电动汽车结构与原理蓄电池电动汽车

合集下载

第二章电动汽车构造与原理(6-30)

第二章电动汽车构造与原理(6-30)
除了供应汽车驱动行驶所需的电能外,也 是供应汽车上各种辅佐装置的任务电源。 蓄电池在车上装置前需求经过串并联的方式组分解所要求的电压等级,由于
电动机 驱动所需的等级电压往往与辅佐装置的电压要求不分歧,辅佐装置所要求的
普通为 12V或24V的高压电源,而电动机驱动普通要求为高压电源,并且所采用
的电动机类 型不同,其要求的电压等级也不同。为满足该要求,可以用多个12V或
可被大 大简化,较多的是为缩小电动机的输入转矩仅采用一种固定的减速装置。
又由于 电动机可带负载直接起动,即省去了传统内燃机汽车的离合器。由于电动
机可 以容易地完成正反向旋转,所以也无需经过变速器中的倒档齿轮组来完成
倒车。 对电动机在车架上合理规划,即可省去传动轴、万向节等传动链。当采用
轮毂式 电动机分散驱动方式时,又可以省去传统汽车的驱动桥、机械差速器、半
用,数控机床伺服驱动早已对此作了验证,并且调速功用目的(可达l: 20000)远高
于汽车行驶要求。 2〕电动机完成转矩的快速照应性目的要比发起机高出两个数量级,假 定发起机
的静态照应时间是500ms,那么电动机只为5ms。由于按惯例来说,电 气执行的响
应速度都要比机械机构快几个数量级,因此随着计算机电子技术的开展,用 先进的
所以汽车转弯时,前一种采用机械式差速器; 后一种由电控式差速器来完成。异样,它在汽车 上的规划有电动机前置、驱动桥前置(F-F)和电 动机后置、驱动桥后置(R-R)两种驱动形式。 该电动机.驱动桥构成的机电一体化全体式驱动 系统,具有结构更紧凑,传动效率高,重量轻、 体积小,并具有良好的通用性和互换性。
放电时间、放电电流或放电深度等蓄电池形状参数停止检测,并按蓄电池 对环境
温度的要求停止调温控制,经过限流控制防止蓄电池过充、放电,对有关 参数进

电动汽车的构造与原理

电动汽车的构造与原理

混合动力系统采用以发动机为主动力、利用 马达进行辅助的并联驱动方式。当车速降到 60km/h以下时,Stop 60km/h以下时,Stop & Start系统就会停止发动 Start系统就会停止发动 机工作。马达可通过减速时回收能量来向电池蓄 电,当车速在50km/h以下时仅凭马达行驶。在加 电,当车速在50km/h以下时仅凭马达行驶。在加 速及电池没电时,便会自动切换至发动机驱动。 为了停止发动机工作后仍可凭借马达行驶,在发 动机与马达之间采用了干式离合器。 马达在连续使用时的额定功率为16kW,可产 马达在连续使用时的额定功率为16kW,可产 生80N·m的扭矩。在超车等情况下进行暂时辅助时, 80N· 最大输出功率为23kW,最大扭矩为130N· 最大输出功率为23kW,最大扭矩为130N·m。马达 与逆变器连接,以210~380V的电压驱动。在车辆 与逆变器连接,以210~380V的电压驱动。在车辆 后部通常用于配备备用轮的位置上配备了由240个 后部通常用于配备备用轮的位置上配备了由240个 电池单元构成的镍氢充电电池。充电电池的容量 为6.5Ah,普通电压为288V。仅凭马达可持续行驶 6.5Ah,普通电压为288V。仅凭马达可持续行驶 5km。 5km。
通用Hy通用Hy-wire 氢动三号由200块相互串联在一起的燃料电池块组成的电池组产 氢动三号由200块相互串联在一起的燃料电池块组成的电池组产 生电力,通过68升的氢气储存罐向燃料电池组提供氢气。电池组 生电力,通过68升的氢气储存罐向燃料电池组提供氢气。电池组 所产生的电能输入电动机后,通过功率为60千瓦/82马力三相异 所产生的电能输入电动机后,通过功率为60千瓦/82马力三相异 步电机驱动车辆行驶,并几乎不产生任何噪音。氢储存罐分为两 种,一种罐内储存的是温度为-253° 种,一种罐内储存的是温度为-253°C的液态氢,另一种罐内储 存的是承受最高压力可达700Pa的高压氢气。一次充气行驶里程 存的是承受最高压力可达700Pa的高压氢气。一次充气行驶里程 分别可达400公里和270公里。 分别可达400公里和270公里。

电动汽车的构造与原理

电动汽车的构造与原理

第二章电动汽车构造与原理2.1 纯蓄电池电动汽车(技术基础)2.1.1 BEV的分类和特点BEV的分类主要按照所选用的动力储能装置、驱动电动机的不同、驱动结构的布局或用途的不同进行分类。

按储能装置分类:铅酸蓄电池、锂电池、镍氢蓄电池、钠硫蓄电池;按驱动电动机分类:直流电动机、交流电动机、永磁无刷电动机、开关磁阻电动机;按驱动结构布局分类:传统驱动模式、电动机—驱动桥组合驱动方式、电动机—驱动桥整体式驱动方式、轮毂电机分散驱动方式。

2.1.2 BEV的驱动结构采用蓄电池作为驱动能源的汽车,受到蓄电池容量的限制,必须设计较为合理的驱动结构及布局,才能最大限度的发挥电动机驱动优势。

电动机驱动和发动机驱动相比具有2大技术势:⑴发动机能高效产生转矩时的转速被限定在较窄范围内,必须增添庞大繁琐的变速机构适应该特性。

电动机可以在比较宽广的速度范围内产生转矩,目前成熟的电机控制理论已能实现直接转矩控制,其调速性能满足汽车行驶要求;⑵电动机转矩快速响应指标比发动机高出2个数量级别。

主要原因在于电动机属于电气执行元件,发动机则属于机械执行元件,而电气执行响应速度通常较之机械响应速度快几个数量级。

基于此,采取先进的电气控制技术取代笨重、庞大且响应滞后的部分机械、液压装置成为技术进步发展的必然趋势。

不仅能够使各项指标性能提高,而且简化了汽车结构,实现了制造成本的降低。

2.1.3 BEV的结构原理纯电动汽车结构主要由电力驱动控制系统、汽车底盘、车身、各种辅助装置构成。

电力驱动控制系统决定了整个电动汽车的结构组成及其性能特征,属于电动汽车的核心,相当于传统汽车发动机与其它功能以机电一体化方式的组合体,这正是电动汽车区别与传统内燃机汽车的最大不同点。

1)电力驱动控制系统电力驱动控制系统按工作原理主要划分为车载电源模块、电力驱动主模块与辅助模块。

⑴车载电源模块车载电源模块由蓄电池电源、能量管理系统与充电控制器三部分构成。

①蓄电池电源。

纯电动汽车结构与原理介绍

纯电动汽车结构与原理介绍

纯电动汽车结构与原理介绍纯电动汽车是一种通过电池供电驱动电动机来实现汽车运行的新型车辆。

相比传统内燃机车辆,纯电动汽车具有零排放、低噪音、低维护成本等优势,受到越来越多消费者的青睐。

纯电动汽车的结构和原理是怎样的呢?本文将介绍纯电动汽车的结构和工作原理。

一、电池系统纯电动汽车的核心是电池系统,电池是储存电能的设备。

电池通常分为锂电池、镍氢电池等不同种类。

电池通过充电桩充电,将电能储存在电池中。

在行驶过程中,电池释放电能供给电动机驱动汽车运行。

二、电动机驱动系统电动机是纯电动汽车的动力来源,电池释放的电能经过控制器控制电动机的速度和扭矩,从而驱动汽车行驶。

电动机具有高效率、低噪音、响应快等优点,是纯电动汽车的关键组成部分。

三、动力传动系统动力传动系统将电动机产生的动力传递给汽车的驱动轮,使汽车运行。

在一般纯电动汽车中,常见的传动方式包括单速变速箱、双速变速箱等。

四、车身结构纯电动汽车的车身结构和传统汽车基本相同,包括车身框架、车身乘员舱、悬挂系统、制动系统、轮胎等部分。

但由于电池的安装需要考虑重量平衡和碰撞安全等问题,纯电动汽车在车身结构上可能会有所不同。

五、能量回收系统纯电动汽车在行驶过程中会通过电动机的反向工作将制动能量转化为电能,将其储存到电池中,实现能量的回收再利用。

这不仅可以提高车辆的能效,还能延长电池的寿命。

六、辅助系统在纯电动汽车中,还包括了辅助系统,如空调系统、暖风系统、座椅加热系统等。

这些系统同样通过电能供给,使纯电动汽车具备舒适的驾乘体验。

综上所述,纯电动汽车的结构包括电池系统、电动机驱动系统、动力传动系统、车身结构、能量回收系统以及辅助系统,其工作原理是基于电池储能、电动机驱动、能量回收等关键技术的实现。

随着技术的进步和应用范围的扩大,纯电动汽车将在未来成为主流,推动汽车产业向清洁、智能的方向发展。

电动汽车的结构与原理

电动汽车的结构与原理

电动汽车的结构与原理电动汽车的结构与原理电动汽车是一种采用电动机驱动的汽车,相比传统的内燃机汽车,它具有零排放、低噪音、高效能等优点。

下面我将详细介绍电动汽车的结构与工作原理。

一、电动汽车的结构:1. 电动机:电动汽车的核心部件是电动机,它负责将电能转化为机械能,驱动汽车行驶。

电动汽车常用的电动机种类有交流电动机和直流电动机。

2. 电池组:电动汽车的能源存储装置是电池组,它负责储存电能,为电动机供电。

目前常用的电池类型有锂离子电池、镍氢电池和铅酸电池等。

3. 控制系统:电动汽车的控制系统包括电动机控制器、电池管理系统、充电系统等,它们协调各部件的工作,确保电动汽车的正常运行。

4. 传动系统:电动汽车的传动系统将电动机的动力传输到车轮上,常用的传动系统包括单速或多速变速器、行星齿轮传动等。

5. 辅助系统:电动汽车的辅助系统包括空调系统、制动系统、车灯系统等,它们提供舒适性和安全性的功能。

二、电动汽车的工作原理:当电动汽车启动时,电池组的储能通过控制系统供给电动机。

电动机经过电机控制器的调节,实时控制驱动力大小和方向,并将对应的机械能输出到传动系统,带动汽车行驶。

在行驶过程中,采用电动机的电力接收系统会实时检测驱动需求和电池组的状态,确保电机可按需供电。

当电动汽车刹车时,制动系统会将动能转化为电能,通过制动能量回收系统反馈给电池组,以提高能源利用效率。

这一过程被称为“回馈式制动”或“再生制动”。

当电动汽车需要充电时,可以通过外部电源连接到充电系统,将电能从电源传输到电池组中,完成对电池组的充电。

充电系统包括充电器和充电控制器,能够控制充电速率和电池状态。

总结起来,电动汽车的工作原理就是通过控制系统控制电池组输出电能,通过电动机实现驱动,并与传动系统和辅助系统协同工作,最终实现汽车的正常运行。

三、电动汽车的优势与挑战:电动汽车相对于传统内燃机汽车有许多优势,首先是环保性能好,无排放,所以能有效缓解空气污染问题,改善大气环境;其次是对于节能减排具有显著效果,尤其是在能源转化效率上远高于内燃机汽车;另外,电动汽车噪音低,乘坐体验更加静谧;此外,还可以实现能源多样化和智能化应用。

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理
纯电动汽车是目前发展趋势的主流之一,它的结构和工作原理十分相似。

纯电动汽车的基本结构包括电动机、电瓶、变速箱、车桥和控制器。

通常,电动机工
作期间,从蓄电池供电。

控制器以及其他部件协同合作,实现tempmaster感知变速和控制。

一般情况下,电动机通过车桥驱动车轮轮胎转动,从而实现汽车行驶。

作为纯电动汽车的核心,电动机是结合了动力电子学、磁电学、固体物理和电磁学等
领域的高新技术产物,它的工作原理类似于汽车的内燃机,但是更为便携式、灵活性更佳。

电动机可以利用直流和交流电源控制转速,助力汽车行驶、加速和转弯等。

电瓶的职责是为电动机提供足够的伺服电能,电瓶中存储的电能通常是大容量的,可
以维持汽车行驶一定距离,通常将电瓶安装在车身底盘或者车辆底部,便于维护和更换。

纯电动汽车桥是连接电动机和车轮的装置,它起到改变和平衡车轮的作用,将电动机
的输出的转矩传输到车轮上,使汽车正常行驶。

控制器是连接电动机与电瓶的设备,它可以通过检测油门踏板控制电动机转速,控制
车辆前后、左右方向,从而使汽车运行更加平稳;此外,它还可以检测电瓶电量,并对电
瓶进行充电和耗电;此外,它还可以检测车辆速度,并采取一定的措施限制最大速度,确
保车辆安全行驶。

纯电动汽车作为新兴的汽车车型,通过焕然一新的结构和机制,实现了驱动和控制,
可大大提高汽车性能,提升行车安全和便捷,也是未来发展趋势之一。

简述纯电动汽车结构及工作原理

简述纯电动汽车结构及工作原理

简述纯电动汽车结构及工作原理纯电动汽车是指完全依靠电能驱动的汽车,其结构和工作原理与传统燃油汽车有较大的不同。

本文将以标题“纯电动汽车结构及工作原理”为主题,详细介绍纯电动汽车的构成和运行原理。

一、纯电动汽车的结构1. 电池组:电池组是纯电动汽车的核心组件,它负责储存电能。

多数纯电动汽车采用锂离子电池作为电源,其能量密度高、重量轻、寿命长。

电池组通常由多个电池单体串联而成,以提供足够的电压和容量,满足汽车的动力需求。

2. 电机:电动汽车的驱动力来自电机。

电机将电能转化为机械能,通过传动系统驱动车轮运动。

纯电动汽车一般采用交流电动机,其特点是转速范围广、效率高、响应迅速。

电机通常安装在汽车的前后轴上,通过减速装置与车轮相连接。

3. 控制系统:控制系统是纯电动汽车的大脑,负责监测和控制电池组、电机等各个部件的工作状态,以实现车辆的正常运行。

控制系统包括电池管理系统、电机控制系统、车辆管理系统等。

其中,电池管理系统用于监测电池的电量、温度等信息,确保电池组的安全和性能;电机控制系统则控制电机的启停、转速等参数,实现车辆的加速、减速等操作。

4. 充电系统:纯电动汽车需要通过充电系统为电池组充电。

充电系统包括充电桩、充电线缆和车辆内部的充电控制装置。

用户可以在家中或公共充电站进行充电,充电时间和方式根据电池容量和充电设备的功率而定。

5. 辅助系统:辅助系统包括空调系统、制动系统、电力转向系统等。

这些系统与传统汽车相似,但在纯电动汽车中,它们都由电能驱动,减少了对燃油的依赖。

二、纯电动汽车的工作原理纯电动汽车的工作原理可简要概括为:电池组储存电能,电机将电能转化为机械能驱动车辆,通过控制系统实现对电池组和电机的监测和控制,辅助系统提供额外的功能支持。

1. 充电:纯电动汽车需要通过外部电源对电池组进行充电。

充电桩将交流电转化为直流电,通过充电线缆连接到车辆中的充电控制装置,再将电能存储到电池组中。

2. 行驶:当电池组充满电后,电机可以将电能转化为机械能,驱动车辆行驶。

新能源汽车三电结构及工作原理和故障维修

新能源汽车三电结构及工作原理和故障维修
一、动力蓄电池系统结构及工作原理
故障现象
原因分析
诊断与维修思路
动力电池故障指示灯 、系统故障指示灯 、高压断开指示灯点亮
车辆行驶中断高压、无法上高压
单体电压过高三级总电压过高三级放电瞬间电流过高二级与三级总正、总负、预充接触器粘连高低压互锁故障动力电池电流传感器故障


1、动力蓄电池结构及工作原理2、动力蓄电池控制器结构及工作原理3、动力电池系统故障诊断与维修
动力蓄电池系统结构及工作原理和故障诊断维修

一、动力蓄电池系统结构及工作原理
1、动力蓄电池结构及工作原理
一、动力蓄电池系统结构及工作原理
2、动力蓄电池控制器结构及工作原理
Contents 目录


3、动力电池系统故障诊断与维修
三、充电系统结构及工作原理
快充接口及端子定义
三、充电系统结构及工作原理
快充接口及端子定义
三、充电系统结构及工作原理
3、快充(充电桩/高压直流充)充电工作原理
快速充电桩和VCU通过CC1和CC2确认充电枪与车辆连接正常后,充电桩内的低压控制继电器闭合,同时充电桩输出12V唤醒电源到VCU。之后VCU和充电桩互相通过控制器CAN总线传输充电需求信息和充电能力信息。再次确认后,VCU或BMS控制动力蓄电池包内的各个高压继电器按照顺序闭合,同时快速充电桩内的高压继电器闭合。开始充电。在充电过程中,充电桩和VCU通过CAN总线不断通信,实时交换整车、蓄电池信息和充电桩供电能力信息。充电完成后,充电桩和VCU各自控制高压继电器断开,充电结束。
三、充电系统结构及工作原理
2、慢充电机控制器结构及原理
三、充电系统结构及工作原理
2、慢充电机工作原理

电动汽车结构与原理

电动汽车结构与原理

电动汽车结构与原理名词解释1.纯电动汽车:指由蓄电池或其他储能装置作为电源的汽车。

2.再生制动:指将一部分动能转化为电能并储存在储能设备装置内的制动过程。

3.续驶里程:指电动汽车在动力蓄电池完全充电状态下,以一定的行驶工况,能连续行驶的最大距离。

4.逆变器:指将直流电转化为交流电的变换器。

5.整流器:指将交流电变化为直流电的变换器。

7.单体蓄电池:指构成蓄电池的最小单元,一般由正、负极及电解质组成。

8.蓄电池放电深度:指称为“DOD”,表示蓄电池的放电状态的参数,等于实际放电量与额定容量的百分比。

9.蓄电池容量:指完全充电的电池在规定条件下所释放的总的电量,用C表示。

10.荷电状态:称为“SOC”,指蓄电池放电后剩余容量与全荷电容量的百分比。

11.蓄电池完全充电:指蓄电池内所有的活性物质都转换成完全荷电的状态。

12.蓄电池的总能量:指蓄电池在其寿命周期内电能输出的总和。

13.蓄电池能量密度:指从蓄电池的单位质量或体积所获取的电能。

14.蓄电池功率密度:指从蓄电池的单位质量或单位体积所获得的输出功率。

15.蓄电池充电终止电压:指蓄电池标定停止充电时的电压。

16.蓄电池放电终止电压:指蓄电池标定停止放电时的电压。

17.蓄电池能量效率:指放电能量与充电能量之比值。

18.蓄电池自放电:指蓄电池内部自觉的或者不期望的化学反应造成的电量自动减少的现象。

19.车载充电器:指固定安装在车上的充电器。

20.恒流充电:指以一个受控的恒定电流给蓄电池进行充电的方式。

21.感应式充电:指利用电磁感应给蓄电池进行充电的方式。

22.放电时率:电流放至规定终止电压所经历的时间。

23.连续放电时间:指蓄电池不间断放电至中止电压时,从开始放电到中止电压的时间。

24.记忆效应:指蓄电池经过长期充放电后显示出明显的容量损失和放电电压下降,经过数次完全充放电循环后可恢复的现象.25.蓄电池的轮回寿命:在一定的充放电制度下,电池容量下降到某一规定值时,电池所能经受的轮回次数。

电动汽车结构与原理

电动汽车结构与原理

电动汽车结构与原理
电动汽车是一种使用电池作为能源的汽车,其结构和原理与传统的内
燃机汽车有很大的不同。

1.电池组电动汽车的能源来源是电池组,它由多
个电池单元组成。

电池单元是由正极、负极和电解液组成的,当电池单元
内部发生化学反应时,会产生电能。

电池组的种类有很多,如锂离子电池、镍氢电池等。

2.电机电动汽车的动力来源是电机,它将电能转化为机械能,驱动车轮运动。

电机的种类有直流电机、交流电机等,其中交流电机又分
为异步电机和同步电机。

3.控制系统电动汽车的控制系统包括电池管理系统、电机控制系统和车辆控制系统。

电池管理系统用于监测电池组的状态,保证电池组的安全和寿命。

电机控制系统用于控制电机的转速和扭矩,以
满足车辆的动力需求。

车辆控制系统用于控制车辆的行驶方向、速度和制
动等。

4.充电系统电动汽车的充电系统包括充电器和充电接口。

充电器用
于将外部电源的交流电转化为电池组所需的直流电,充电接口用于连接充
电器和电动汽车。

总之,电动汽车的结构和原理与传统的内燃机汽车有很
大的不同,它使用电池作为能源,电机作为动力来源,控制系统用于控制
车辆的行驶和充电系统用于充电。

随着技术的不断发展,电动汽车的性能
和续航里程也在不断提高,成为未来汽车发展的趋势。

2电动汽车的结构与原理

2电动汽车的结构与原理

在转矩耦合的并联式混合动力电驱动系中,存在各种各样的结构。它们可分类为两 轴和单轴式设计,在每一种类内,传动装置可配置在不同的位置,并设计为不同的排档 数,从而导致相异的牵引特性。优化设计主要取决于牵引需求、发动机尺寸及其特性、 电动机尺寸及其特性等。
图为一个两轴式的结构设计,其中,应用了两个传动装置:其一位于发动机和转矩 耦合装置之间;另一位于电动机和转矩耦合装置之间。两个传动装置可以是单档或多档 的传动装置。
前轮由电动机驱动,后轮由混合动力驱动的双轴复合式混合动力系统共有六种驱动模式: 1)车辆启动时,电池组只向前电动机供电驱动前轴,而发动机和后电动机均关闭; 2)当车辆开始前移时,电池组也向后电动机供电使发动机加速运转,从而启动发动机; 3)节气门全开车辆加速行驶时,前电动机驱动前驱动轴,而后轴由发动机和后电动机一起驱动, 这时,共有三个驱动装置(一个发动机,两个电动机)一起驱动车辆; 4)车辆正常行驶时,仅由发动机驱动后轴; 5)车辆减速/制动时,电动机以发电机模式工作,四个车轮同时再生制动; 6)车辆行驶给电池组充电时。发动机发出的功率一部分用于驱动后轴,一部分通过发电机给蓄电 池充电。
机械耦合可以是转矩或转速耦合。 转矩耦合是将发动机和电动机的转矩一起相加,或将发动机转矩分解为两部分:分
别用于驱动和蓄电池组充电。图概念性地表明了具有两个输入转矩的机械转矩耦合方案, 其输入之一来自于发动机;另一输入来自于电动机。机械转矩耦合输出连接到机械传动 装置。
图列出了一些典型的机械转矩耦合装置的应用。
电力主动型混联式混合动力电动汽车有六种工作模式: 1)车辆启动或轻载运行时,发动机关闭,由蓄电池给电动机提供电能驱动车辆; 2)车辆正常行驶或节气门全开、车辆加速行驶时,发动机和电动机一起工作,共同提供车辆 所需功率。两种工况的区别在于,车辆正常行驶的动力仅由发动机驱动发电机提供,而节气门全 开加速行驶时,其动力由蓄电池和发电机共同提供,通常用行星齿轮机构分流发动机的输出功率, 一部分用于驱动车辆,一部分用来驱动发电机; 3)车辆制动或减速行驶时,电动机工作于发电机模式并通过功率转换器结蓄电池充电; 4)车辆行驶给蓄电池充电时,发动机一部分动力用于驱动车辆,另一部分动力用于驱动发电 机给蓄电池充电; 5)停车时,发动机也可以通过发电机给蓄电池充电。

简述动力蓄电池结构与原理

简述动力蓄电池结构与原理

简述动力蓄电池结构与原理
动力蓄电池,也就是我们通常所说的电动汽车电池,是一种能
够储存电能并且用于驱动电动汽车的重要组件。

动力蓄电池的结构
与原理如下:
结构:
动力蓄电池通常由多个电池单体组成,每个电池单体又由正极、负极、电解质和隔膜组成。

正极和负极之间通过电解质和隔膜隔开,防止短路。

整个电池组由多个电池单体串联或并联而成,以满足电
动汽车对电能的需求。

原理:
动力蓄电池的工作原理是基于化学反应。

当电池充电时,正极
和负极之间的化学物质会发生反应,将电能转化为化学能储存起来。

当需要使用电能时,化学能再次转化为电能,通过电池输出到电动
汽车的电动机,驱动汽车运行。

这种化学反应的过程是可逆的,因
此动力蓄电池可以充放电多次。

除了基本的结构和原理外,动力蓄电池的性能还受到电池材料、电池管理系统等因素的影响。

不同的电池材料会影响电池的能量密度、循环寿命和安全性能,而电池管理系统则负责监测和控制电池
的充放电过程,以确保电池的安全可靠运行。

总的来说,动力蓄电池的结构与原理是基于化学能的转化和储存,通过这种方式实现电能的储存和释放,从而驱动电动汽车的运行。

电动汽车结构与原理

电动汽车结构与原理

电动汽车结构与原理电动汽车是一种以电能为动力的交通工具,相对于传统的燃油汽车,它具有环保、高效、低噪音等优点。

了解电动汽车的结构和原理对于理解其工作原理和性能提升具有重要意义。

一、电动汽车的结构1. 电池组:电动汽车的能量储存装置,通常采用锂离子电池。

电池组通常由多个电池单元组成,通过串联或并联的方式提供所需的电压和电流。

2. 电动机:电动汽车的动力源,将电能转化为机械能驱动车辆运动。

电动汽车通常采用交流异步电动机或永磁同步电动机。

电动机通过控制器调节电流和电压,实现对电动机的控制。

3. 控制器:控制电动机的运行和功率输出,根据驾驶员的指令调节电动机的转速和扭矩。

控制器还负责监测电池组的电压和温度,以保证电池组的安全运行。

4. 电子控制单元(ECU):负责整个电动汽车系统的控制和管理,包括电池管理、电机控制、能量回收等功能。

ECU通过传感器获取车辆各部分的信息,并根据算法进行计算和控制。

5. 充电系统:用于给电动汽车的电池组充电,包括充电桩、充电线和充电接口等。

充电系统可以分为交流充电和直流快充两种方式,根据不同的充电需求选择合适的充电方式。

6. 辅助系统:包括空调、电子设备、安全系统等。

辅助系统的工作需要电池组提供电能支持,为乘车提供舒适和安全的环境。

二、电动汽车的工作原理1. 电池供能:电动汽车的电池组储存着电能,通过充电系统给电池组充电。

当车辆需要动力时,电池组将储存的电能供给电动机。

2. 电动机驱动:电动机接收电池组提供的直流电,并将其转化为旋转力矩,驱动车辆运动。

电动机的转速和扭矩可以通过控制器调节,以满足不同的驾驶需求。

3. 能量回收:电动汽车在制动或减速时,通过电动机的反向工作将动能转化为电能,回馈给电池组进行储存。

这种能量回收系统可以提高能源利用效率,延长电池组的续航里程。

4. 控制和管理:ECU通过传感器获取车辆各部分的信息,根据算法进行计算和控制。

ECU可以实时监测电池组的电压和温度,保证电池组的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.0.3 基本组成
1.车载电源 2.电池管理系统 3. 驱动电动机 4. 控制系统 5. 车身及底盘 6. 安全保护系统
2.0.3 基本组成
1. 车载电源 ➢ 组成
以动力电池组作为车载电源,用周期性的充电来补 充电能。 ➢ 重要性 ◇动力电池组是EV的关键装备,储存的电能、质量和 体积,对EV性能起决定性影响,也是发展EV的主要 研究和开发对象。 ◇ EV发展的症结在于电池,电池技术对EV的制约仍 然是EV发展的瓶颈。 ◇建立充电站系统、报废电池回收和处理工厂,是推 广EV的关键问题。
4. 控制系统 ➢ EV的控制系统主要是对动力电池组的管理和对电动
机的控制。 ➢ 将加速踏板、制动踏板机械位移的行程量转换为电
信号,输入中央控制器,通过动力控制模块控制驱 动电动机运转。 ➢ 计算动力电池组剩余电量和剩余续驶里程。 ➢ 对整车低压系统的电子、电器装置进行控制。 ➢ 采用各种各样的传感器、报警装置和自诊断装置等, 对整个动力电池组—功率转换器—驱动电动机系统 进行监控并及时反馈信息和报警。
小结 ➢ 操纵:在操纵装置和操纵方法上继承或沿用内燃机汽车主
2.0.3 基本组成
6. 安全保护系统 ➢ 高压安全
动力电池组具有高压直流电,必须设置安全保护系 统,确保驾驶员、乘员和维修人员在驾驶、乘坐和 维修时的安全。 ➢ 故障处理 必须配备电气装置的故障自检系统和故障报警系统, 在电气系统发生故障时自动控制EV不能起动等,及 时防止事故的发生。
2.0.3 基本组成
源管理系统、再生制动系统
2.0 概 述
2.0.1 定义 2.0.2 特点 2.0.3 基本组成 2.0.4 关键技术 2.0.5 发展趋势
2.0.1 定义
➢ 蓄电池电动汽车(纯电动汽车) EV (Electric Vehicle)是仅由动力蓄电池向电机提供电能驱动车 辆行驶的道路车辆。
2.0.1 定义
第二章 蓄电池电动汽车
2.0 概述 2.1 电动汽车驱动系统 2.2 驱动电机及其控制系统 2.3 蓄电池结构及性能 2.4 电动汽车能量管理系统 2.5 电动汽车车辆管理系统 2.6 纯电动汽车实例分析
第二章 蓄电池电动汽车
※重点 ➢ 纯电动汽车的结构和性能 ➢ 各种类型的电动汽车用驱动电机 ➢ 各种类型的蓄电池及其性能 ※难点 ➢ 各种类型驱动电机的控制系统 ➢ 以蓄电池能量管理为核心的电动汽车能
2.0.3 基本组成
5. 车身及底盘 ➢ 车身
EV车身造型特别重视流线型,以降低空气阻力系数。 ➢ 底盘 ◇由于动力电池组的质量大,为减轻整车质量,采用
轻质材料制造车身和底盘部分总成。 ◇动力电池组占据的空间大,在底盘布置上还要有足
够的空间存放动力电池组,并且要求线路连接、充 电、检查和装卸方便,能够实现动力电池组的整体 机械化装卸。
2.0.3 基本组成
1. 车载电源 ➢ 发展
(3)第三代电池:飞轮电池、超级电容器 飞轮电池是电能—机械能—电能转换的电池。 超级电容器是电能—电位能—电能转换的电池。 这两种储能器在理论上都具有很大的转换能力,而
且充电和放电方便迅速,但尚处于研制阶段。
2.0.3 基本组成
1. 车载电源 ➢ 高压电源 ◇动力电池组提供约155~380V高压直流电。 ◇动力电池组是供电机工作的唯一动力电源。 ◇空调系统的空压机,动力转向系统的油泵和制动系
2.0.3 基本组成
1. 车载电源 ➢ 发展 (1)第一代EV电池:铅酸电池
◇优点:技术成熟,成本低。 ◇缺点:比能量和比功率低不能满足EV续驶里程和 动力性能的需求,但进一步发展了阀控铅酸电池、 铅布电池等,使铅酸电池的比能量有所提高。
2.0.3 基本组成
1. 车载电源 ➢ 发展
(2)第二代高能电池:镍—镉电池、镍—氢电池、钠— 硫电池、钠—氯化镍电池、锂离子电池、锂聚合物 电池、锌—空气电池和铝—空气电池等 ◇优点:比能量和比功率都比铅酸电池高,大大提高 了EV的动力性能和续驶里程。 ◇缺点:有些高能电池需要复杂的电池管理系统和温 度控制系统,各种电池对充电技术有不同要求。而 且电化学电池中的活性物质在使用一定的期限后, 会老化变质以至完全丧失充电和放电功能而报废, 从而使EV的使用成本高。
统的真空泵等,也需要动力电池组提供动力电能。 ➢ 低压电源
动力电池组通过DC/DC转换器,供应12V或24V低压 电,并储存到低压电池组中,作为仪表、照明和信 号装置等工作的电源。
2.0.3 基本组成
2.电池管理系统 ➢
度、再生制动反馈电流、电池温度等进行控制。 ◇个别电池性能变化后,会影响到整个动力电池组性
➢ 结构示意图
2.0.2 特点
➢ 节能,不消耗石油;环保,无污染;噪声和振动小。 ➢ 能量主要是通过柔性的电线而不是通过刚性联轴器和
转轴传递,各部件的布置具有很大的灵活性。 ➢ 驱动系统布置不同会使系统结构区别很大;采用不同
类型的电机(如直流电机和交流电机)会影响到纯电动 汽车的质量、尺寸和形状;不同类型的储能装置也会 影响电动汽车的质量、尺寸及形状。 ➢ 不同的补充能源装置具有不同的硬件和机构,例如蓄 电池可通过感应式和接触式的充电器充电,或者采用 替换蓄电池的方式,将替换下来的蓄电池再进行集中 充电。
直流电动机、交流电动机、永磁电动机和开关磁阻 电动机等。 ➢ 再生制动 ◇再生制动是EV节能的重要措施之一。制动时电动机 可实现再生制动,一般可回收10%~15%的能量,有 利于延长EV行驶里程。 ◇在EV制动系统中,还保留常规制动系统和ABS制动 系统,以保证车辆在紧急制动时有可靠的制动性能.
2.0.3 基本组成
能,故需用电池管理系统来对整个动力电池组及其 每一单体电池进行监控,保持各个单体电池间的一 致性。 ➢ 充电 动力电池组必须进行周期性的充电。高效率充电装 置和快速充电装置,是EV使用时所必须的辅助设备。 可采用地面充电器、车载充电器、接触式充电器或 感应充电器等进行充电。
2.0.3 基本组成
3. 驱动电动机 ➢ 驱动电动机是驱动EV行驶的唯一动力装置。 ➢ 类型
相关文档
最新文档