高中物理电磁感应现象习题一轮复习附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理电磁感应现象习题一轮复习附答案解析
一、高中物理解题方法:电磁感应现象的两类情况
1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=
1
8
(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.
(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.
(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.
【答案】(1)11.5U B d (2)2
221934-mU mgL B d
;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】
(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:
1 1.52U
E U R U R
=+
⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:
111E B dv =
计算得出:111.5U
v B d
=
. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:
12
222B dv R U R R
⋅=+
计算得出:213U
v B d
=
;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722
mg L mg L W mv mv μ︒︒⨯-⨯-=
-安 根据功能关系可得产生的总的焦耳热 :
=Q W 总安
根据焦耳定律可得定值电阻产生的焦耳热为:
122R
Q Q R R
=
+总 联立以上各式得出:
2
12211934mU Q mgL B d
=-
(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:
221sin 37cos3702B d v
mg mg R
μ︒

--=
计算得出:22
1mgR
v B d =
对cd 棒分析因为:
2sin372cos370mg mg μ︒︒-⋅>
故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:
1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫
-+⨯⨯⨯= ⎪⎝⎭
将22
1mgR
v B d =
代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为
11.5U
B d
; (2)定值电阻上产生的热量为2
2211934mU mgL B d
-; (3)2B 的大小为132B ,方向沿导轨平面向上.
2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:
(1)当线圈的对角线ac 刚到达gf 时的速度大小;
(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?
【答案】(1)1224mgR v B L = (2)322
44
2512m g R Q mgL B L =-
【解析】 【详解】
(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:
112E B Lv =⨯
感应电流:11E I R
=
由力的平衡得:12BI L mg ⨯= 解以上各式得:122
4mgR
v B L =
(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势
2222E B Lv =⨯
感应电流:2
2E I R
=
由力的平衡得:222BI L mg ⨯= 解以上各式得:222
16mgR
v B L =
设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:
22122
mg L Q mv ⨯-=
解以上各式得:322
44
2512m g R Q mgL B L
=-
3.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:
(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。

【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】
解:(1)t=2s 内MN 杆上升的距离为
21 2
h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为
BLh ∆Φ=
产生的平均感应电动势为
E t ∆Φ
=
产生的平均电流为
E I R
=
流过MN 杆的电量
q It =
代入数据解得
25C 2BLat q R
==
(2)EF 杆刚要离开平台时有
BIL Mg =
此时回路中的电流为
E I R
=
MN 杆切割磁场产生的电动势为
E BLv =
MN 杆运动的时间为
v t a
=
代入数据解得
224s MgR
t B L a
==
4.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。

在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。

已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。

将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。

导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;
(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;
(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。

【答案】(1)22
22
8Rm g B L ;(2)222222412⎛⎫- ⎪⎝⎭Rm g mR t B L B L ;(3),图见解析,224mgR a B L =,22
mgR
b B L =
【解析】 【分析】 【详解】
(1)由牛顿第二定律得
3mg mg BIL -=
M 棒将要进入磁场上边界时回路的电功率
22
2
22
82Rm g P I R B L
== (2)N 棒产生的感应电动势
2E IR BLv ==
由动量守恒得
(3)4mg mg t BLIt mv --=
通过N 棒的电荷量
2BLh
It q R
==
根据能量守恒得
21
(3)422
mg mg h mv Q -=⨯+
联立得222222412Rm g mR Q t B L B L ⎛⎫=- ⎪⎝⎭(或22322
2244
448Rm g m g R Q t B L B L
=-) (3)对M 棒受力分析
2232B L v
mg mg R
-=
解得22
4mgR
a B L
= 由
2'
322BLv mg mg BL
R
-= 解得22
mgR
b B L
=
5.如图所示,在倾角为37︒的光滑斜面上存在两个磁感应强度均为B 的匀强磁场区域。

磁场Ⅰ的方向垂直于斜面向下,其上下边界'AA 与DD'的间距为H 。

磁场H 的方向垂直于斜面向上,其上边界'CC 与'DD 的间距为h 。

线有一质量为m 、边长为L (h <L <H )、电阻为R 的正方形线框由'AA 上方某处沿斜面由静止下滑,恰好能匀速进入磁场Ⅰ。

已知当cd
边刚要进入磁场Ⅱ的前一瞬间,线框的加速度大小为10.2a g =,不计空气阻力,求: (1)cd 边刚到达'AA 时的速度1v ;
(2)cd 边从'AA 运动到'CC 过程中,线框所产生的热量Q ; (3)当cd 边刚进入磁场H 时,线框的加速度大小2a 。

【答案】(1)12235mgR v B L =(2)322
44
3()2525mg H h m g R Q B L
+=-(3)2a g =- 【解析】 【分析】 【详解】
(1)cd 边刚到达'AA 时有
221
sin 37B L v mg R

= 解得
122
35mgR
v B L =
(2)已知当cd 边刚要进入磁场Ⅱ的前一瞬间,由牛顿第二定律得
222
1sin 37B L v mg ma R

-=
解得
222
25mgR
v B L =
由能量守恒得
2
21()sin 372
mg H h Q mv ︒+=+
解得
322
44
3()2525mg H h m g R Q B L +=-
(3)当cd 边刚进入磁场II 时,ab ,cd 两边分别在两磁场中切割磁感线,则有此时线圈中的
电动势变为只有cd 切割时的两倍,电流也为两倍,由左手定则可知,ab ,cd 两边受的安培力相同,方向沿斜面向上,线圈此时受的安培力变为原来的4倍,则有
222
2sin 374B L v mg ma R

-=
解得
2a g =-。

6.如图,POQ 是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对称,OP =OQ =L .整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时间变化规律为B =B 0-kt (其中k 为大于0的常数).一质量为m 、长为L 、电阻为R 、粗细均匀的导体棒锁定于OP 、OQ 的中点a 、b 位置.当磁感应强度变为
1
2
B 0后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v .导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g .求导体棒: (1)解除锁定前回路中电流的大小及方向; (2)滑到导轨末端时的加速度大小; (3)运动过程中产生的焦耳热.
【答案】⑴2
38kL R
,顺时针方向或b→a ;⑵g -2204B L v mR ;⑶
【解析】 【分析】 【详解】
⑴导体棒被锁定前,闭合回路的面积不变,B t
∆∆=k 由法拉第电磁感应定律知:E =
t Φ∆∆=B
S t ∆∆23 由闭合电路欧姆定律知:I =E R 总=2
38kL R
由楞次定律知,感应电流的方向:顺时针方向或b→a ⑵导体棒刚离开导轨时受力如图所示
根据法拉第电磁感应定律有:E =01
2
B Lv 根据闭合电路欧姆定律知:I =E R
根据安培力公式有:F =01
2
ILB 解得:F =
01
2
ILB 由牛顿第二定律知:mg -F =ma
解得:a =g -2204B L v
R
⑶由能量守恒知:mgh =2
12
mv +Q 由几何关系有:h =
34
L 解得:Q =
3mgL -212mv
7.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:
(1)棒进入磁场前,回路中的电动势E 大小;
(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.
【答案】(1)0.04 V ; (2)0.04 N , I =22Bv t
R

【解析】
【分析】 【详解】
⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E =
=0.04V
⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V
根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m =
=0.2A
根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==
(其中,1s≤t≤
+1s )
即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】
注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.
8.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f ,且线框不发生转动.求:
(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)
22mg fR B a - (2)()
2
21
22
R
v mg f B a =-
(3)()()()2224432mR Q mg f mg f a b B a
⎡⎤=--++⎣⎦ 【解析】
【分析】
(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方
【详解】
(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222B a v mg f R
=+ 解得:222
()mg f R v B a -= (2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02mg f h mv -+=-
线圈从最高点落至进入磁场瞬间:211()2mg f h mv -=
联立解得:12v ==(3)线框在向上通过磁场过程中,由能量守恒定律有:220111()()22Q mg f a b mv mv +++=
- 而012v v = 解得:2
22443[()]()()2mR Q mg f mg f a b B a
=--++ 即线框在上升阶段通过磁场过程中产生的焦耳热为
2
22443[()]()()2mR Q mg f mg f a b B a
=--++ 【点睛】
此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.
9.如图所示,水平面上有一个高为d 的木块,木块与水平面间的动摩擦因数为μ=0.1.由均匀金属材料制成的边长为2d 、有一定电阻的正方形单匝线框,竖直固定在木块上表面,它们的总质量为m .在木块右侧有两处相邻的边长均为2d 的正方形区域,正方形底边离水平面高度为2d .两区域各有一水平方向的匀强磁场穿过,其中一个方向垂直于纸面向
里,另一个方向垂直于纸面向外,区域Ⅱ中的磁感应强度为区域Ⅰ中的3倍.木块在水平外力作用下匀速通过这两个磁场区域.已知当线框右边MN 刚进入Ⅰ区时,外力大小恰好为0320F g m =,此时M 点电势高于N 点,M 、N 两点电势差U MN =U .试求: (1)区域Ⅰ中磁感应强度的方向怎样?
(2)线框右边MN 在Ⅰ区运动过程中通过线框任一横截面的电量q .
(3)MN 刚到达Ⅱ区正中间时,拉力的大小F .
(4)MN 在Ⅱ区运动过程中拉力做的功W .
【答案】(1)向外 (2)340mgd q U = (3)4750mg (4)4725
mgd 【解析】
【详解】 (1)因为线框从左向右匀速通过这两个磁场区域,所以拉力方向向右,安培力方向向左。

因为M 点电势高于N 点,由右手定制可判断区域Ⅰ中磁感应强度的方向向外。

(2)设线框的总电阻为R ,磁场Ⅰ区的磁感强度为B ,线框右边MN 在Ⅰ区运动过程中有一半长度切割磁感线产生感应电动势,有
Bdv I R R
ε
==,3344U I R Bdv =⋅= 线框右边MN 在Ⅰ区运动过程中,木块与线框受力平衡,有
0A F F mg μ--=
解得 310.12020
A F BId mg mg mg ==-= 通过线框任一横截面的电量q 为q It =,其中2d t v =
联立以上各式,解得
340mgd q U
= (3)MN 刚到达Ⅱ区正中间时,流过线框的电流为
34'4Bdv Bdv Bdv I I R R
+=== 线框左、右两条边均受到向左的安培力作用,总的安培力大小为
4''3'165A A F BI d BI d F mg =+== 由于线框上边各有一半处在磁场Ⅰ区、Ⅱ区中,所以分别受到向上与向下的安培力作用,此时木块受到的支持力N 为
73''85
A N mg BI d BI d mg F mg =+-=+= 木块与线框组成的系统受力平衡,因此拉力F 为
4747'55050
A F F N mg mg mg μ=+=+= (4)随着MN 在磁场Ⅱ区的运动,木块受到的支持力N x 随发生的位移x 而变化,有
3''(2)2'4'x N mg BI x BI d x mg BI d BI x =+--=-+
由于N x 随位移x 线性变化,因此MN 在Ⅱ区运动过程中木块受到的平均支持力为
4'272'2'25
BI d N mg BI d mg BI d mg ⋅=-+
=+= 此过程中拉力做的功W 为 4747'222255025
A W F d N d mg d mg d mgd μ=⋅+⋅=⋅+⋅=
10.如图所示(俯视图),两根光滑且足够长的平行金属导轨固定在同一水平面上,两导轨间距 L =1m 。

导轨单位长度的电阻 r =1Ω/m ,左端处于 x 轴原点,并连接有固定电阻 R 1=1Ω(与电阻 R 1 相连的导线电阻可不计)。

导轨上放置一根质量 m =1kg 、电阻 R 2=1Ω的金属杆ab ,整个装置处于磁感应强度B = B 0+kx (B 0=1T ,k =1T/m )的磁场中,磁场方向竖直向下。

用一外力F 沿水平方向拉金属杆ab ,使其从原点处开始以速度v =1m/s 沿 x 轴正方向做匀速运动,则:
(1)当 t =1s 时,电阻R 1上的发热功率。

(2)求 0-2s 内外力F 所做的功。

(3)如果t =2s 调整F 的大小及方向,使杆以1m/s 2 的加速度做匀减速运动,定性讨论F 的大小及方向的变化情况。

【答案】(1)0.25W (2) 2J (3) 见解析
【解析】
【详解】
(1)当t =1s 时,x =vt =1m ,B =B 0+kx =2T ,所以R 1上的电流为120.52BLv I R R xr
==++A ,得
21P I R ==0.25W
(2)电流与导体棒位置的关系为012()0.52B kx Lv I R R xr
+==++A ,得回路中的电流与导体棒位置无关,由F ILB =得0F ILB ILkx =+,画出F -x 图象,求0-2s 内图象下面的“面积”,即是导体棒在运动过程中克服安培力所做的功
当t =0,B =1T ,所以0.5N F ILB ==,当t =2s ,B =3T ,所以 1.5N F ILB ==,x =2m ,所以做功的“面积”为2J 。

因导体棒是匀速运动,合力做功为0,所以外力克服安培力做功为2 J
(3)当t =2s 时 1.5N F ILB ==安,方向向左,此时合外力1N F ma ==合,方向向左,所以此时F 应向右,大小为0.5N 。

随着速度的减小,安培力将减小,F 先减小。

当安培力等于1N 时,F 减至0。

当速度更小是,安培力也更小,此时F 应反向增大,当速度接近为0时,安培力也接近为0, F 接近1N 。

相关文档
最新文档