠∠=∠∠=∠,共5对故选:B.【点睛】此题考查了找等角的问题,解题的关键是掌握互余的性质.8.D【分析】已知多项式合并后,根据结果与x 的取值无关,求出a 与b 的值,代入计算即可求出值.【详解】解:2243(251)ax x y x bx y +-+--+-2243251ax x y x bx y =+-+-+-+2(2)(4)64a xb x y =-++-+由结果与x 的取值无关,得到a﹣2=0,b+4=0,解得:a=2,b=-4,242a b +=-=-,故选:D.【点睛】此题考查了整式的值与字母无关问题,熟练掌握整式运算法则是解本题的关键.9.C【分析】设AC=2x,则BC=3x,利用线段中点的性质表示出CD,列出方程即可解决.【详解】解:设AC=2x,则BC=3x,∴AB=AC+BC=5x,∵点D 是AB 的中点,∴AD=12AB=2.5x,∴CD=AD −AC=2.5x −2x=0.5x,∵CD=2,∴0.5x=2,∴x=4,∴AB=5x=20,故选:C.【点睛】本题考查了两点间距离,根据题目的已知并结合图形分析是解题的关键.10.C【分析】根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,当它跳第偶数次落下时,落点处表示的数为2n -,所以当它跳第2022次落下时,落点处表示的数为202221011-÷=-.故选:C【点睛】本题主要考查了数字类规律题,数轴上两点间的距离,明确题意,准确得到规律是解题的关键.11.A【分析】先求出-3的相反数,再根据所得的结果在数轴上找到对应的点即可.【详解】解:∵-3的相反数是3∴-3的相反数3对应的点是A .故答案为:A【点睛】本题考查了相反数的定义,数轴上点所表示的数等知识,关键在于正确理解相反数的意义.12.16【分析】根据绝对值的性质可得1111||3223-=-,即可求解.【详解】解:11111||32236-=-=.故答案为:16【点睛】本题主要考查了绝对值的性质,有理数的加减运算,熟练掌握绝对值的性质,有理数运算法则是解题的关键.13.-3或1##1或-3【分析】分两种情况:当点B 在点A 的右边时,当点B 在点A 的左边时,即可求解.【详解】解:根据题意得:当点B 在点A 的右边时,点B 表示的数是()211+-=;当点B 在点A 的左边时,点B 表示的数是()123--=-;∴点B 表示的数是-3或1.故答案为:-3或1【点睛】本题主要考查了数轴上两点间的距离,利用分类讨论思想解答是解题的关键.14.44【分析】设这个人全选对了x 道题,那么做错了()504x --道题,根据得了172分,可列方程求解.【详解】解:设这个人全选对了x 道题,根据题意得,()42504172x x ---=,解得44x =.答:这个人全选对了44道题.故答案为:44.【点睛】本题考查一元一次方程的应用,关键设出全选对的题目数,表示出做错的题目数,以分数做为等量关系列方程求解.15.4m【分析】根据题意和矩形的性质列出代数式解答即可.【详解】解:新长方形的周长=2[(m+n)+(m﹣n)]=4m.【点睛】本题考查正方形、矩形等知识,解题的关键是理解题意,学会利用所学知识解决实际问题.16.(n ,2n ,31n -)【分析】根据题意可得第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现,第n 组数为(n ,2n ,31n -).故答案为:(n ,2n ,31n -)【点睛】本题主要考查了数字类的规律题,明确题意,准确得到规律是解题的关键.17.23【详解】∵x+5=7-2(x-2)∴x=2.把x=2代入6x+3k=14得,12+3k=14,∴k=23.18.20【分析】根据条件可知90AOB COD ∠=∠=︒,并且180COB DOA AOB COD ∠+∠=∠+∠=︒,再根据COB ∠与DOA ∠的比是2:7,可求DOA ∠,再根据角平分线的定义和角的和差关系即可求解.【详解】解:180COB DOA COB COA COB DOB AOB COD ∠+∠=∠+∠+∠+∠=∠+∠=︒ ,又COB ∠ 与DOA ∠的比是2:7,718014027DOA ∴∠=︒⨯=︒+,OP 平分DOA ∠,70DOP ∴∠=︒,20POC ∴∠=︒.故答案为:20.【点睛】本题考查了余角与补角,角平分线的定义,正确认识COB DOA ∠+∠AOB COD =∠+∠180=︒这一个关系是解题的关键,这是一个常用的关系,需熟记.19.(1)10;(2)﹣1;(3)0;(4)2.【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=32;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.222a b -,4-【分析】直接去括号进而合并同类项,再把已知数据代入得出答案.【详解】解:原式2222734264a ab b b ab a ab =--+--+,222a b =-,当2a =-,2b =时,原式222a b =-,22(2)22=--⨯,48=-,4=-.【点睛】此题主要考查了整式的加减——化简求值,解题的关键是正确去括号、合并同类项.22.(1)2724x x -+-(2)274-【分析】(1)设被擦掉的多项式为M,根据题意列出多项式并化简即可.(2)将12x =-代入求解即可.(1)解:设被擦掉的多项式为M,则()22351475M x x x x =--+--+22351475x x x x =--+-+-2724x x =-+-.(2)解:若12x =-,则2724M x x =-+-21172422⎛⎫⎛⎫=-⨯-+⨯-- ⎪ ⎪⎝⎭⎝⎭274=-.【点睛】此题考查了整式的加减运算及求值,解题的关键是掌握整式的加减运算及求值的方法、通过合并同类项将整式进行化简.23.(1)6023(2)2021P Q =-,理由见解析【分析】(1)根据新运算可得()()(25)(4)20114⊗-=⊗-⊗-,再次利用新运算,即可求解;(2)根据新运算可得()2021P a b c ab ac =⊗-=--,Q a b a c ab ac =⊗-⊗=-,即可求解.(1)解:()()()()2542520214⊗⊗-=⨯-⊗-)()()20114=-⊗-()()201142021=-⨯--6023=;(2)解:2021P Q =-,理由如下:∵()()20212021P a b c a b c ab ac =⊗-=--=--,()20212021Q a b a c ab ac ab ac =⊗-⊗=---=-,∴2021P Q =-.【点睛】本题主要考查了有理数的混合运算,整式的混合运算,理解新运算是解题的关键.24.(1)20-、60(2)207秒或20秒(3)28或220【分析】(1)根据绝对值和平方的非负性可得200a +=,600b -=,即可求解;(2)设经过x 秒时,点P、点Q 分别到原点O 的距离相等,分两种情况:当点P、Q 在点O 两侧时,当点P 与Q 重合时,即可求解;(3)设经过y 秒时,恰好使AP=2BQ.分两种情况:当点Q 在点B 的左侧时,当点Q 在点B 的右侧时,即可求解.(1)解:∵()220600a b ++-=(),且()2200a +≥(),600b -≥,∴200a +=,600b -=,∴20a =-,60b =,∴点A、B 在数轴上对应的数分别20-、60.(2)解:设经过x 秒时,点P、点Q 分别到原点O 的距离相等,当点P、Q 在点O 两侧时,依题意得:2043x x -=,解得:207x =;当点P 与Q 重合时,依题意得:4203x x -=,解得:20x =,∴经过207秒或20秒时,点P、Q 分别到原点O 的距离相等.(3)解:设经过y 秒时,恰好使AP=2BQ.当点Q 在点B 的左侧时,依题意得:()42603y y =-,解得:12y =,∴4122028⨯-=,当点Q 在点B 的右侧时,依题意得:()42360y y =-,解得60y =,∴46020220⨯-=,∴当点P 运动到28或220位置时,恰好使AP=2BQ.【点睛】本题主要考查了数轴上两点间的距离,动点问题,一元一次方程的应用,利用分类讨论和数形结合思想解答是解题的关键.25.(1)①如图所示,射线AC 即为所求,见解析;②如图所示,线段AB,BC,BD 即为所求,见解析;③如图所示,线段CF 即为所求,见解析;(2)根据两点之间,线段最短.【分析】(1)①连接AC 并延长即可;②连接AB,BC,BD 即可;③以点A 为圆心,BD 长为半径画弧交AC 于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC 即为所求;②如图所示,线段AB,BC,BD 即为所求;③如图所示,线段CF 即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.26.(1)60°(2)80°(3)75°【分析】(1)根据OB 平分∠AOC,OD 平分∠COE,可得35BOC ∠= ,25COD ∠= ,即可求解;(2)根据OB 平分∠AOC,OD 平分∠COE,可得∠COD=12∠COE ,∠BOC =12∠AOC,从而得到∠BOD==12(∠COE +∠AOC),即可求解;(3)设∠COD=2x,则∠BOC=3x,可得∠COE =2∠COD =4x,∠AOC=2∠BOC =6x,从而得到∠AOE=10x,进而得到∠EOM=12∠AOE=5x,再由∠COM=15°,可得到x=15°,即可求解.(1)解:∵OB 平分∠AOC,∠AOC=70°,∴1352BOC AOC ∠=∠= ,∵OD 平分∠COE,∠COE=50°,∴1252COD COE ∠=∠= ,∴∠BOD=∠BOC+∠COD=35°+25°=60°.(2)解:∵OB平分∠AOC,OD平分∠COE,∴∠COD=12∠COE,∠BOC=12∠AOC∴∠BOD=∠COD+∠BOC=12∠COE+12∠AOC=12(∠COE+∠AOC)=12∠AOE=80°.(3)解∵∠COD:∠BOC=2:3,∴设∠COD=2x,则∠BOC=3x,∵OB平分∠AOC,OD平分∠COE,∴∠COE=2∠COD=4x,∠AOC=2∠BOC=6x,∴∠AOE=10x,∵OM平分∠AOE,∴∠EOM=12∠AOE=5x,∵∠EOM-∠COE=∠COM=15°,∴5x-4x=15°,∴x=15°,∴∠BOD=∠COD+∠BOC=2x+3x=75°.。
人教版数学七年级上册期末考试试题附答案

人教版数学七年级上册期末考试试卷(考试时间90分钟,共120分)一.选择题:相信你一定能选对!(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案涂在答题卡上,每小题3分,共36分)1.-2014的相反数是A.12014-B .20141C .-2014D .20142.下列式子是一元一次方程的是A.(3)2(3)x x ->-B.21x x +=C.232x x -=-D.02=-y x 3.据报道,2013年全国普通高校招生计划约6950000人,数据6950000用科学记数法表示为A.695410⨯ B.6.95610⨯ C.69.5610⨯ D.0.695710⨯4.如图所示,数轴上有点A 和点B,则线段AB 的长为A.4.5B.-4.5C.4.5或-4.5D.0.55.下列各式运算正确的是A.()()326-=-÷-B.94322=⎪⎭⎫ ⎝⎛-C.ab b a 523=+ D.23=-a a 6.若单项式243+n b a 与3215+-n m b a 能够合并,则=+n m A.2B.3C.4D.67.下列各式说法错误..的是A.如果22y x =,那么2233-ay ax -= B.如果aya x =,那么y x =C.如果bc ac =,那么ba = D.如果b a =,那么22b a =8.左图所示的是三通管的立体图,则这个几何体的正面看到的图形是题号一二三总分202122232425得分9.如图,已知线段AB,延长AB 至C ,使得AB BC 21=,若D 是BC 的中点,CD =2cm,则AC 的长等于A.4cmB.8cmC.10cmD.12cm10.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若线段AC =BC ,则点C 是线段AB 的中点;③射线AB 与射线AD 是同一条射线;④连结两点的线段叫做这两点的距离;④将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有A.1个 B.2个 C.3个 D.4个11.若α∠与β∠互为补角,且α∠是β∠的3倍,则β∠为A.45°B.60°C.90°D.135°12.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A.2ab B.(a+b)2C.(a-b)2D.a 2-b2二、填空题:你能填得又对又快吗?(把答案填在题中横线上,每小题3分,本题满分共21分)13.7--=__________.14.单项式33y x -的系数与次数的积是.15.一元一次方程2x =4的解是_____________________.第16题图16.如图,三角板的直角顶点在直线l 上,若∠1=40°,则∠2=.17.若规定“※”是一种运算符号,现对“a ※b ”作如下定义:“a ※b =b a ”,如2※3=8,则(-3)※2=_____________.18.某中学为了表彰在书法比赛中成绩突出的同学,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.若设钢笔每支x 元,则根据题意列方程得_________________________________________.19.观察下列按顺序排列的等式:a 1=1-31,a 2=21-41,a 3=31-51,a 4=41-61,……,试猜想第n 个等式(n 为正整数)a n =.三.解答题:一定要细心,你能行!(共63分)20.完成下列各题(本题共10分,每小题5分)(1)计算1145422+(-)-(-)(-);(2)解方程:.(第9题)第12题图21.(本题满分10分)如图,一艘客轮沿东北方向OC 行驶,在海上O 处发现灯塔A 在北偏西︒30方向上,灯塔B 在南偏东︒60方向上.(1)在图上画出射线OA 、OB 、OC,并在图上标出它们的方位角;(2)求AOC BOC ∠∠和的度数,由此你发现了什么?22.(本题满分10分)先化简,再求值,)323(2)52322x x x x +----(,其中3-=x .(第21题图)23.(本题滿分10分)如图所示,点C 、D 为线段AB 的三等分点,点E 为线段AC 的中点,若ED =9,求线段AB 的长度.24.(本题满分11分)李明家要修建一个长方形养鸡场,养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王建议李明用它来围成一个长比宽多5米的鸡场,小华建议李明用它来围成一个长比宽多2米的鸡场,你认为谁的建议符合实际?按照他的建议,鸡场的面积是多少?25.(本题满分12分)同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图⑴,已知∠AOB ,请你画出它的角平分线OC ,并填空:因为OC 是∠AOB 的平分线(已知)所以∠______=∠______=___∠AOB(2)如图(2),已知∠AOC ,若将∠AOC 沿着射线OC 翻折,射线OA 落在OB 处,请你画出射线OB ,射线OC 一定平分∠AOB .理由如下:因为∠BOC 是由∠AOC 翻折而成,而翻折不改变图形的形状和大小,所以∠BOC =∠______所以射线_____是∠______的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A 落在C 处,折痕为OE ,再将它的另一个角也折叠,顶点B 落在D 处并且使OD 过点C ,折痕为OF .直接利用(2)的结论;1若∠AOE =︒60,求∠EOF 的度数.2若∠AOE =︒m ,求∠EOF 的度数,从计算中你发现了∠EOF 的度数有什么规律?3∠DOF 的补角为_______________________________________;∠DOF 的余角为_______________________________________.(3)(2)(1)AOBAOFCB参考答案一、选择题(每小题3分,共36分)1--5DCBAB6-10CCBDB11-12AC二、填空题(每小题3分,共21分)13.-714.-115.216.50°17.918.1755)4(4530=++x x 19.n 1-21+n 三、解答题(本大题共7个大题,共计63分)20.(1)原式11-45422=+-…………………3分1-4-3==…………5分(2)解:去分母,得()()12424133--=+y y 去括号,得482439+-=+y y 移项,得342489-+=+y y 合并同类项,得2517=y 系数化为1,得1725=y ……………………………………………………5分21.(1)画图正确并标对方位角共3分,每错一处扣1分,扣完为止(2)︒=∠75AOC ,︒=∠75BOC ,相等……10分22.)323(2)52322x x x x +----(=22646156x x x x -++-=4)615(6-62++-+x x )(49-+=x ………………7分将3-=x 代入上式,314)3-9-49-=+⨯=+(x ……………10分23.解:因为C、D 为线段AB 的三等分点所以AC =CD =DB…………………………………………………2分又因为点E 为AC 的中点,则AE =EC =12AC ………………………4分所以,CD+EC=DB+AE…………………………………………………6分因为ED=EC+CD=9所以,DB+AE=EC+CD =ED=9则AB =2ED =18……………………………………………………………10分24.解:按小王建议,设长方形的宽为x 米, (1)分则(5)35x x x +++=……………………………………………3分解得10x =……………………………………………4分515x +=因为15>14所以小王的建议不符合实际.……………………………………………5分按小华建议,设长方形的宽为y 米,………………………6分则(2)35y y y +++=……………………………………………8分解得11y =……………………………………………9分213y +=因为13<14所以小华的建议符合实际.……………………………………………10分此时鸡场的面积是11×13=143(平方米)………………………11分25.(1)AOCBOC21角平分线的定义………………………2分(2)AOC OC AOB ………………………3分(3)①由(1)(2)可知:60AOE EOC ∠=∠=︒,11(180)603022BOF DOF AOE EOC ∠=∠=︒-∠-∠=⨯︒=︒③补角是:∠AOF …………9分余角是:∠EOC BFO ∠DFO ∠AOE ∠……………12分。
2024年人教版七年级数学(上册)期末试题及答案(各版本)

专业课原理概述部分一、选择题(每题1分,共5分)1.下列哪个数是质数?A.21B.23C.25D.272.一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的周长是?A.16厘米B.26厘米C.36厘米D.28厘米3.下列哪个数是偶数?A.101B.102C.103D.1044.一个正方形的边长为5厘米,那么这个正方形的面积是?A.5平方厘米B.10平方厘米C.25平方厘米D.50平方厘米5.下列哪个数是奇数?A.121B.122C.123D.124二、判断题(每题1分,共5分)1.2是最大的质数。
()2.一个等边三角形的三个角都是60度。
()3.0是偶数。
()4.一个长方形的长和宽相等,那么这个长方形就是正方形。
()5.5的倍数都是奇数。
()三、填空题(每题1分,共5分)1.2的倍数都是____数。
2.一个等腰三角形的两个腰长相等,底边长为8厘米,腰长为10厘米,那么这个三角形的周长是____厘米。
3.5的倍数的个位数只能是____或____。
4.一个正方形的边长为6厘米,那么这个正方形的面积是____平方厘米。
5.下列哪个数是合数?____四、简答题(每题2分,共10分)1.请写出前5个质数。
2.请解释等边三角形的特点。
3.请解释偶数和奇数的区别。
4.请解释正方形的周长和面积的计算方法。
5.请写出5的倍数的前5个数。
五、应用题(每题2分,共10分)1.一个长方形的长是10厘米,宽是5厘米,请计算这个长方形的周长和面积。
2.一个等腰三角形的底边长为8厘米,腰长为10厘米,请计算这个三角形的周长和面积。
3.请找出20以内的所有质数。
4.请找出50以内的所有5的倍数。
5.请计算一个正方形的边长为7厘米时,它的周长和面积。
六、分析题(每题5分,共10分)1.请分析一个等边三角形和一个等腰三角形的不同点。
2.请分析一个长方形和一个正方形的不同点。
七、实践操作题(每题5分,共10分)1.请画出一个等腰三角形,并标出它的底边和腰。
人教版七年级数学上册上册试题 期末测试卷(含答案)

期末测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算的结果等于( )A.3B.C.D.﹣32.单项式与单项式2a x b3是同类项,则x+y的值是( )A.3B.5C.7D.83.长江是我国第一大河,它的全长约为6300千米,6300这个数用科学记数法表示为( )A.63×102B.6.3×102C.6.3×103D.6.3×1044.若a、b为有理数,它们在数轴上的位置如图所示,那么a、b、﹣a、﹣b的大小关系是( )A.b<﹣a<﹣b<a B.b<﹣b<﹣a<aC.b<﹣a<a<﹣b D.﹣a<﹣b<b<a5.下列说法:①延长射线AB;②射线OA与射线AO是同一条射线;③若(a﹣6)x3﹣2x2﹣8x ﹣1是关于x的二次多项式,则a=6;④已知A,B,C三个点,过其中任意两点作一条直线,可作出1或3条直线,其中正确的个数有( )A.1个B.2个C.3个D.4个6.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“祝”字一面的相对面上的字是( )A.考B.试C.成D.功7.解方程,去分母正确的是( )A.2(2x+1)=1﹣3(x﹣1)B.2(2x+1)=6﹣3x﹣3C.2(2x+1)=6﹣3(x﹣1)D.3(2x+1)=6﹣2(x﹣1)8.如图,点C,D在线段AB上.则下列表述或结论错误的是( )A.若AC=BD,则AD=BC B.AC=AD+DB﹣BCC.AD=AB+CD﹣BC D.图中共有线段12条9.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有( )A.4个B.3个C.2个D.0个10.a是不为2的有理数,我们把称为a的“哈利数”.例如:3的“哈利数”是,﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2024=( )A.3B.﹣2C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.下列有四个生活、生产现象:其中可用基本事实“两点之间,线段最短”来解释的现象有 (填序号).①有两个钉子就可以把木条固定在墙上;②A从地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要定出两棵树的位置,就能确定同一行所在的直线;④把弯曲的公路改直,就能缩短路程,12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角式子中,①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β),正确的有 .13.已知整式x2﹣2x+6的值为,则﹣2x2+4x﹣12的值为 .14.点C在直线AB上,AB=5,BC=2,点C为BD中点,则AD的长为 .15.一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了3h.已知水流的速度是3km/h,则船在静水中的平均速度为 km/h.16.规定一种新运算:a⊗b=a2﹣2b,若2⊗[3⊗(﹣x)]=6,则x的值为 .三、解答题(本大题共7小题,共72分.)17.(1)计算:;(2)化简:﹣m3﹣6n+11﹣m3+10n﹣6;(3)先化简,再求值:,其中x=﹣2,.18.解下列方程.(1)5(x﹣2)﹣1=﹣2(2x+1);(2).19.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)在图①中,画线段AC、BD交于E点;(2)在图①中作射线BC;(3)在图②中取一点P,使点P既在直线AB上又在直线CD上.20.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?21.如图,已知,∠AOB=120°,在∠AOB内画射线OC,∠AOC=40°.(1)如图1,求∠BOC的度数;(2)如图2,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数.22.综合与探究如图,已知线段AD上有两个定点B,C.(1)图中共有几条线段?(2)若在线段CD上增加一点,则增加了几条线段?(3)现有一列往返于A,B两地的火车,中途停靠五个站.问:①有多少种票价?②要准备多少种车票?(4)已知A,B两地之间相距140km,在A,B所在的公路(AB看成直线)上有一处C,且B与C之间的距离为40km,M在A,C两地的正中间,求M与A地之间的距离.23.在七年级数学学习中,常用到分类讨论的数学方法,以化简|x|为例.当x>0时,|x|=x;当x=0时,|x|=0;当x<0时,|x|=﹣x.求解下列问题:(1)当x=3时,值为 ,当x=﹣3时,的值为 ,当x为不等于0的有理数时,的值为 ;(2)已知x+y+z=0,xyz>0,求的值;(3)已知:x1,x2,…,x2021,x2022,这2022个数都是不等于0的有理数,若这2022个数中有n个正数,,则m的值为 (请用含n 的式子表示).答案一、选择题C.B.C.C.B.D.C.D.B.D.二、填空题11.②④.12.①②④.13.﹣.14.1或9.15.15.16.﹣5.三、解答题17.解:(1)原式=﹣1××+=﹣+=0;(2)原式=(﹣m3﹣m3)+(﹣6n+10n)+11﹣6=﹣2m3+4n+5;(3)原式==,当x=﹣2,时,原式=﹣×(﹣2)2×+2×(﹣2)×()2=﹣×4×﹣4×=﹣﹣=﹣1.18.(1)解:去括号,得5x﹣10﹣1=﹣4x﹣2,移项,得5x+4x=﹣2+10+1,合并同类项,得9x=9,把系数化为1,得x=1;(2)解:去分母,得4(2y﹣1)﹣12=﹣3(y+2),去括号,得8y﹣4﹣12=﹣3y﹣6,移项,得8y+3y=﹣6+4+12,合并同类项,得11y=10,把系数化为1,得.19.解:(1)如图所示:;(2)如图所示,(3)如图所示,.20.解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.21.解:(1)∵∠AOB=120°,∠AOC=40°,∴∠BOC=∠AOB﹣∠AOC=120°﹣40°=80°;(2)∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵OE平分∠BOC,∴∠BOE=∠COE=∠BOC;∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=×120°=60°.22.解:(1)图中有6条线段,线段AB、AC、AD、BC、BD、CD.(2)增加一个点后共有10条线段所以会增加4条线段.(3)当直线m上有2个点时,线段的总条数为1,直线m上有3个点时,线段的总条数为1+2=3,直线m上有4个点时,线段的总条数为1+2+3=6,…由此得出当直线m上有n个点时,线段的总条数为1+2+3+…+(n﹣1)=,①现有一列往返于A,B两地的火车,中途停靠五个站,所以直线上共有7个点,共有线段=21(条),所以共有21种票价.②因车票需要考虑方向性,故需要准备车票的种类是票价的2倍,所以21×2=42(种),所以共有42种票价.(4)当点C在线段AB上时,如图:∵AB=140km,CB=40km,∴AC=AB+BC=140﹣40=100km,∵M是AC的中点,∴AM=AC=50km;当点C在线段AB的延长线上时,如图:∵AB=140km,CB=40km,∴AC=AB+BC=140+40=180km,∵M是AC的中点,∴AM=AC=90km;综上,AM=50或90km.23.解:(1)=1,=﹣1,=±1,故答案为:1,﹣1,±1.(2),∵x+y+z=0,xyz>0,∴x,y,z的正负性可能为:①当x为正数,y,z为负数时:原式=﹣1+1﹣1=﹣1;②当y为正数,x,z为负数时,原式=1﹣1﹣1=﹣1;③当z为正数,x,y为负数时,原式=1+1+1=3,∴原式=﹣1或3.(3)n个正数,负数的个数为2022﹣n,=1×n+(﹣1)+(2022﹣n)=2n﹣2022.故答案为:2n﹣2022.。
(完整版)新人教版七年级上册数学期末试卷含答案-,推荐文档

七年级数学上学期期末考试试卷(满分 120 分,考试时间 100 分钟)一、精心选一选(本题共 10 小题,每题 2 分,共 20 分,下列各题都有代号为 A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的,请把你认为正确结论的代号填入下面表格中)1. 在-1,0,3,5 这四个数中,最小的数是(A)-1.(B)0. (C)3. (D)5.2. 下列说法正确的是(A) x 的指数是 0. (B) -1 是一次单项式. (C)-2ab 的系数是-2.(D) x 的系数是0. 3.如图所示的几何体,从左面看所得到的图形是(A) (B) (C) (D)4.钟表上的时间为 8 点,这时时针和分针之间的夹角(小于平角)的度数是(A)120°.(B)105°.(C)100°.(D)90°.5.2012 年,我国拥有 2.42 亿网络购物用户,其市场交易金额达到 12594 亿元,较 2011 年增长 66.5%,网络零售市场交易总额占社会消费品零售总额的 6.1%.12600 亿用科学记数法表示为 (A) 1.26×1013.(B) 1.26×1012. (C) 1.26×1011. (D) 1.26×104.6. 如果 a =b ,则下列式子不成立的是(A) a + c = b + c . (B) a 2 = b 2 . (C) ac = bc .(D) a - c = c - b .7. 如图,下列说法中错误的是(A)OB 方向是北偏西 15º. (B)OA 方向是北偏东 30º. (C)OC 方向是南偏西25º. (D)OD 方向是东南方向.8. 如图所示正方体的平面展开图是(第 7 题)(第8 题)(A) (B) (C) (D)9.在“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,每排坐30 人,则有8 人无座位;每排坐31 人,则空26 个座位.则下列方程正确的是(A) 30x -8 = 31x + 26 .(B) 30x + 8 = 31x + 26 .(C) 30x -8 = 31x - 26 .(D) 30x + 8 = 31x - 26 .10.有9 人14 天完成了一件工作的3,而剩下的工作要在4 天内完成,则需增加的人数5是(A)12.(B)11.(C)10.(D)8.二、耐心填一填(每小题填对得 3 分,共30 分. 请将正确答案直接写在题后的横线上)11.比-3 大的负整数是.12.-2 的相反数是,绝对值是,倒数是.13.与原点的距离为2个单位的点所表示的有理数是.14.已知x = 2 是方程ax = 3 +a 的解,则a = .15.若一个角的余角比这个角大31°20′,则这个角大小为,其补角大小为.16.若a > 3 ,则| 3 -a |=.17.若a +b = 2 ,则代数式3 - 2a - 2b = .18.拿一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF,如果∠DFE=35º,则∠DFA= .(第18 题)(第19 题)得分评卷人(19. 一副三角板如图摆放,若∠AGB =90°,则∠AFE =度.20. 用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第 n 个图案需要棋子 枚.(第 20 题)三、用心做一做(本题共 70 分)21.(本题共 4 小题,每题 4 分,共 16 分)计算:(1) (-2)- (-3)+ (+7)- (+11);(2) (-36) ⨯ 4 - 5 - 7 ) ;9 6 12(3) -12014 + 2 ⨯(-3)2 + (-4) ÷ (-2) ;(4) (-2ab + 3a )- 2 (2a - b )+ 2ab .22.(本题共 2 小题,每题 5 分,共 10 分)解下列方程: x - 1x + 2(1) 4x - 3(20 - x ) + 4 = 0 ;(2)=1-.2 323.(本题 5 分)先化简,再求值:2 (6x 2 - 9xy +12 y 2 )- 3(4x 2 - 7xy + 8 y 2 ),其中 x = 7, y = -5 .3得分 评卷人FCE1AB2O GD24.(本题 5 分)如图,池塘边有一块长为 20 米,宽为 10 米的长方形土地,现在将其余三面留出宽都是 x 米的小路,中间余下的长方形部分做菜地,用代数式表示:(1) 菜地的长 a =米, 菜地的宽b = 米; 菜地的面积 s =平方米;(2) x =1 时,求菜地的面积.(第 24 题)25.(本题 6 分)已知:如图,AB ⊥CD 于点 O ,∠1=∠2,OE 平分∠BOF ,∠EOB =55°,求∠DOG 的度数.(第 25 题)26.(本题 8 分)阅读:在用尺规作线段 AB 等于线段 a 时,小明的具体做法如下:已知:如图,线段 a : 求作:线段 AB ,使得线段 AB=a . 作法:① 作射线 AM ;② 在射线 AM 上截取 AB= a .(第 26 题)∴线段AB 即为所求,如右图.解决下列问题:已知:如图,线段b :(1)请你仿照小明的作法,在上图中的射线AM 上求作点D,使得BD= b ;(不要求写作法和结论,保留作图痕迹)(2)在(1)的条件下,取AD 的中点E.若AB=10,BD=6,求线段BE 的长.(要求:第(2)问重新画图解答)27.(本题 10 分)在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44 人,其中男生人数比女生人数少2 人,并且每名学生每小时剪筒身50 个或剪筒底120 个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?28.(本题 10 分)A 城有化肥200 吨,B 城有化肥300 吨,现要把化肥运往C、D 两地,如果从A 城运往C、D 两地,运费分别为20 元/吨和25 元/吨;从B 城运往C、D 两地运费分别是15 元/吨与22 元/吨,现已知C 地需要220 吨,D 地需要280 吨.(1)设从A 城运往C 地x 吨,请把下表补充完整;(2)已知某种调运方案的运费是10200 元,那么从A、B 两城分别调运多少吨化肥到C、D 两地?七年级上学期期末考试数学参考答案及评分标准一、精心选一选(每题 2 分,共 20 分)11.-2,-1;12.2,2,-1;13.± 2 ;14.3;15.29°20′,150°40′;16.2a - 3 ;17.-1;18.110°;19.105;20.5+3(n -1) 或3n + 2 .三、解答题(共 70 分)21.解:(1)原式=-2+3+7-11 ............................................................................................... 2 分=-2-11+3+7=-13+10 .......................................................................................................... 3 分=-3. ........................................................................................................... 4 分4 5 7(2)原式=(-36)×-(-36)×-(-36)×...................................................................... 1分9 6 12=-16-(-30)-(-21) (2)分=-16+30+21=35. ....................................................................................................................... 4分(3)原式=-1+2×9+2 ........................................................................................................... 2 分=-1+18+2= 19. (4)分(4)原式= - 2ab + 3a - 4a + 2b + 2ab .................................................................... 2分= (-2 + 2)ab + (3 - 4)a + 2b ...................................................................... 3 分= -a + 2b . (4)分22.解:(1) 去括号,得4x-60+3x+4=0. (2)分移项,得4x+3x=60-4.............................................................................3 分合并同类项,得7x=56. (4)分系数化成1,得x=8. (5)分(2) 去分母,得3(x-1)=6-2(x+2)........................................................................ 1 分去括号,得 3 x-3=6-2 x-4.............................................................................. 2分移项,得 3 x+2 x=6+3-4.............................................................................. 3分合并同类项,得 5 x=5. ........................................................................................ 4 分系数化为1,得x =1.............................................................................................. 5分23.解:原式=12 x 2 -18 xy +24y 2 -12 x 2 +21 xy -24 y 2 .............................................................. 2 分=( 12 x 2 -12 x 2 ) +(-18 xy +21 xy ) +( 24y 2 -24 y 2 )=3 x y ........................................................................................................... 3分7当x =,y =-5 时,37原式=3 ××(-5 )=-35 . (5)3分24.(1)20-2x,10-x,(20-2x)(10-x);(2)162 平方米.说明:(1)每空填对 1 分,共 3 分,(2)2 分.25.解:∵OE 平分∠BOF ,∴ ∠BOF =2∠EOB .∵ ∠EOB = 55︒,∴ ∠BOF =110 ............................................................................................................. 2分∵AB⊥CD,∴ ∠AOD =∠BOC = 90 ............................................................................................... 3 分∴ ∠1 =20 ......................................................................................................................... 4 分又∵ ∠1 =∠2 ,∴ ∠2 =20 ........................................................................................................................ 5分∴ ∠DOG=70 . ................................................................................................................ 6 分26.(1)∴点D 、点D ' 即为所求,如图.(点D 、点D ' 各1 分) ........................................ 2 分1(2)∵E 为线段AD 的中点,∴AE =AD .2如图1,点D 在线段AB 的延长线上.∵AB =10, BD = 6 ,∴∴ AE = 8 .AD =AB +BD =16 .图1∴ BE =AB -AE = 2 ...............................................................................................5 分如图2,点D 在线段AB 上.∵ AB = 10, BD = 6 ,∴AD =AB -BD = 4 .图2 ∴ AE = 2 .∴BE =AB -AE = 8 . ............................................................................................ 7分综上所述,BE 的长为2 或8. ................................................................................... 8 分(注:第(2)问没有过程但是两个结论都正确的,每个结论各给1 分) 27.(1)设七年级(2)班有男生x 人,依题意得: (1)分x +(x + 2)= 44 , (3)分解得x = 21,x + 2 = 23 , (4)分所以,七年级(2)班有男生21 人,女生23 人 (5)分(2)设分配剪筒身的学生为y 人,依题意得: (6)分50 y=120 (44 -y )⨯1 , (8)2分解得y = 24 ,44 -y = 20 ,............................................................................. 9分所以,应该分配24 名学生剪筒身,20 名学生剪筒底 ......................................... 10 分说明:(1)5 分,(2)5 分.28.解:(1)收地C D总计运地A x 200- x 200 吨B200- x x +80 300 吨总计220 吨280 吨500 吨……………………………………………………………………………………6 分(每空2 分)(2)设从A 城调运到C 地x 吨化肥.根据题意得220 -x ⨯15 +x +80 ⨯ 22 =10200 . ....................... 8 分20x+(200(-x⨯25+解得:x = 70所以200 -x = 130 ;220 -x = 150 ;x + 80 = 150 .答:从A 城调运到C 地70 吨化肥;从A 城调运到D 地130 吨化肥;从B 城调运到C 地150 吨化肥;从B 城调运到D 地150 吨化肥. ................... 10 分“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
人教版初一数学上册期末试卷 (含答案)

初一数学上册期末试卷一、选择题1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.如图所示的几何体,从上往下看得到的平面图是()A.B.C.D.3.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=14.若单项式的系数、次数分别是a、b,则()A.B.C.D.5.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上6.方程a﹣x﹣(x+1)=15的解是x=﹣2,则a的值是()A.12B.﹣14C.18D.227.如图直线AB、CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC的度数为()A.50°B.60°C.70°D.80°8.按照如图所示的计算程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第6次得到的结果为()A.1B.2C.3D.49.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5 cm B.1 cm C.5或1 cm D.无法确定10.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.11.在下列说法中:①﹣a表示负数;②多项式﹣a2b+2a2b2+ab﹣2的次数是4;③单项式的系数为;④若|a|=﹣a,则a为非正数.其中正确的个数有()A.0个B.1个C.2个D.3个12.已知a为整数,关于x的元一次方程的解也为整数,则所有满足条件的数a的和为()A.0B.24C.36D.48二、填空题(本大题6个小题,每小题4分,共24分)请将答案填在答题卷相应空格处. 13.人教版初中数学教科书共六册,总字数约97800个字,用科学记数法可将97800表示为.14.若a与b互为相反数,m和n互为倒数,则=.15.∠α=37°49′40″,∠β=52°59′45″,∠β﹣∠a=.16.如图,射线OA的方向是北偏东20度,射线OB的方向是北偏西40度,OD是OB的后向延长线.若OC是∠AOD的平分线,则射线OC的方向是北偏东度.17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人,这个物品的价格是元.18.早上,甲、乙、丙三人在同一条路上不同起点朝同方向以不同的速度匀速跑:6点30分时,乙在中间,丙在前,甲在后,且乙与甲、丙的距离相等:7点时,甲追上乙;7点10分时,甲追上丙;当乙追上丙时,若从6点30分起计时,丙跑的时间为分钟.三、解答题(本大题共8个小题,19-25题每小题10分,26题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.(1)计算:(﹣1)2020×|﹣2﹣1|+2×(﹣2)﹣32;(2)解方程:20.如图,在平面内有A,B,C三点.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至E,使DE=AD;(3)数一数,此时图中线段共有条.21.先化简,后求值已知(x﹣3)2+|y+|=0,求代数式2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9的值.22.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8﹣11﹣140﹣16+41+8(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶50km需用汽油4升,汽油价6.8元/升,计算小明家这7天的汽油费用大约是多少元?23.已知O为直线MN上的一点,且∠AOB为直角,OC平分∠MOB.(1)如图1,若∠BON=36°,则∠AOC等于多少度;(2)如图2,若OD平分∠CON,且∠DON﹣∠AOM=21°,求∠BON的度数.24.为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共102人,其中乙单位人数少于50人,且甲单位人数不够100人.经了解,该风景区的门票价格如表:数量(张)1~5051~100101张及以上单价(元/张)605040如果两单位分别单独购买门票,一共应付5500元.(1)甲、乙两单位各有多少名退休职工准备参加游玩?(2)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?25.对每个数位数字均不为零且互不相等的一个三位正整数x,若将x的十位数字与百位数字交换位置,得到一个新的三位数y,我们称y为x的“置换数”,如:123的“置效为“213”;若由x的百位、十位、个位上的数字任选两个组成一个新的两位数,所有新的两位数之和记为z,我们称z为x的“衍生数”.如456:因为45+46+54+56+64+65=330,所以456的“衍生数”为330.(1)直接写出987的“置换数”,并求987的“衍生数”;(2)对每个数位数字均不为零且互不相等的一个三位正整数x,设十位数字为1,若x 的“衍生数”与x的“置换数”之差为102,求x.26.如图,直线l上有AB两点,AB=18cm,点O是线段AB上的一点,OA=2OB (1)OA=cm,OB=cm;(2)若点C是直线AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为3cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以4cm/s的速度也向右运动.当点M追上点Q后立即返回,以4cm/s的速度向点P运动,遇到点P后再立即返回,以4cm/s的速度向点Q运动,如此往返.当点P与点Q重合时,P,Q两点停止运动.此时点M也停止运动.在此过程中,点M行驶的总路程是多少?参考答案一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.如图所示的几何体,从上往下看得到的平面图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形判定则可.解:从上面可看是一层三个等长等宽的矩形.故选:C.3.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=1【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.4.若单项式的系数、次数分别是a、b,则()A.B.C.D.【分析】直接利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,分别得出答案.解:单项式的系数、次数分别是a、b,则a=﹣,b=6.故选:B.5.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上【分析】根据线段的性质对各选项进行逐一分析即可.解:A、根据两点确定一条直线,故本选项错误;B、确定树之间的距离,即得到相互的坐标关系,故本选项错误;C、根据两点之间,线段最短,故本选项正确;D、根据两点确定一条直线,故本选项错误.故选:C.6.方程a﹣x﹣(x+1)=15的解是x=﹣2,则a的值是()A.12B.﹣14C.18D.22【分析】把x=﹣2代入方程得出关于a的方程解答即可.解:把x=﹣2代入方程a﹣x﹣(x+1)=15得:a+2﹣(﹣2+1)=15,解得:a=12.故选:A.7.如图直线AB、CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【分析】根据邻补角定义计算出∠2的度数,进而可得∠1的度数,然后可得∠BOD的度数,再根据对顶角相等可得∠AOC的度数.解:∵∠AOE=140°,∴∠2=180°﹣140°=40°,∵∠1=∠2,∴∠1=40°,∴∠DOB=80°,∴∠AOC=80°,故选:D.8.按照如图所示的计算程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第6次得到的结果为()A.1B.2C.3D.4【分析】根据计算程序的特征确定出所求即可.解:把x=2代入计算程序得:×2=1,把x=1代入计算程序得:1+3=4,把x=4代入计算程序得:4×=2,依次以1,4,2循环,∵6÷3=2,整除,∴第6次得到的结果是2,9.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5 cm B.1 cm C.5或1 cm D.无法确定【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.解:如图1,当点B在线段AC上时,∵AB=6cm,BC=4cm,M,N分别为AB,BC的中点,∴MB=AB=3,BN=BC=2,∴MN=MB+NB=5cm,如图2,当点C在线段AB上时,∵AB=6cm,BC=4cm,M,N分别为AB,BC的中点,∴MB=AB=3,BN=BC=2,∴MN=MB﹣NB=1cm,故选:C.10.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.【分析】先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可.解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.11.在下列说法中:①﹣a表示负数;②多项式﹣a2b+2a2b2+ab﹣2的次数是4;③单项式的系数为;④若|a|=﹣a,则a为非正数.其中正确的个数有()A.0个B.1个C.2个D.3个【分析】直接利用单项式的系数以及多项式的次数确定方法,正数和负数,绝对值的性质分别分析得出答案.解:①﹣a表示正数或零或负数,原说法错误;②多项式﹣a2b+2a2b2+ab﹣2的次数是4,原说法正确;③单项式πab的系数为π,原说法错误;④若|a|=﹣a,则a为非正数,原说法正确.其中正确的个数有2个,故选:C.12.已知a为整数,关于x的元一次方程的解也为整数,则所有满足条件的数a的和为()A.0B.24C.36D.48【分析】依次移项,合并同类项,系数化为1,解原方程,根据“方程解为整数”,列出几个关于a的一元一次方程,解之,求出a的值中找出整数,相加求和即可得到答案.解:∵,∴(6﹣a)x=6,∵关于x的元一次方程的解为整数,∴x=为整数,∴6﹣a=±1或±2或±3或±6,又∵a为整数,∴a=5或7或4或8或3或9或0或12,∴所有满足条件的数a的和为:5+7+4+8+3+9+0+12=48,故选:D.二、填空题(本大题6个小题,每小题4分,共24分)请将答案填在答题卷相应空格处. 13.人教版初中数学教科书共六册,总字数约97800个字,用科学记数法可将97800表示为9.78×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:用科学记数法可将97800表示为9.78×104.故答案为:9.78×104.14.若a与b互为相反数,m和n互为倒数,则=.【分析】根据互为相反数、倒数的概念得到a+b=0,mn=1,代入计算得到答案.解:∵a与b互为相反数,∴a+b=0,∵m和n互为倒数,∴mn=1,∴(a+b)+mn=×0+×1=,故答案为:.15.∠α=37°49′40″,∠β=52°59′45″,∠β﹣∠a=14°20′40″.【分析】根据1度=60分,即1°=60′,1分=60秒,即1′=60″进行计算.解:∠β﹣∠α=52°10′20″﹣37°49′40″=14°20′40″,故答案为:14°20′40″.16.如图,射线OA的方向是北偏东20度,射线OB的方向是北偏西40度,OD是OB的后向延长线.若OC是∠AOD的平分线,则射线OC的方向是北偏东80度.【分析】先求出∠AOB=60°,再求得∠AOD的度数,由角平分线得出∠AOC的度数,即可确定OC的方向.解:∵OB的方向是北偏西40°,OA的方向是北偏东20°,∴∠AOB=40°+20°=60°,∴∠AOD=180°﹣60°=120°,∵OC是∠AOD的平分线,∴∠AOC=60°,∵20°+60°=80°,∴射线OC的方向是北偏东80°;故答案为:80.17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有7人,这个物品的价格是53元.【分析】设共有x人,则这个物品的价格是(8x﹣3)元,根据“每人出7元,则还差4元”,即可得出关于x的一元一次方程,解之即可得出结论.解:设共有x人,则这个物品的价格是(8x﹣3)元,依题意,得:8x﹣3=7x+4,解得:x=7,∴8x﹣3=53.故答案为:7;53.18.早上,甲、乙、丙三人在同一条路上不同起点朝同方向以不同的速度匀速跑:6点30分时,乙在中间,丙在前,甲在后,且乙与甲、丙的距离相等:7点时,甲追上乙;7点10分时,甲追上丙;当乙追上丙时,若从6点30分起计时,丙跑的时间为60分钟.【分析】设6点30分时,甲、乙之间的距离为s,甲的运动速度为v,则乙的速度为(v ﹣2s),丙的速度为(v﹣3s),再利用乙追上丙的时间=乙、丙之间的距离÷二者的速度之差,即可求出结论.解:设6点30分时,甲、乙之间的距离为s,甲的运动速度为v,则乙的速度为(v﹣2s),丙的速度为(v﹣3s),∴乙追上丙的时间为=1.1小时=60分钟.故答案为:60.三、解答题(本大题共8个小题,19-25题每小题10分,26题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.(1)计算:(﹣1)2020×|﹣2﹣1|+2×(﹣2)﹣32;(2)解方程:【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)原式=1×|﹣3|+(﹣4)﹣9=1×3﹣4﹣9=3﹣4﹣9=﹣10;(2)去分母得:2(5x﹣7)+12=3(3x﹣1),去括号得:10x﹣14+12=9x﹣3,移项合并得:x=﹣1.20.如图,在平面内有A,B,C三点.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至E,使DE=AD;(3)数一数,此时图中线段共有8条.【分析】(1)依据直线、射线、线段的定义,即可得到直线AC,线段BC,射线AB;(2)依据在线段BC上任取一点D(不同于B,C),连接线段AD即可;(3)根据图中的线段为AB,AC,AD,AE,DE,BD,CD,BC,即可得到图中线段的条数.解:(1)如图,直线AC,线段BC,射线AB即为所求;(2)如图,线段AD和线段DE即为所求;(3)由题可得,图中线段的条数为8,故答案为:8.21.先化简,后求值已知(x﹣3)2+|y+|=0,求代数式2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9的值.【分析】根据非负数的性质分别求出x、y,根据整式的混合运算法则化简,代入计算即可.解:由题意得,x﹣3=0,y+=0,解得,x=3,y=﹣,则2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5=4×3×(﹣)2+2×3+5=14.22.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8﹣11﹣140﹣16+41+8(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶50km需用汽油4升,汽油价6.8元/升,计算小明家这7天的汽油费用大约是多少元?【分析】(1)首先用50乘7,然后用所得的积加上每天的路程的记数,求出这7天行驶的路程之和,再用它除以7,求出这7天中平均每天行驶多少千米即可.(2)首先用这7天一共行驶的路程除以50,求出有多少个50千米;然后用它乘4,求出一共需要汽油多少升;然后用它乘每升汽油的价格,求出小明家这7天的汽油费用大约是多少元即可.解:(1)[50×7+(﹣8)+(﹣11)+(﹣14)+0+(﹣16)+(+41)+(+8)]÷7=(350﹣8﹣11﹣14﹣16+41+8)÷7=350÷7=50(千米)答:这7天中平均每天行驶50千米.(2)350÷50×4×6.8=7×4×6.8=28×6.8≈190(元)答:小明家这7天的汽油费用大约是190元.23.已知O为直线MN上的一点,且∠AOB为直角,OC平分∠MOB.(1)如图1,若∠BON=36°,则∠AOC等于多少度;(2)如图2,若OD平分∠CON,且∠DON﹣∠AOM=21°,求∠BON的度数.【分析】(1)由∠BON=36°,求得∠BOM=144°,由OC平分∠MOB,求得∠COB =72°,由于∠AOB为直角,则由∠AOC=∠AOB﹣∠COB可求得结论;(2)设∠BOC=∠MOC=x°,再根据角的关系得出方程,解答后求出结论即可.解:(1)∵∠BON=36°,∴∠BOM=144°,∵OC平分∠MOB,∴∠COB=72°,∵∠AOB为直角,∴∠AOC=∠AOB﹣∠COB=18°;(2)设∠BOC=∠MOC=x°,∵∠AOB为直角,∴∠AOM=90°﹣2x°,∵∠DON﹣∠AOM=21°,∴∠DON=∠AOM+21°=111°﹣2x°,∵OD平分∠CON,∴∠CON=222°﹣4x°,∵∠CON+∠MOC=180°,∴222°﹣4x°+x°=180°,∴x°=14°,∴∠BON=180°﹣∠BOM=180°﹣28°=152°.24.为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共102人,其中乙单位人数少于50人,且甲单位人数不够100人.经了解,该风景区的门票价格如表:数量(张)1~5051~100101张及以上单价(元/张)605040如果两单位分别单独购买门票,一共应付5500元.(1)甲、乙两单位各有多少名退休职工准备参加游玩?(2)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?【分析】(1)设甲单位有x名退休职工准备参加游玩,则乙单位有(102﹣x)名退休职工准备参加游玩,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论;(2)结合(1)的结论可得出甲单位参加游玩的职工数,根据该风景区的门票价格表,可找出4种购票方案,利用总价=单价×数量可求出4种购票方案所需费用,比较后即可得出结论.解:(1)设甲单位有x名退休职工准备参加游玩,则乙单位有(102﹣x)名退休职工准备参加游玩,依题意,得:50x+60(102﹣x)=5500,解得:x=62,∴102﹣x=40.答:甲单位有62名退休职工准备参加游玩,乙单位有40名退休职工准备参加游玩.(2)∵62﹣12=50(名),50+40=90(名),∴有4种购买方案,方案1:甲、乙两单位分开购票,甲单位购买50张门票、乙单位购买40张门票;方案2:甲、乙两单位分开购票,甲单位购买51张门票、乙单位购买40张门票;方案3:甲、乙两单位联合购票,购买90张门票;方案4:甲、乙两单位联合购票,购买101张门票.方案1所需费用为60×50+60×40=5400(元);方案2所需费用为50×51+60×40=4950(元);方案3所需费用为50×90=4500(元);方案4所需费用为40×101=4040(元).∵5400>4950>4500>4040,∴甲、乙两单位联合购票,购买101张门票最省钱.25.对每个数位数字均不为零且互不相等的一个三位正整数x,若将x的十位数字与百位数字交换位置,得到一个新的三位数y,我们称y为x的“置换数”,如:123的“置效为“213”;若由x的百位、十位、个位上的数字任选两个组成一个新的两位数,所有新的两位数之和记为z,我们称z为x的“衍生数”.如456:因为45+46+54+56+64+65=330,所以456的“衍生数”为330.(1)直接写出987的“置换数”,并求987的“衍生数”;(2)对每个数位数字均不为零且互不相等的一个三位正整数x,设十位数字为1,若x 的“衍生数”与x的“置换数”之差为102,求x.【分析】(1)根据题意即可写出987的“置换数”,并求得987的“衍生数”;(2)根据题意可得,设三位正整数x为:100b+10+a,所以x的“衍生数”为:22b+22a+22,x的“置换数”为:100+10b+a,进而列出方程即可求解.解:(1)987的“置换数”为897,因为98+97+89+87+79+78=528,所以987的“衍生数”为528;(2)根据题意可知:设三位正整数x为:100b+10+a,所以x的“衍生数”为:10b+1+10b+a+10+b+10+a+10a+b+10a+1=22b+22a+22,x的“置换数”为:100+10b+a,所以22b+22a+22﹣(100+10b+a)=102所以或,所以x=804或118.26.如图,直线l上有AB两点,AB=18cm,点O是线段AB上的一点,OA=2OB (1)OA=12cm,OB=6cm;(2)若点C是直线AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为3cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以4cm/s的速度也向右运动.当点M追上点Q后立即返回,以4cm/s的速度向点P运动,遇到点P后再立即返回,以4cm/s的速度向点Q运动,如此往返.当点P与点Q重合时,P,Q两点停止运动.此时点M也停止运动.在此过程中,点M行驶的总路程是多少?【分析】(1)由OA=2OB结合AB=OA+OB=18即可求出OA、OB的长度;(2)设CO的长是xcm,分点C在线段AO上、在线段OB上以及在线段AB的延长线上三种情况考虑,根据两点间的距离公式结合AC=CO+CB即可得出关于x的一元一次方程,解之即可得出结论;(3)找出运动时间为ts时,点P、Q表示的数,由点P、Q表示的数相等即可找出t的取值范围.①由两点间的距离公式结合2OP﹣OQ=4即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;②令点P表示的数为0即可找出此时t的值,再根据路程=速度×时间即可算出点M行驶的总路程.解:(1)∵AB=18cm,OA=2OB,∴OA+OB=3OB=AB=18cm,解得:OB=6cm,OA=2OB=12cm.故答案为:12;6.(2)设CO的长是xcm,依题意有:①当点C在线段AO上时,12﹣x=x+6+x,解得x=2;②当点C在线段OB上时,12+x=x+6﹣x,解得:x=﹣6(舍去);③当点C在线段AB的延长线上时,12+x=x+x﹣6,解得x=18.故CO的长为2cm或18cm;(3)当运动时间为ts时,点P表示的数为3t﹣12,点Q表示的数为t+6.当3t﹣12=t+6时,t=9,∴0≤t≤9.①∵2OP﹣OQ=4,∴2|3t﹣12|﹣|t+6|=4.当0≤t<4时,有2(12﹣3t)﹣(6+t)=4,解得t=2;当4≤t≤9时,有2(3t﹣12)﹣(6+t)=4,解得t=6.8.故当t为2s或6.8s时,2OP﹣OQ=4.②当3t﹣12=0时,t=4,4×(9﹣4)=20(cm).答:在此过程中,点M行驶的总路程是20cm.1、三人行,必有我师。
人教版初一数学上册期末考试试题及答案 (6)

人教版七年级数学上册期末试题及答案(本卷满分150分,时间120分钟)一、精心选一选:(本大题共8小题,每小题3分,共24分.)1.方程063=+x 的解是 ( ) A .2 B .-2 C .3 D .-3 2.下列算式中,运算结果为负数的是 ( ) A .-(-100) B .100- C .-1002 D .(-100) 2 3.如果一个角的余角是50°,那么这个补角的角是 ( ) A .160° B .150° C .140° D .130° 4.地球绕太阳转动每小时行程约为51.110km ⨯,声音在空气中每小时约传播31.210km ⨯,则地球转动的速度与声音传播速度比较( )A .地球转动快B .声音传播快C .二者一样快D .无法比较5.下面简单几何体的主.视图是 ( )6.点C 在线段AB 上,M 、N 分别是线段AC 、CB 的中点。
若MN=5,则线段AB 的长等于( ) A .6B .8C .10D . 12正面 A .B .C .D .第5题图7.下列四个平面图形中,不能..折叠成无盖的长方体盒子的是 ( )8.如图,在a (cm )长的木板上钻4个圆孔,每个圆孔的直径为2cm ,则x 等于 ( )A .58+a B .516-a C .54-a D .58-a 二、细心填一填:(本大题共10小题,每小题3分,共30分.) 9. 32-43-. 10.试写一个只含字母x 的代数式:当2x =-时,它的值等于5.你写的代数式是 . 11.小明家的冰箱冷冻室的温度为5-℃,调高4℃后的温度是 ℃.12.数轴上点A 、B 分别表示数4-、1+,若点C 是AB 的中点,则点C 表示的数是 . 13.计算:()()22131a a a +---= .14.计算:1807818'︒-︒= ︒(友情提醒:结果化成度).15.已知48AOB ∠=︒,以OB 为一边画一个20BOC ∠=︒,则AOC ∠= ︒.第8题图第16题图第17题图16.如图,将图形沿虚线折起来,得到一个正方体,其中,“2”面的对面是 面(填相应面上的序号).17.如图,已知直线AB 、CD 相交于点O ,OE 平分∠AOC ,若∠AOE =58º,则∠AOD 的度数是 .18.新华书店以“10元办书缘会员卡享受购书9折优惠”的方式进行促销,你认为购书超过 元办会员卡购书合算.三、耐心解一解(本大题共10小题,共96分,解答需写出必要的文字说明、演算步骤.)19.(本小题满分8分)计算:()24123⎡⎤----⎣⎦.20.(本小题满分8分)先化简,再求值:)3(4)3(52222b a ab ab b a +--- ;其中1-=a ,21=b . 21.(本题满分8分)解下列方程: (1)11133x x -=-; (2)2130.20.5x x -+-=.22.(本题满分8分) 已知4x =,12y =,且0x y +<,求xy的值.23.(本题满分10分)利用直尺..画图 (1)利用图1中的网格,过P 点画直线AB 的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB 、CD 、EF 首尾顺次相接组成一个三角形.(3)在图(3)的网格中画一个三角形:满足①是直角三角形;②任意两个顶点都不在同一条网格线上;③三角形的顶点都在格点上(即在网格线的交点上).24.(本题满分10分) 已知线段AB ,反向延长AB 到点C ,使12AC AB =.若点D 是BC 中点,3CD cm =,求AB 、AD 的长.(要求:正确画图给2分)图(1) 图(2) 图(3)第23题图25.(本小题满分10分)某校在教学楼前铺设小广场地面,其图案设计如图所示.若长方形地面的长为50米,宽为32米,中心建一直径为10米的圆形喷泉,四周各角留一个长20米,宽5米的小长方形花坛,图中阴影处铺设广场地砖.(1)求阴影部分的面积S(π取3);第24题图(2)甲乙两人承包铺了地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.请你根据所给的条件提出一个问题,并列方程解答.问题:_________________________________________.26.(本题满分10分)数学活动与思考我们要学会用数学的眼光看世界——丰富多彩的图形世界。
人教版七年级上册数学期末考试试题含答案

人教版七年级上册数学期末考试试卷一、单选题1.下列各组数中,相等的是()A .()22-与22-B .22-与22-C .()32-与32-D .32-与32-2.若()1220a a x ---=是关于x 的一元一次方程,则a =()A .±2B .2C .0D .-23.下列各组单项式中,为同类项的是()A .a 3与a 2B .212a b 与2ba 2C .2xy 与2xD .﹣3与a4.我国国土面积约为960万平方千米,用科学记数法可表示为()平方千米.A .59610⨯B .496010⨯C .79.610⨯D .69.610⨯5.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有()A .1个B .2个C .3个D .4个6.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有()A .一个B .两个C .三个D .四个7.下列各图中,可以是一个正方体的平面展开图的是()A .B .C .D .8.已知a ,b 在数轴上的位置如图所示,则化简|a ﹣b|+|a+b|的结果是()A .2aB .﹣2aC .0D .2b9.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,……,按此规律,图形⑦中星星的颗数是()A .43B .45C .41D .5310.A 、B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,2h 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发x 小时后追上甲车,根据题意可列方程为()A .60(x +2)=100xB .60x =100(x -2)C .60x +100(x -2)=600D .60(x +2)+100x =600二、填空题11.关于单项式3223a b π-,系数为_______.12.若x=2是方程8﹣2x=ax 的解,则a=.13.已知代数式2−3的值为−7,则代数式6−9+8的值为______.14.已知线段AB 10cm =,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC 2=cm ,则线段DC =______.15.钟表在3点30分时,它的时针与分针所夹的角是_____度.16.一种商品零售价为600元,为适应竞争,商店按零售价的八折销售,则销售价______元.17.按下面的程序计算:若输入x =100,则输出结果是501;若输入x =25,则输出结果是631;若开始输入的数x 为正整数,最后输出结果为781,则开始输入的数x 的所有可能的值为_____.三、解答题18.计算:32112(3)4⎡⎤--⨯--⎣⎦19.计算:()()2222533a b ab ab a b --+20.5121136x x +--=.21.一个角的补角比这个角的余角3倍还多10︒,求这个角的度数.22.先化简,后求值:已知()21302x y -++=求代数式()222642129xy x x xy ⎡⎤----+⎣⎦的值23.探索规律:观察下面算式,并解答问题:213=4=2+2135=9=3++21357=16=4+++213579=25=5++++(1)试猜想135791113151719+++++++++=_________;(2)试猜想()()()135********n n n ++++++-++++……=________;(3)请用上述规律计算:10011003100520152017+++++…….(请算出最后数值哦!并写出计算过程)24.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?25.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB 运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA+PN 的值不变,选择一个正确的结论,并求出其值.26.如图,射线OC 、OD 在∠AOB 内部,∠AOB =α,∠COD =β,分别作∠AOC 和∠BOD 的平分线OM 、ON ,(1)当α=130°,β=40°时,请你填空:∠1+∠3=______°,∠MON =______°;(2)聪明的小芳通过探究发现,当射线OC 、OD 的位置在∠AOB 内变化时,∠MON 与α、β之间总满足∠MON =+2αβ,你是否认同她的这一结论?请说明理由;参考答案1.C【分析】根据有理数乘方的意义逐一计算并判断即可.【详解】解:A .()224-=,22-=-4,所以()22-≠22-,故本选项不符合题意;B .224-=,22-=-4,所以22-≠22-,故本选项不符合题意;C .()328-=-,328-=-,所以()32-=32-,故本选项符合题意;D .382-=,328-=-,所以32-≠32-,故本选项不符合题意.故选C .【点睛】此题考查的是有理数乘方的运算,掌握有理数乘方的意义是解决此题的关键.2.D【分析】根据一元一次方程的定义即可求出结论.【详解】解:∵()1220a a x ---=是关于x 的一元一次方程,∴1120a a ⎧-=⎨-≠⎩解得:a =-2故选D .【点睛】此题考查的是根据一元一次方程的定义求参数的值,掌握一元一次方程的定义是解决此题的关键.3.B【分析】根据同类项的定义逐个判断即可.【详解】A 、不是同类项,故本选项不符合题意;B 、是同类项,故本选项符合题意;C 、不是同类项,故本选项不符合题意;D 、不是同类项,故本选项不符合题意;故选:B .【点睛】考查了同类项的定义,解题关键是抓住所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.4.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:960万平方千米=9600000平方千米=69.610 平方千米故选D .【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.5.D【详解】解:①3a+2b 无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意;⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意;故选D6.C【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A 、B 两点间的距离是指A 、B 两点间的线段的长度,原来的说法是错误的.故选C .【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.7.C【分析】根据正方体的展开图特征逐一判断即可.【详解】A 不是正方体的展开图,故不符合题意;B 不是正方体的展开图,故不符合题意;C 是正方体的展开图,故符合题意;D 不是正方体的展开图,故不符合题意;故选C .【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.8.B【详解】解:由数轴可知a <0<b ,|a |>|b |,所以a -b <0,a +b <0,所以|a ﹣b |=b -a ,|a +b |=-(a +b ),所以|a ﹣b |+|a +b |=(b -a )-(a +b )=b -a -a -b=-2a .故选B .9.C【分析】设图形n 中星星的颗数是a n (n 为正整数),列出各图形中星星的个数,根据数据的变化找出变化规律“215122n n +-”,依此规律即可得出结论.【详解】解:设图形n 中星星的颗数是a n (n 为正整数),∵a 1=2=1+1,a 2=6=(1+2)+3,a 3=11=(1+2+3)+5,a 4=17=(1+2+3+4)+7,∴a n =1+2+…+n+(2n-1)=(1)2n n ++(2n-1)=215122n n +-,∴a 7=21577122⨯+⨯-=41.故选:C .【点睛】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.10.A【详解】设乙车出发x 小时后追上甲车,根据等量关系“乙车x 小时走的路程=甲车(x+2)小时走的路程”,据此列方程100x=60(x+2).故选A .11.23π-【分析】根据单项式系数的定义:单项式中的数字因数叫做单项式的系数,即可得出结论.【详解】解:单项式3223a b π-的系数为:23π-故答案为:23π-.【点睛】此题考查的是单项式系数,掌握单项式系数的定义是解决此题的关键,需注意π是数字.12.2【详解】试题分析:把x=2,代入方程得到一个关于a 的方程,即可求解.解:把x=2代入方程,得:8﹣4=2a ,解得:a=2.故答案是:2.考点:一元一次方程的解.13.-13【解析】【分析】观察题中两个代数式,利用整体求值即可.【详解】解:6−9+8=3(2−3)+8=-13.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式的值,然后利用“整体代入法”求代数式的值.14.7cm或3cm【分析】分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.【详解】解:∵点D是线段AB的中点,∴BD=0.5AB=0.5×10=5cm,(1)C在线段AB延长线上,如图.DC=DB+BC=5+2=7cm;(2)C在线段AB上,如图.DC=DB-BC=5-2=3cm.则线段DC=7cm或3cm.15.75【分析】根据时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,每一格之间的夹角为30 ,可得出结果.【详解】解: 钟表上从1到12一共有12格,每个大格30 ,∴时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,∴分针与时针的夹角是2.53075⨯= .故答案为75 .【点睛】本题考查了钟面角的有关知识,解题关键是得出钟表上从1到12一共有12格,每个大格30 .16.480【分析】用600乘折扣数即可得出结论.【详解】解:销售价为600×80%=480元故答案为:480.【点睛】此题考查的是有理数乘法的应用,掌握实际问题中各个量之间的关系是解决此题的关键.17.1或6或31或156【分析】根据输出的结果确定出x的所有可能值即可.【详解】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为1或6或31或156.【点睛】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.18.3.4【解析】【分析】先算乘方,再算括号里面的减法,再算乘法,最后算减法.【详解】原式()1129,4=--⨯-()1129,4=--⨯-()117,4=--⨯-71,4=-+3.4=【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.19.22126a b ab -【分析】先去括号,再合并同类项即可.【详解】()()2222533a b ab ab a b --+22221553a b ab ab a b=---22126a b ab =-.【点睛】本题考查了整式的加减运算,熟练掌握去括号的法则是解题的关键.20.38x =【分析】去分母、去括号、移项、合并同类项、系数化1即可.【详解】解:5121136x x+--=去分母,得()()251216x x +--=去括号,得102216x x +-+=移项,得102612x x -=--合并同类项,得83x =系数化1,得38 x=【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.21.这个角的度数为50︒【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】解:设这个角的度数是x︒,则()18039010x x-=-+50x=答:这个角的度数为50︒【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.22.14【分析】根据非负数的性质分别求出x、y,根据整式的混合运算法则化简,代入计算即可.【详解】由题意得,x-3=0,y+12=0,解得,x=3,y=-1 2,则2xy2-[6x-4(2x-1)-2xy2]+9 =2xy2-6x+4(2x-1)+2xy2+9 =2xy2-6x+8x-4+2xy2+9=4xy2+2x+5=4×3×(-12)2+2×3+5=14.【点睛】本题考查的是整式的加减混合运算、非负数的性质,掌握整式的加减混合运算法则是解题的关键.23.(1)100;(2)()22n +;(3)768081,过程见解析【分析】(1)根据已知等式,找出运算规律即可得出结论;(2)根据(1)所找规律即可得出结论;(3)根据(1)所找规律求出135999……++++的值,再求出135999100110032017…………++++++++,然后两式相减即可求出结论.【详解】解:(1)221313=4=22+⎛⎫+= ⎪⎝⎭2215135=9=32+⎛⎫++= ⎪⎝⎭22171357=16=42+⎛⎫+++= ⎪⎝⎭221913579=25=52+⎛⎫++++= ⎪⎝⎭∴135791113151719+++++++++=21192+⎛⎫= ⎪⎝⎭100故答案为:100;(2)()()()135********n n n ++++++-++++……=()21232n ++⎡⎤⎢⎥⎣⎦=()22n +故答案为:()22n +;(3)135999……++++=219992500002+⎛⎫= ⎪⎝⎭135999100110032017…………++++++++=21201710180812+⎛⎫= ⎝⎭∴10011003100520152017+++++……=()135999100110032017…………++++++++-()135999……++++=1018081250000-=768081【点睛】此题考查的是有理数运算的探索规律题,找出运算规律是解决此题的关键.24.(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元;(2)第二次乙种商品是按原价打8.5折销售【分析】(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件,根据题意列出方程即可求出x 的值,然后根据“获利=售价-进价”即可求出结论;(2)设第二次乙种商品是按原价打y 折销售,根据题意列出方程即可求出结论.【详解】解:(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件由题意可得:22x +30(12x +15)=6000解得:x=150∴购进乙商品12×150+15=90件∴全部卖完后一共可获利(29-22)×150+(40-30)×90=1950(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元.(2)设第二次乙种商品是按原价打y 折销售由题意可得:(29-22)×150+(40×10y -30)×90×3-1950=180解得:y=8.5答:第二次乙种商品是按原价打8.5折销售.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.25.(1)3秒;(2)当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①.【分析】(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24-x,PB=24-2x,表示出2BM-BP后,化简即可得出结论.(3)PA=2x,AM=PM=x,PB=2x-12,PN=12PB=x-6,分别表示出MN,MA+PN的长度即可作出判断.【详解】解:(1)设出发x秒后PB=2AM,当点P在点B左边时,AM=x,PA=2x,PB=12−2x 由题意得,12−2x=2x,解得:x=3;当点P在点B右边时,PA=2x,PB=2x−12,AM=x,由题意得:2x−12=2x,方程无解;综上可得:出发3秒后PB=2AM.(2)∵AM=x,BM=12−x,PB=12−2x,∴2BM−BP=2(12−x)−(12−2x)=12;(3)选①;∵PA=2x,AM=PM=x,PB=2x−12,PN=12PB=x−6,∴①MN=PM−PN=x−(x−6)=6(定值);②MA+PN=x+x−6=2x−6(变化).点睛:本题考查了两点间的距离,解答本题的关键是用含有时间的式子表示出各线段的长度. 26.(1)45°;85°;(2)是,理由见解析【分析】(1)先求出∠BOD+∠AOC,然后根据角平分线的定义可得∠3=∠4=12∠BOD,∠1=∠2=12∠AOC,从而求出∠1+∠3和∠2+∠4,即可求出∠MON;(2)先求出∠BOD+∠AOC,然后根据角平分线的定义可得∠4=12∠BOD,∠2=12∠AOC,从而求出∠2+∠4,即可求出∠MON;【详解】解:(1)∵∠AOB =α=130°,∠COD =β=40°∴∠BOD +∠AOC=∠AOB -∠COD=90°∵ON 、OM 分别平分∠BOD 和∠AOC∴∠3=∠4=12∠BOD ,∠1=∠2=12∠AOC∴∠1+∠3=∠2+∠4=12∠AOC +12∠BOD =12(∠AOC +∠BOD )=12×90°=45°∴∠MON =∠2+∠4+∠COD=45°+40°=85°故答案为:45°;85°;(2)是,理由如下:∵∠AOB =α,∠COD =β∴∠BOD +∠AOC=∠AOB -∠COD=α-β∵ON 、OM 分别平分∠BOD 和∠AOC∴∠4=12∠BOD ,∠2=12∠AOC∴∠2+∠4=12∠AOC +12∠BOD =12(∠AOC +∠BOD )=2αβ-∴∠MON =∠2+∠4+∠COD =2αβ-+β=2αβ+【点睛】此题考查的是角的和与差,掌握各个角之间的关系是解决此题的关键.。
最新人教版七年级数学上册期末考试题及答案【完整版】

最新人教版七年级数学上册期末考试题及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是( )A .235×104B .0.235×107C .23.5×105D .2.35×1062.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .923.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°4.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-75.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .27.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 8.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a9.下列说法正确的是( )A .零是正数不是负数B .零既不是正数也不是负数C .零既是正数也是负数D .不是正数的数一定是负数,不是负数的数一定是正数10.计算()233a a ⋅的结果是( ) A .8a B .9a C .11a D .18a二、填空题(本大题共6小题,每小题3分,共18分)1.若|x|=4,|y|=5,则x -y 的值为____________.2.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________.3.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.4.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为________.5.如图,已知C 为线段AB 的中点,D 在线段CB 上.若DA=6,DB=4,则CD=_____.6.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部份铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、D5、B6、B7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±1,±92、1215a ≤<3、654、55、16、2三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)x=-72、±33、(1)90°;(2)①α+β=180°;②α=β.4、(1)木地板需要4ab m 2,地砖需要11ab m 2;(2)王老师需要花23abx 元.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)120件;(2)150元.。
人教版七年级数学上册期末测试题及答案

七年级上学期期末数学试卷(考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.)1.2-等于( )A .-2B .12- C .2 D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y 4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1 5.下列各组单项式中,为同类项的是( )A .a 3与a 2B .12a 2与2a 2 C .2xy 与2x D .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .D .7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )A .70° B.90° C .105° D.120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69° B.111° C.141° D.159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获ABCD第8题图A第9题图利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( )A .(1+50%)x×80%=x -28B .(1+50%)x×80%=x +28C .(1+50%x)×80%=x -28D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( )A .32428-=x xB .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________.16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2500 000用科学记数法表示应为_________________平方千米.18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分) 6 2 22 4 2 0 4 8 8 4 44 6…… 共43元 共94元21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分)先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分) 一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ;(2)写出第二次移动结果这个点在数轴上表示的数为 ;(3)写出第五次移动后这个点在数轴上表示的数为 ;(4)写出第n 次移动结果这个点在数轴上表示的数为 ;(5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分) OAC如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.A E DB F C数学试题参考答案一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B.二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9)…3分 =-1+ 47…5分 =43…6分 22.解:设这个角的度数为x . ………1分由题意得: 30)90(21=--x x ο…3分 解得:x =80……5分 答:这个角的度数是80° ………6分23.解:原式 =1212212+--+-x x x ……3分 =12--x …4分 把x =21代入原式: 原式=12--x =1)21(2--…5分 =45- 7分 24.解:6)12()15(2=--+x x . …2分 612210=+-+x x .……4分8x =3. ……6分 83=x .……7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ………1分(2)第二次移动后这个点在数轴上表示的数是4; …………2分(3)第五次移动后这个点在数轴上表示的数是7; ……………3分(4)第n 次移动后这个点在数轴上表示的数是n +2; …………5分(5)54. ………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°,…2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ……4分∠BOD =3∠DOE ∴∠DOE =15, ……7分∴∠COE =∠COD -∠DOE =90°-15°=75° ………8分27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . ………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =,CF =12CD =2x cm .……3分∴EF=AC-AE-CF=.……4分∵EF=10cm,∴=10,解得:x=4.……6分∴AB=12c,CD=16cm.……………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ……1分由题意得:30x+45(x+4)=1755 ……3分解得:x=21 则x+4=25. ………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447. …7分解之得:y= (不符合题意) .…8分所以王老师肯定搞错了. …9分(3)2或6. …………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为 a、z都是整数,且178+a应被4整除,所以 a为偶数,又因为a为小于10元的整数,所以 a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
人教版初一上册数学期末试卷「附答案」

⼈教版初⼀上册数学期末试卷「附答案」⼈教版初⼀上册数学期末试卷「附答案」 数学是⼀科⽐较难学的学科,要打好基础,就要多做试题,下⾯由yjbys⼩编为⼤家带来的⼈教版初⼀上册数学期末试卷附答案,仅供参考~ 【⼈教版初⼀上册数学期末试卷】 ⼀、选择题(共15个⼩题,每⼩题2分,共30分) 1.如果向东⾛记为,那么向西⾛记为 ( ) A. B. C. D. 2.某市2010年元旦的最⾼⽓温为2℃,最低⽓温为-8℃,那么这天的最⾼⽓温⽐最低⽓温⾼ ( )A.-10℃B.-6℃C.6℃D.10℃ 3.-6的绝对值等于 ( ) A. B. C. D. 4.未来三年,国家将投⼊8500亿元⽤于缓解群众“看病难,看病贵”问题.将8500亿元⽤科学记数法表⽰为 ( )A. 亿元B. 亿元C. 亿元D. 亿元 5.当时,代数式的值是 ( ) A. B. C. D. 6.下列计算正确的是 ( ) A. B. C. D. 7.将线段AB延长⾄C,再将线段AB反向延长⾄D,则图中共有线段 ( )A.8条B.7条C.6条D.5条 8.下列语句正确的是 ( ) A.在所有联结两点的线中,直线最短 B.线段A⽈是点A与点B的距离 C.三条直线两两相交,必定有三个交点 D.在同⼀平⾯内,两条不重合的直线,不平⾏必相交 9.已知线段和点,如果,那么 ( )A.点为中点B.点在线段上C.点在线段外D.点在线段的延长线上 10.⼀个多项式减去等于,则这个多项式是 A. B. C. D. 11.若,则下列式⼦错误的是 A. B. C. D. 12.下列哪个不等式组的解集在数轴上的表⽰如图所⽰ A. B. C. D. 13.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=55A.35B.55C.70D.110 14.把⽅程的分母化为整数的⽅程是( ) A. B. C. D. ⼆、填空题(共10个⼩题,每⼩题2分,共20分) 16.⽐较⼤⼩: _________ (填“<”、“=”或“>”) 17.计算: _________ 18.如果a与5互为相反数,那么a=_________ 19.甲数的与⼄数的差可以表⽰为_________ 20.定义※ = ,则(1※2)※3=_________ 21.如图,要使输出值Y⼤于100,则输⼊的最⼩正整数x是___________ 22.如图,将⼀副三⾓板叠放在⼀起,使直⾓顶点重合于0点,则∠AOC+∠DOB=___________ 度. 23.如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=140 ,则∠EOD=___________度. 24.已知,则 ___________. 25.观察下⾯的.⼀列单项式:,…根据你发现的规律,第7个单项式为___________;第个单项式为___________. 三、计算或化简(共4个⼩题,每⼩题4分,共16分) 26.计算: 27.计算: 28.计算: 29.化简: 四、解⽅程或不等式(共2个⼩题,每⼩题5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册期末试题及答案
(本卷满分150分,时间120分钟)
一、精心选一选:(本大题共8小题,每小题3分,共24分.)
1.方程063=+x 的解是 ( ) A .2 B .-2 C .3 D .-3 2.下列算式中,运算结果为负数的是 ( ) A .-(-100) B .100- C .-1002 D .(-100) 2 3.如果一个角的余角是50°,那么这个补角的角是 ( ) A .160° B .150° C .140° D .130° 4.地球绕太阳转动每小时行程约为51.110km ⨯,声音在空气中每小时约传播
31.210km ⨯,则地球转动的速度与声音传播速度比较( )
A .地球转动快
B .声音传播快
C .二者一样快
D .无法比较
5.下面简单几何体的主.视图是 ( )
6.点C 在线段AB 上,M 、N 分别是线段AC 、CB 的中点。
若MN=5,则线段AB 的长等于( ) A .6
B .8
C .10
D . 12
正面 A .
B .
C .
D .
第5题图
7.下列四个平面图形中,不能..折叠成无盖的长方体盒子的是 ( )
8.如图,在a (cm )长的木板上钻4个圆孔,每个圆孔的直径为2cm ,则x 等于 ( )
A .
58+a B .516-a C .54-a D .5
8
-a 二、细心填一填:(本大题共10小题,每小题3分,共30分.) 9. 32-
4
3-. 10.试写一个只含字母x 的代数式:当2x =-时,它的值等于5.你写的代数式是 . 11.小明家的冰箱冷冻室的温度为5-℃,调高4℃后的温度是 ℃.
12.数轴上点A 、B 分别表示数4-、1+,若点C 是AB 的中点,则点C 表示的数是 . 13.计算:()()22131a a a +---= .
14.计算:1807818'︒-︒= ︒(友情提醒:结果化成度).
15.已知48AOB ∠=︒,以OB 为一边画一个20BOC ∠=︒,则AOC ∠= ︒.
第8题图
第16题图
第17题图
16.如图,将图形沿虚线折起来,得到一个正方体,其中,“2”面的对面是 面(填相应面上的序号).
17.如图,已知直线AB 、CD 相交于点O ,OE 平分∠AOC ,若∠AOE =58º,则∠AOD 的度数是 .
18.新华书店以“10元办书缘会员卡享受购书9折优惠”的方式进行促销,你认为购书超过 元办会员卡购书合算.
三、耐心解一解(本大题共10小题,共96分,解答需写出必要的文字说明、
演算步骤.)
19.(本小题满分8分)计算:()2
4123⎡⎤----⎣⎦
.
20.(本小题满分8分)先化简,再求值:)3(4)3(52222b a ab ab b a +--- ;
其中1-=a ,2
1=
b . 21.(本题满分8分)解下列方程: (1)11133x x -=-; (2)2130.20.5
x x -+-=.
22.(本题满分8分) 已知4x =,12y =
,且0x y +<,求x
y
的值.
23.(本题满分10分)利用直尺..
画图 (1)利用图1中的网格,过P 点画直线AB 的平行线和垂线.
(2)把图(2)网格中的三条线段通过平移使三条线段AB 、CD 、EF 首尾顺次相接组成一个三角形.
(3)在图(3)的网格中画一个三角形:满足①是直角三角形;②任意两个顶点都不在同一条网格线上;③三角形的顶点都在格点上(即在网格线的交点上).
24.(本题满分10分) 已知线段AB ,反向延长AB 到点C ,使12
AC AB =.若点D 是BC 中点,3CD cm =,求AB 、AD 的长.(要求:正确画图给2分)
图(1) 图(2) 图(3)
第23题图
25.(本小题满分10分)某校在教学楼前铺设小广场地面,其图案设计如图所示.若长方形地面的长为50米,宽为32米,中心建一直径为10米的圆形喷泉,四周各角留一个长20米,宽5米的小长方形花坛,图中阴影处铺设广场地砖.
(1)求阴影部分的面积S(π取3);
第24题图
(2)甲乙两人承包铺了地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.请你根据所给的条件提出一个问题,并列方程解答.问题:_________________________________________.
26.(本题满分10分)数学活动与思考
我们要学会用数学的眼光看世界——丰富多彩的图形世界。
在“图形世界”里,见到许多熟悉的基本图形,感受到图形的平移、翻折、旋转等变化;也发现“图形世界”是由基本图形构成的.可以利用这些变化和基本图形设计出符合要求的图形.
例:直角三角形通过剪切可
以拼成一个与该直角三角形面
积相等的长方形.方法如图示:
请你用图示的方法解答下列问题:
(1)如图,对一个任意的三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的长方形;
(2)如图,对一个任意的四边形,设计一种方案,将它分成若干块,再拼成一个
与原四边形面积相等的长方形;
27.(本题满分12分)如图(1),将两块直角三角尺的直角顶点C叠放在一起,
(1)若∠DCE=35°,∠ACB= ;若∠ACB=140°,则∠DCE=;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.
28.(本题满分12分) 数学游戏:有谷粒100颗,甲、乙二人玩轮流抓谷粒颗数的游戏,规定每人每次至少抓1颗,至多抓5颗,谁抓
.......。
若甲先抓,抓几颗,才
..到最后一把谁赢
能保证一定赢?
建立模型:为了解决这个问题,可以把问题一般化:找到当谷粒为n颗时,甲如何抓能赢的规律?
探索规律:为了找到解决问题的方法,我们可以把上述一般化的问题特殊化:
(1)填表
n 1 2 3 4 5 6 …
甲 1 2 …
乙————…
输赢结果甲赢甲赢…
注:在甲、乙所在行空白处填他们所抓谷粒颗数,输赢结果行空白的注明甲输或甲赢.猜想并验证规律:
(2)根据上述的规律,当谷粒为7颗,甲能赢吗?如果能,试简述甲、乙轮流抓的过程?如果不能请说明理由;若谷粒为13颗呢?
解决问题:
(3)当谷粒为100颗时,甲先抓几颗,才能保证一定赢?为什么?。