外文翻译-有限幂零群的一个特征条件-精品
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业设计
外文文献及译文
文献、资料题目:A characteristic condition of finite
nilpotent group
文献、资料来源:LI Yang-ming / Li / J Zhejiang Univ SCI
2004 5(7):749-753
文献、资料发表(出版)日期:
院(部):理学院
专业:信息与计算科学
班级:
姓名:
学号:
指导教师:
翻译日期:
外文文献:
A characteristic condition of finite nilpotent group
LI Yang-ming (李样明)
(Department of Mathematics, Zhejiang University, Hangzhou 310016, China)
(Department of Mathematics, Guangdong College of Education, Guangzhou 510310, China)
E-mail:*******************.cn
Received Nov. 4, 2003; revision accepted Feb. 9, 2004
Abstract:This paper gives a characteristic condition of finite nilpotent group under the assumption that all minimal subgroups of G are well-suited in G.
Key words: Z-permutable subgroup, Nilpotent group, The generalized Fitting subgroup, Hypercenter subgroup
Document code: A CLC number:O152
INTRODUCTION
In this paper, all groups considered are finite;G means a finite group.
We use conventional notions and notations,as in Huppert(1968).Recall that a minimal subgroup of a finite group is a subgroup of prime order. For the group of even order, it is helpful to also consider the cyclic subgroup of order 4. Two subgroups H and K of a group G are said to permute if HK=KH.It is easily seen that H and K permute if and only if the set of HK is a subgroup of G. We know that a normal subgroup of G permutes with every subgroup of G. So Ore(1937) extended normal subgroup to quasinormal subgroup, a subgroup of G is called quasinormal subgroup of G if it permutes with every subgroup of G. Kegel (1962) went further to define Л-quasinormal subgroup, a subgroup of G is Л-quasinormal in G if it permutes with every Sylow subgroup of G. Recently, Asaad and Heliel(2003) extende d Л-quasinormality to a new embedding property, namely the Z-permutability.Z is called a complete set of Sylow subgroups of G if for each prime p∈Л(G)(the set of distinct primes dividing |G|),Z contains exactly one Sylow p-subgroup of G,Gp say.A subgroup of G is said to be Z-permutable in G if it permutes with every member of Z.
A number of authors had considered how minimal subgroups could be embedded in a
nilpotent group or a p-nilpotent group.Huppert(1968) proved that if G is a group of odd order and all minimal subgroups of G lie in the center of G ,then G is nilpotent. An extension of his result is the following statement: If for an odd prime p,every subgroup of order p lies in the center of G , then G is p-nilpotent. If all the elements of G of order 2 or 4 lie in the center of G ,then G is 2-nilpotent (Huppert,1968).Recently the result was generalized as follows:Let N be a normal subgroup of a group G such that G/N is nilpotent.Suppose every element of order 4 of F*(N) is c-supplemented in G ,then G is nilpotent if and only if every element of prime order of F*(N) is contained in the hypercenter Z (G) of G (Wang et al.,2003).All the results mentioned above were also extended with formation theory,such as in Asaad et al.(1996).In this paper, we want to get some results analogous to the above theorems by replacing the c-supplementation by Z-permutability.The main theorem is as follows:
Main Theorem Let F be a saturated formation such that N ⊆F,where N is the class of all nilpotent groups.Let G be a group and Z a complete set of Sylow subgroups of G . Suppose every element of order 4 of F*(F G ∩2G ) is Z-permutable in G ,where 2G ∈Z.Then G belongs to F if and only if <x> lies in the F-hypercenter F Z (G) of G for every element x of F*(F G ∩Gp) of prime order, for every Gp ∈Z.
It is significant to mention first there are soluble groups with Л-quasinormal (Z-permutable)subgroups which are not c-supplemented. Conversely,there are soluble groups with Л-quasinormal(Z-permutable) subgroups which are not c-supplemented subgroups;Secondly our results give the sufficient and necessary condition of nilpotent group, i.e., it is a characteristic condition of nilpotent (ref. Theorem 5).
For the definitions and terminology of formations,please refer to Finite soluble groups(Doerk and Hawkes, 1992).Let Z be a complete set of Sylow subgroups of a group G .If N G , we shall denote by Z ∩N the following set of subgroups of G:
Z ∩N={Gp ∩N:Gp ∈Z}.
An element x of a group G is said to be Л-quasinormal(Z-permutable) in G if <x> is Л-quasinormal (Z-permutable) in G.
SOME LEMMAS
Lemma 1(Kegel, 1962)
(1) A Л-quasinormal subgroup of G is subnormal in G;
P G C O Z ∞(2) If H ≤K ≤G and H is Л-quasinormal in G ,then H is Л-quasinormal in K;
(3) If H is Л-quasinormal Hall subgroup of G ,then H G;
(4) Let K G and K ≤H. Then H is Л-quasinormal in G if and only if H/K is
Л-quasinormal in G/K.
Lemma 2 Suppose G is a group and P is a normal p-subgroup of G contained in Z ∞(G),then G C (P)≥P O (G).
Proof Applying Satz 4.4 of Endliche Gruppen(Huppert, 1968).
The generalized Fitting subgroup F*(G) of G is an important subgroup of G and it is a natural generalization of F(G).The definition and impotent properties can be found in Huppert and Blackburn(1982).We wound like to gather the following basic facts which we will use in our proof.
Lemma 3 (Li and Wang, 2003) Let G be a group and M a subgroup of G .
(1) If M is normal in G , then F*(M) ≤ F*(G);
(2) F*(G)≠1 if G ≠1;in fact, F*(G)/F(G)=soc(F(G)CG(F(G))/F(G));
(3) F*(F*(G))=F*(G)≥F(G); if F*(G) is soluble, then F*(G)=F(G).
(4) CG(F(G))≤F(G);
(5) Suppose K is a subgroup of G contained in Z(G),then F*(G/K)=F*(G)/K.
Lemma 4(Asaad and Heliel, 2003) Let Z be a complete set of Sylow subgroups of G ,U be a Z-permutable subgroup of G , and N a normal subgroup of G . Then:
(1) Z ∩N is a complete set of Sylow subgroups of N.
(2) If U ≤N, then U is a Z ∩N-permutable subgroup of N.
Lemma 5 Let P be a normal 2-subgroup of a group G ,and Z a complete set of Sylow subgroups of G .If every cyclic subgroup of order 4 of P is Z-permutable subgroup in G ,then every cyclic subgroup of order 4 of P is Л-quasinormal in G .
Proof Let L be an arbitrary subgroup of P of order 4. Then I P LG is a subgroup of G for
every
I P G ∈Z.Since P
G ,1122()i x x x m m G N F p G F L G x N Z a N G O G G Z --∞I P G ≤G .. But L i
x p G =1()i x x x p L G - is a subgroup of G , then L is Л-quasinormal in G .
Lemma 6Suppose M,N are normal subgroups of G.If there exists a Sylow p-subgroup P of G such that every element of M∩P of order p lies in N, then every element of M of prime order lies in N.
Proof Since M is a normal subgroup of G,M∩P is a Sylow p-subgroup of M.By Sylow Theorem,forany element x of M of prime order,there exists m∈M such that m x∈M∩P,so m
N-=N. Thus the lemma holds.
x∈N by the hypotheses.Then x∈1m
MAIN RESULTS
Theorem 1 Suppose G is a group, p is a fixed prime number. If every element of G of order
(G).If p=2, in addition, suppose every cyclic subgroup of order 4 of G is p is contained in Z
∞
Л-quasinormal, then G is p-nilpotent.
Proof Suppose that the theorem is false and let G be a counter-example of smallest order.
(a) The hypotheses are inherited by all proper subgroups, thus G is a group which is not p-nilpotent but whose proper subgroups are all p-nilpotent.
(G)∩H≤
In fact,∀H < G, K is a cyclic subgroup of H of order p (or 4 if p=2),then K≤Z
∞
Z
(H). By Lemma 1(2), we know that the Л-quasinormality in G can imply the
∞
Л-quasinormality in H. Thus H satisfies the hypotheses of the theorem. The minimal choice of G implies that H is p-nilpotent,thus G is a group which is not p-nilpotent but whose proper subgroups are all p-nilpotent. So,G=PQ,where P G and Q is not normal in G
(Huppert,1968).
(b) p=2 and every element of order 4 is Л-quasinormal in G. If not,then p>2, then exp(P)=p(Huppert,1968). Thus P ≤Z
(G) by the hypotheses. Therefore G=PQ=P×Q, then is
∞
nilpotent by Lemma 2, a contradiction. Thus (b) holds.
(c)∀a∈P\Φ(P), o(a)=4.
If not, there exists a∈P\Φ(P),such that o(a)=2.Denote M=<G a>≤P.Then MΦ(P)/Φ(P)G/Φ(P), we have that P=MΦ(P)=M≤Z
(G) as P/Φ(P) is a minimal normal subgroup of
∞
G/Φ(P) (Huppert,1968), a contradiction.
(d) Final contradiction.
∀x∈P\Φ(P), o(x)=4. Then <x> is Л-quasinormalin G,so <x>Q<G,thus <x>Q=<x>×Q by (a). Therefore <x>⊆NG(Q), it follows that P⊆
G
N(Q), the final contradiction.
Theorem 2Suppose N is a normal subgroup of a group G such that G/N is p-nilpotent, where
p is a fixed prime number. Suppose every element of N of order p is contained in Z
∞
(G). If p=2, in addition,suppose every cyclic subgroup of order 4 of N is Л-quasinormal in G, then G is p-nilpotent.
Proof Assume that the theorem is false and let G be a counterexample of minimal order, then we have:
(a) The hypotheses are inherited by all proper subgroups, thus G is a group which is not p-nilpotent but whose proper subgroups are all p-nilpotent.
In fact,∀K<G, since G/N is p-nilpotent,K/K∩N≅KN/N is also p-nilpotent.The element of
order p of K∩N is contained in Z
∞(G)∩K≤Z
∞
(K),the cyclic subgroup of order 4 of K∩N is
Л-quasi normal in G, then is Л-quasinormal in K by Lemma 1. Thus K, K∩N satisfy the hypotheses of the theorem, so K is p-nilpotent, therefore G is a group which is not p-nilpotent but whose proper subgroups are all p-nilpotent. Then G=PQ, P G, Q is not normal in G
(Huppert, 1968).
(b) G/P∩N is p-nilpotent.
Since G/P≅Q is nilpotent, G/N is p-nilpotent and G/(P∩N)≤G/P×G/N, therefore G/(P∩N) is p-nilpotent.
(c) P≤N.
If not, then P∩N<P. So Q(P∩N)<QP=G. Thus Q(P∩N) is nilpotent by (a), Q(P∩N)=Q×(P∩N).Since G/P∩N =P/P∩N·Q(P∩N)/P∩N, it follows that Q(P∩N)/P∩N G/P∩N by (b). So Q char Q(P∩N)G.Therefore,G=P×Q, a contradiction.
(d) Final contradiction.
If p>2, then exp(P)=p by (a).Thus P=P∩N≤Z
∞
(G),then that G=P×Q (Huppert, 1968), a contradiction.
If p=2, since P G, so all elements of order 2 of G are contained in P,i.e., contained in N.
Thus every element of order 2 of G lies in Z
∞
(G), every cyclic subgroup of order 4 is
Л-quasinormal in G.Applying Theorem 1, we have that G is 2-nilpotent,a contradiction, completing the proof.
Since a group G if nilpotent if and only if G is p-nilpotent, ∀p∈Л(G). By Theorem 2, we have:
Theorem 3Suppose N is a normal subgroup of a group G such that G/N is nilpotent. Then
G is nilpotent if and only if every element of N of prime order is contained in Z
∞
(G), every cyclic subgroup of order 4 of N is Л-quasinormal in G. Revising the proof of Theorem 3.3 of Wang et al.(2003), we can minimize the number of restricted elements in Theorem 3. Theorem 4Suppose N is a normal subgroup of a group G such that G/N is nilpotent, then G is nilpotent if and only if every element of F*(N) of order 4 is Л-quasinormal in G and every
element of F*(N) of prime order is contained in the hypercenter Z
∞
(G) of G.
Theorem 5Let Z be a complete set of Sylow subgroups of a group G and N a normal subgroup of G such that G/N is nilpotent.Then G is nilpotent if and only if every element of
F*(N)∩
2
G of order 4 is Z-permutable in G, and every element of F*(N)∩Gp of prime order is
contained in the hypercenter Z
∞
(G) of G, for any Gp∈Z.By Lemma 6, it is easy to see Theorem 5 is equivalent to the following:
Theorem 5’Let Z be a complete set of Sylow subgroups of a group G,N is a normal
subgroup of G such that G/N is nilpotent, then G is nilpotent if and only if every element of
F*(N)∩
2
G of order 4 is Z-permutable in G, every element of F*(N) of prime order is
contained in the hypercenter
2
G(G) of G.
Proof The necessity is the same as that in Theorem 4, we only need to prove the converse is true.
Let G be a counterexample of minimal order,then we have:
(1)Every proper normal subgroup of G is nilpotent.If M is a maximal normal subgroup of
G, we have that M/M∩N is nilpotent, F*(M∩N) is contained in F*(N) and Z
∞
(G)∩M is
contained in Z
∞
(M),so every element of F*(M∩N) of prime order is contained in the
hypercenter Z
∞(M), and every element of F*(N)∩(
2
G∩N) of order 4 is Z-permutable in G by
hypotheses, thus is Z∩M-permutable in M by Lemma 4(2),so M,M∩N satisfies the hypotheses of the theorem.The minimal choice of G implies that M is nilpotent.
(2) F*(G)=G.
If F*(G)<G,then F*(G) is nilpotent by (1),in particular,F*(G) is solvable,so F*(G)=F(G) by Lemma 3.For the Sylow 2-subgroup P of F*(G),P=
2
O(G)≤G2,we know that the cyclic subgroups of P of order 4 are Z-permutable subgroups in G by hypotheses, now Lemma 2.5 implies the cyclic subgroups of order 4 of P are Л-quasinormal in G. Applying Theorem 4, G is nilpotent, a contradiction.
(3) G is almost simple, i.e., G/Z(G) is simple.
By (2),G=F*(G)=F(G)E(G),where E(G) is layer of G. If E(G)≤F(G),then G=F(G) is nilpotent,a contradiction. Thus assume E(G) is not contained F(G),then we can pick a component H of E(G)(Huppert and Blackburn, 1982), and H is almost simple.By (2), [H,G]=[H,F*(G)]=[H,F(G)E(G)]=[H,E(G)]≤H, i.e., H is normal in G. If H<G, then H is solvable by (1),a contradiction.So G=H is almost simple.
(4)N
G=N=G,and Z
∞
(G)=Z(G).
If N
G<G, then N
G is nilpotent by (1),then G is solvable,contrary to (3),thus N
G=G,and
N
G≤N implies that N=G.By Huppert(1968),we have N
G∩Z
∞(G)≤Z(N
G),so Z
∞
(G)=Z(G).
(5)The final contradiction.We know that G is a quasisimple group by (3).So Z(G) is a subgroup of the Schur multiplier of G/Z(G)(Gorenstein,1982).Again by Table 4.1 in(Gorenstein,1982),Z(G)≤R or Z(G)≤R×P.There fore Л(Z(G)) contains at most two primes.Then every element of prime order of G lies in Z
∞
(G)=Z(G) by hypotheses and (4), we conclude that Л(G) contains at most two primes,the well-known Burnside paqb-theorem implies that G is solvable,contrary to (3),the final contradiction.This completes the proof of the theorem.
With the similar the proof of Theorem 4.4 of Wang et al.(2003),we can extend Theorem 3 with formation theory.
Theorem 6Let F be a saturated formation such that N⊆F.Let G be a group such that every element of F
G of order 4 is Л-quasinormal in G.Then G belongs to F if and only if <x> lies in
the F-hypercenter F Z (G) of G for every element x of F G of prime order.
Following the proof Theorem 4.5 of Wang et al.(2003), we have:
Theorem 7 Let F be a saturated formation such that N ⊆F.Let G be a group such that every element of F*(F G ) of order 4 is Л-quasinormal in G. Then G belongs to F if and only if <x> lies in the F-hypercenter F Z (G) of G for every element x of F*(F G ) of prime order.
By Lemma 5,the Main Theorem is equivalent to the following,so we prove it to end this paper.
Equivalent form of Main Theorem Let F be a saturated formation such that N ⊆F. Let G be a group and Z a complete set of Sylow subgroups of G .Suppose very element of F*(F G )∩2G of order 4 is Z-permutable in G ,where 2G ∈Z.Then G belongs to F if and only if <x> lies in the F-hypercenter F Z (G) of G for every element x of F*(F G ) of prime order.
Proof If G ∈F, then F Z (G)=G and we are done.So we only need to prove that the converse is true.
Since F Z (G)∩F G ≤Z(F G )≤Z ∞(F G ) (Doerk and Hawkes,1992),by the hypotheses,every element of F*(F G ) of prime order lies in Z ∞(F G ).Every element of F*(F G )∩2G of order 4 is Z-permutable in G , thus is Z ∩F G -permutable in F G by Lemma
4.Applying Theorem 3 for F G ,we get F G is nilpotent.So F*(F G )=F(F G )=F G .Thus the Sylow 2-subgroup F G ∩2G of F G is normal in G . By hypotheses and Lemma 5, very element of F*(F G )∩2G of order 4 is Л-quasinormal in G . Since every element of F G of prime order lies in F Z (G) by hypotheses,now Theorem 7 implies that G ∈F.These complete the proof of Theorem.
References
Asaad, M., Ballester-Bolinches, A., Pedraza Aguilera, M.C.,1996. A note on minimal subgroups of finite m. in Algebra, 24:2771-2776.
Asaad, M., Heliel, A.A., 2003. On permutable subgroups of finite groups. Arch. Math.,
80:113-118.
Doerk, K., Hawkes, T.O., 1992. Finite Soluble Groups. De Gruyter, Berlin.
Gorenstein, D., 1982. Finite Simple Groups. Plenum Press,New York, London.
Huppert, B., 1968. Endliche Gruppen I. Springer-Verlag, Berlin. Huppert, B., lackburn, N., 1982. Finite Groups III. Springer-Verlag, New York, Berlin.
Kegel, O.H., 1962. Sylow-Gruppen und aubnormalteiler endlicher Gruppen. Math. Z., 78:205-221.
Li, Y.M., Wang, Y.M., 2003. The influence of minimal subgroups on the structure of a finite group. Proc. AMS, 131(2):337-341.
Ore, O., 1937. Structures of group theory. Duke Math J.,3:149-174.
Wang, Y., Li, Y., Wang, J., 2003. Finite groups with C-supplemented minimal subgroups. Algebra Colloquium, 10(3):413-425.
中文译文:
有限幂零群的一个特征条件
李样明
(中国杭州310016浙江大学数学系)
(中国广东广州510310广州教育学院数学系)
电子邮件:*******************.cn
2003年11月4日接受;于2004年2月9日修订
摘要:本文在假设G的所有极小子群都适合G的条件下,给出了有限幂零群的一个特征条件。
关键词: Z-可交换子群,幂零群,广义拟合群,超亚群
文献代码:A 中图分类号:O152
介绍
在这篇文章中,所有的群被认为是有限的,G表示一个有限群。
我们使用传统的概念和符号,正如Huppert(1968年)。
回想一下,一个有限群的极小子群是一个素数阶子群。
对于偶数阶群,考虑4阶循环子群也是很有用的。
群G的两个子群H和K是可交换的,如果HK=KH。
很容易看到,H和K是可交换的当且仅当HK的集合是G的一个子群。
我们知道G的一个正规子群和G的任何一个子群可交换,所以Ore(1937年)将正规子群扩展到拟群,G的一个子群称为G的拟亚群如果它与G的任何一个子群可交换。
Kegel(1962年)进一步定义了Л-拟子群,G的一个子群是G中Л-拟的如果它与G任何一个Sylow子群可交换。
Asaad和Heliel(2003)最近将Л-拟合性扩展到一个新的嵌入性质,即Z-可交换性。
Z被称为G的Sylow子群的一个完全集如果对任意素数p∈Л(G) (|G|的特定素数分解构成的集合),Z包含G的一个Sylow p-子群,比如说Gp。
G的一个子群被称为G中Z-可交换的如果它与Z的任何一个元素可交换。
许多学者曾考虑极小子群如何被嵌入到一个幂零群或p-幂零群。
Huppert(1968年)证明了如果一个奇数阶群和G的所有极小子群都处于G的中心,则G是幂零的。
他的结论的推论如下:如果对于一个奇素数p,任何一个p阶的子群都处于G的中心,则G是p-幂零的。
如果2阶或4阶G的所有元素都处于G的中心,则G是2-幂零的(Huppert,
1968年)。
最近,这个结果被归纳如下:设N 是群G 的一个正规子群则G/N 是幂零的。
假设F*(N)的4阶元素是G 中c-可补的,则G 是幂零的当且仅当F*(N)中任何素数阶的元素都包含在G 的超中心Z ∞(G)( Wang et al.,2003)。
上述所有的结果也都被引申为定理,如在
Asaad et al.(1996)。
在这篇文章中,我们需要用Z-可交换性替代c-拟合性得到一些类似于上述定理的结果。
主要定理如下:
主要定理
设F 是一个饱和的使N ⊆F ,其中N 是G 的所有幂零群。
设G 是一个群且Z 是G 的Sylow 子群的一个完全集。
假设当2G ∈Z,F*(F G ∩2G )任何一个4阶的元素都是G 中Z-可交换的,则G 包含于F 当且仅当如果对于素数阶的F*(F G ∩2G )中任何一个元素x ,任意的p G ∈Z,则< x >位于G 中F-超中心()F Z G 。
首先有必要提一下是Л-拟(Z-可交换的)子群但不是c-可补的可溶群。
相反地,有一组Л-拟(Z-可交换的)子群且不是c-可补子群的可溶群;其次我们的结论给出了幂零群的充分必要条件,也就是说,它的幂零的一个特征条件(参考幂零定理5)。
对于公式的一些定义和术语,请查阅有限可溶群 (Doerk and Hawkes, 1992).。
设Z 是群G 的Sylow 子群的一个完全集。
如果N<G ,我们用Z ∩N 表示G 的子群的如下集合:
Z ∩N = { Gp ∩N:Gp ∈Z }。
群G 的一个元素x 称为在G 中Л-拟的(Z-可交换的)如果< x >是G 中Л-拟的。
一些引理
引理1(Kegel,1962)
(1) G 中Л-拟子群是G 中非正规的;
(2)如果H ≤K ≤G 且H 是G 中Л-拟的,则H 是K 中Л-拟的;
(3)如果H 是G 中Л-拟Hall 子群,则H<G;
(4)设H<G 且K ≤H ,则H 是G 中Л-拟的当且仅当如果H/K 是G/K 中Л-拟的; 引理2 假设G 是一个群并且P 是G 中的一个正规P-子群,其中G 包含于Z ∞(G)中,则G C (P) ≥P O (G)。
证明:应用Endliche Gruppen(Huppert,1968)中的命题4.4
G 中广义拟合子群F *(G)是G 中一个重要子群并且它是F(G)中一个自然推广。
这些
定义和特性,可在Huppert and Blackburn(1982) 中找到。
我们汇集以下基本事实以用于我们的证明。
引理3(Hi and Wang ,2003) 设G 是一个群且M 是G 的一个子群。
(1)如果M 在G 中是正规的,则F *(M)≤F *(G);
(2)如果G ≠1,则F *(G)≠1;事实上,F *(G)/ F(G)= soc(F(G)G C (F(G))/ F(G));
(3)F *(F *(G)= F *(G)≥F(G);如果F *(G)是可溶的,则F * (G)= F(G);
(4)G C (F(G))≤F(G);
(5)假设K 是G 的一个子群且包含于Z(G),则F *(G / K)= F *(G);
引理4(Asaad and Heliel,2003)设Z 是G 的Sylow 子群的一个完全集,U 是G 的Z-可交换子群并且N 是G 的一个正规子群,那么:
(1)Z ∩N 是N 的Sylow 子群的一个完全集;
(2)如果U ≤N,则U 是N 的一个Z ∩N-可交换子群。
引理5设P 是群G 的一个正规2-子群并且Z 是G 的Sylow 子群的一个完全集。
如果P 的每一个4阶循环子群是G 中Z-可交换子群,则P 的每一个4阶循环子群是G 中Л-拟的。
证明 设L 是4阶P 的一个直接子群,则对于任何一个i P G ∈Z ,i P LG 是G 的一个子群。
因为P >G ,1x L -i P G ≤G 。
但是L i x P G =1
()i x x P L G -是G 的一个子群,则L 是G 中Л-拟的。
引理6 假设M ,N 是G 的正规子群,如果存在G 的一个Sylow p-子群 P 满足P 阶的M ∩P 的任一元素都位于N 内,则素数阶的M 的任一元素都处于N 内。
证明 因为M 是G 的一个正规子群,M ∩P 是M 的一个Sylow p-子群。
由Sylow 定理,对于素数阶的M 的任一元素x,若存在m ∈M ,满足1
m m x N -∈M ∩P ,则根据假设,m x ∈N ,故x ∈1m N -=N ,因此引理得证。
主要结论
定理1 假设G 是一个群,p 是常素数,如果P 阶的G 的任一元素都包含于Z ∞(G)。
如果p = 2,此外,假设G 的任一个4阶循环子群是Л-拟的,则G 是p-幂零的。
证明 假设定理不成立并且设G 是极小阶的一个反例。
(a)假设被所有真子群继承,因此G 是一个非p-幂零的群,但它的真子群都是p-幂零的。
事实上,∀H < G , K 是P 阶的H 的一个循环子群(or 4 if P=2),则K ≤Z ∞(G)∩H ≤Z ∞(H),根据引理1(2),我们知道G 中Л-拟性可以应用于H 中的Л-拟性,因此H 满足定理的假设。
G 的最小选择意味H 是p-幂零的,因此G 是一个非p-幂零的群,但它的真子群都是p-幂零的,故G = PQ,这里P<G 并且Q 在G 中非正规(Huppert,1968)。
(b)p = 2且4阶的每个元素是在G 中Л-拟的。
如果不成立,则p>2,那么exp(P)=p (Huppert ,1968),则根据假设可知P ≤Z ∞(G),因
此G= PQ = P ×Q ,由引理2可知,G 是幂零的,矛盾,因此(b )得证。
(c)∀a ∈P |Φ(P),o(a)= 4。
如果不成立,那么存在a ∈P\Φ(P)满足o(a)=2。
设M=<G a >≤P,则M Φ(P)/Φ(P)G/Φ(P),我们得到P=M Φ(P)=M ≤Z ∞(G)因为P/Φ(P)是G /Φ(P)的一个极小正规子群(Huppert ,1968),故矛盾。
(d)最后的矛盾。
∀x ∈P\Φ(P),o(x)= 4,则<x>是G 中Л-拟的,故<x>Q<G ,因此由(a )可得<x>Q= <x>×Q,因此<x>⊆G N (Q),由它可知P ⊆G N (Q),可得最后的矛盾。
定理2 假设N 是群G 的一个正规子群且满足G/N 是P-幂零的,这里P 是一个常素数。
假设P 阶的N 的任一元素都包含于Z ∞(G)中。
如果P=2,此外,假设N 的任一个4阶的循环子群是G 中Л-拟的,则G 是P-幂零的。
证明 假设此定理不成立且设G 是极小阶的一个反例,则我们可得:
(a)假设被所有真子群继承,故G 是一个非P-幂零的群,但它的真子群都是P-幂零的。
事实上,∀K < G , 因为G/N 是p-幂零的,则K/K ∩N ≅KN/ N 也是P-幂零的。
K ∩N 的P 阶元素包含于Z ∞(G)∩K ≤Z ∞(K), K ∩N 的4阶的循环子群是G 中Л-拟的,故由引理1可得是K 中Л-拟的,故K, K ∩N 满足定理的假设,故K 是P-幂零的,因此G 是一个非P-幂零的群,但它的真子群都是P-幂零的,因此G=PQ,P
G ,Q 是G 中非正规的(Huppert ,
1968)。
(b)G/ P ∩N 是P-幂零的。
因为G/P ≅Q 是幂零的,G/N 是P-幂零的且G/(P ∩N)≤G/P ×G/N,因此G/(P ∩N)是P-幂零的。
(c)P ≤N 。
如果不成立,则P ∩N< P,故Q(P ∩N)<QP = G ,故由(a),Q(P ∩N)=Q ×(P ∩N)可知,Q(P ∩N)是幂零的。
因为G/ P ∩N=P/P ∩N ⋅Q(P ∩N)/ P ∩N,由(b)可得Q(P ∩N)/ P ∩N G/ P ∩N ,因此Q char Q(P ∩N)
G ,因此知G = P ×Q,矛盾。
(d)最后的矛盾。
如果p>2,则由(a)知,exp(P)=p ,故P= P ∩N ≤Z ∞(G),因此G= P ×Q(Huppert ,1968),
矛盾。
如果p=2,因为P<G ,因此G 的所有Z 阶的元素都包含于P,即包含于N ,因此G 的每一个2阶的元素都在Z ∞(G)中,每一个4阶的循环子群都是G 中Л-拟的。
应用定理1,我们可得G 是2-幂零的,矛盾,故得证。
因为群G 是幂零的当且仅当G 是P-幂零的,其中∀p ∈Л(G)。
由定理2,我们可得: 定理3 假设N 是群G 的一个正规子群且满足G/N 是幂零的,则G 是幂零的当且仅当素数阶N 的任一元素都包含于Z ∞(G),N 的任一4阶循环子群都是G 中Л-拟的。
修订Wang et al.(2003)中定理3.3的证明,我们可以最小化定理3中受限元素的数量。
定理4 假设N 是群G 中的一个正规子群且满足G/N 是幂零的,则G 是幂零的当且仅当4阶*F (N)的任一元素都是G 中Л-拟的并且素数阶的*F (N)的每一个元素都包含于G 的超中心Z ∞(G)中。
定理5 设Z 是群G 的Sylow 子群的一个完全集,且G 的一个正规子群N 满足G/N 是幂零的,则G 是幂零的当且仅当4阶的*F (N)∩2G 每一个元素都是G 中Z-可交换的,并且对于任意的p G ∈Z ,素数阶的*F (N)∩p G 的每一个元素都包含于G 的超中心Z ∞(G)中。
根据引理6,很容易看到定理5等价于如下形式:
定理5 ' 设Z 是群G 的Sylow 子群的一个完全集,N 是G 的一个正规子群且满足G/N 是幂零的,则G 是幂零的当且仅当4阶的*F (N)∩2G 的每一个元素都是G 中Z-可交换的素数阶的*F (N)的每一个元素都包含于G 的超中心Z ∞(G)中。
证明 必要性的证明如同定理4,我们只需要证明充分性为真即可。
设G 是极小阶的一个反例,则我们有:
(1)G 的每一个真子群都是幂零的。
如果M 是G 的一个极大正规子群,我们可以得到M/M ∩N 是幂零的,*F (M ∩N)包含于*F (N)中且Z ∞(G)∩M 包含于Z ∞(M)中,所以素数阶的*F (M ∩N)的每一个元素包含于超中心Z ∞(M)中,并且由假设可知,4阶的*F (N)∩(2G ∩N)的每一个元素都是G 中Z-可交换的,因此根据引理4(2)知是M 中Z ∩M-可交换的,所以M ,M ∩N 满足定理的假设。
G 的最小选择意味着M 是幂零的。
(2) *F (G)=G 。
如果*F (G)<G ,则根据(1)可知*F (G)是幂零的,特别的,*F (G)是可解的,故根据引理3可知*F (G)=F(G),对于*F (G)的Sylow2-子群P ,P=2O ≤2G ,我们根据假设知道4阶的P 的循环子群是G 中Z-可交换子群,则引理2.5意味着P 的4阶循环子群是G 中Л-拟的。
应用定理4,G 是幂零的,得出矛盾。
(3)G 几乎是简单的,也就是说,G/Z(G)是简单的。
根据(2),G=*F (G)= F(G)E(G),这里E(G)是G 的层。
如果E(G)≤F(G),则G=F(G)是幂零的,矛盾。
因此假设E(G)不包含于F(G)中,则我们可以取出E(G)的一个分组H (Huppert and Blackburn,1982),并且根据(2)可知H 几乎是简单的,[H,G]=[H,*F (G)]=[H,F(G)E(G)] =[H,E(G)]≤H,也就是说,H 是G 中正规的。
如果H<G ,则根据(1)可知H 可解,矛盾,所以G=H 几乎是简单的。
(4) N G =N=G ,并且Z ∞(G)=Z(G)。
(5)最后的矛盾。
根据(3)可知G 是一个quasisimple 群,所以Z(G)是G/Z(G)的Schur 乘数的一个子群(Gorenstein ,1982)。
再由(Gorenstein ,1982)中的表4.1,Z(G)≤R 或Z(G)≤R ×P ,因此Л(G)最多包含两个素数,著名的Burnside a b p q -定理意味着G 可解,与(3)相反,得出最后的矛盾。
这就完成了定理的证明。
同Wang et al.(2003)中定理4.4的证明类似,我们可以用公式定理扩展定理3。
定理6 设F 是满足N ⊆F 的饱和公式。
设G 是一个群且满足4阶的F G 的每一个都是G 中Л-拟的,则G 包含于F 当且仅当对于素数阶的F G 的任一元素,<x>位于G 的F-超中
心F Z 中。
根据Wang et al(2003)中定理4.5的证明,我们有:
定理7 设F 是满足N ⊆F ,设G 是一个群且满足4阶的F*(F G )的任一元素都是G 中Л-拟的,则对于素数阶的F*(F G )的任一元素,G 包含于F 当且仅当<x>位于G 的F-超中心F Z (G)中。
根据引理5,主定理与以下形式等价,所以我们将用对它的证明来结束此论文。
主定理的等价形式 设F 是满足N ⊆F 的一个饱和公式,设G 是一个群并且Z 是G 的Sylow 子群的一个完全集。
假设4阶的F*(F G )∩2G 的任一元素都是G 中Z-可交换的,这里2G ∈Z ,则G 包含于F 当且仅当对于素数阶的F*(F G )的任一元素,<x>位于G 的F-超中心F Z (G)。
证明 如果G ∈F ,则F Z (G)=G 并且我们证明完了,所以只需证明逆命题为真即可。
因为F Z (G)∩F G ≤Z(F G )≤Z ∞(F G )(Doerk and Hawkes ,1992),根据假设,素数阶的F*(F G )的任一元素都位于Z ∞(F G )中。
4阶的F*(F G )∩2G 的任一元素都是G 中Z-可交换的因此根据引理4可知是F G 中Z ∩F G -可交换的。
对于F G 应用定理3,我们得到F G 是幂零的,所以F*(F G )=F(F G )=F G ,所以F G 的Sylow 2-子群F G ∩2G 是G 中正规的。
根据假设和引理5,4阶的F*(F G )∩2G 的任一元素是G 中Л-拟的。
因为根据假设,素数阶的F G 的任一元素都位于F Z (G)中,则定理7意味着G ∈F. 这就完成了定理的证明。