正弦波信号发生器制作汇编

合集下载

EDA实验-正弦波信号发生器设计

EDA实验-正弦波信号发生器设计

实验八正弦信号发生器的设计一、实验目的1、学习用VHDL设计波形发生器和扫频信号发生器。

2、掌握FPGA对D/A的接口和控制技术,学会LPM_ROM在波形发生器设计中的实用方法。

二、实验仪器PC机、EDA实验箱一台Quartus II 6.0软件三、实验原理如实验图所示,完整的波形发生器由4部分组成:• FPGA中的波形发生器控制电路,它通过外来控制信号和高速时钟信号,向波形数据ROM 发出地址信号,输出波形的频率由发出的地址信号的速度决定;当以固定频率扫描输出地址时,模拟输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则模拟输出波形为扫频信号。

•波形数据ROM中存有发生器的波形数据,如正弦波或三角波数据。

当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据,地址变化得越快,则输出数据的速度越快,从而使D/A输出的模拟信号的变化速度越快。

波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM;由逻辑方式在FPGA中实现(如例6);或由FPGA中的EAB模块担当,如利用LPM_ROM实现。

相比之下,第1种方式的容量最大,但速度最慢;,第2种方式容量最小,但速度最最快;第3种方式则兼顾了两方面的因素;• D/A转换器负责将ROM输出的数据转换成模拟信号,经滤波电路后输出。

输出波形的频率上限与D/A器件的转换速度有重要关系,本例采用DAC0832器件。

DAC0832是8位D/A转换器,转换周期为1µs,其引脚信号以及与FPGA目标器件典型的接口方式如附图2—7所示。

其参考电压与+5V工作电压相接(实用电路应接精密基准电压).DAC0832的引脚功能简述如下:•ILE(PIN 19):数据锁存允许信号,高电平有效,系统板上已直接连在+5V上。

•WR1、WR2(PIN 2、18):写信号1、2,低电平有效。

•XFER(PIN 17):数据传送控制信号,低电平有效。

•VREF(PIN 8):基准电压,可正可负,-10V~+10V.•RFB(PIN 9):反馈电阻端。

DSP课程设计正弦信号发生器的设计(精)

DSP课程设计正弦信号发生器的设计(精)

太原理工大学 DSP课程设计设计题目:正弦信号发生器的设计班级:电信0801班姓名:凌天一、设计目的1、通过实验掌握DSP的软件开发过程2、学会运用汇编语言进行程序设计3、学会用CCS仿真模拟DSP芯片,通过CCS软件平台上应用C54X汇编语言来实现正弦信号发生装置。

二、设计原理本实验产生正弦波的方法是泰勒级数展开法。

泰勒级数展开法需要的存储单元少,具有稳定性好,算法简单,易于编程等优点,而且展开的级数越多,失真度就越小。

求一个角度的正弦值取泰勒级数的前5项,得近似计算式:x3x5x7x9sin(x)=x-+-+3!5!7!9!2222xxxx =x1-1-1-1-(三、总体方案设计 2⨯3(4⨯5(6⨯7(8⨯9))))本实验是基于CCS开发环境的。

CCS是TI公司推出的为开发TMS320系列DSP 软件的集成开发环境,是目前使用最为广泛的DSP开发软件之一。

它提供了环境配置、源文件编译、编译连接、程序调试、跟踪分析等环节,并把软、硬件开发工具集成在一起,使程序的编写、汇编、程序的软硬件仿真和调试等开发工作在统一的环境中进行,从而加速软件开发进程。

通过CCS软件平台上应用C54X汇编语言来实现正弦信号发生装置。

总体思想是:正弦波的波形可以看作由无数点组成,这些点与x轴的每一个角度值相对应,可以利用DSP处理器处理大量重复计算的优势来计算x轴每一点对应的y的值(在x轴取N个点进行逼近)。

整个系统软件由主程序和基于泰勒展开法的SIN子程序组成,相应的软件流程图如图。

四、设计内容1、设置在Family下选择C55xx,将看到所有C55xx的仿真驱动,包括软件仿真和硬件仿真;在Platform下选择Simulator,在Available Factory Boards中只显示软件仿真驱动,选中相应的驱动;双击C55xx Rev4.0 CPU Functional Simulator,可以在My System下看到所加入的驱动;点击Save & Quit,将保存设置退出Setup CCStudio v3.1并启动运行CCStudio。

基于DSP的正弦波信号发生器(汇编语言)

基于DSP的正弦波信号发生器(汇编语言)

正弦波信号发生器一、实验目的1.了解用泰勒级数展开法计算角度正弦值和余弦值;2.了解产生正弦信号的方法;3.熟悉使用汇编语言编写较复杂的程序;4.熟悉在CCS 环境下计算角度正弦值和余弦值及产生正弦波的方法;二、实验原理泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。

正弦函数和余弦函数可以展开成泰勒级数,其表达式:递推公式: sin()2cos()sin[(1)]sin[(2)]cos()2cos()sin[(1)]cos[(2)]nx x n x n x nx x n x n x =---=--- 由递推公式可以看出,在计算正弦和余弦值时,需要已知cos(x )、sin(n -1)x 、sin(n -2)x 和cos(n -2)x 。

用这种方法求少数点还可以,如产生连续正弦波、余弦波,则积累误差太大,不可取。

下面主要用泰勒级数展开法求正弦和余弦值,以及产生正弦波的方法。

三、实验内容与步骤1.用泰勒级数展开法计算sin(x)的值;(1)在 CCS 中新建项目:sinx.pjt ,建立文件sinx.asm 、vectors.asm 和sinx.cmd 。

并将此三个文件加入到项目中。

******************************************************* 用泰勒级数开展开式计算一个角度的正弦值 **sin(x)=x(1-x*x/2*3(1-x*x/4*5(1-x*x/6*7(1-x*x/8*9))))*******************************************************.title "sinx.asm".mmregs .def startSTACK: .usect "STACK",10start: STM #STACK+10,SPLD #d_x,DPST #6487H,d_x ;x-->d_x CALLsin_start end:B end sin_start:35792222sin()3!5!7!9! 111123456789(((())))x x x x x x x x x x x =-+-+=----⨯⨯⨯⨯24682222cos()12!4!6!8! 11112345678((()))x x x x x x x x x =-+-+=----⨯⨯⨯.def sin_startd_coeff .usect "coeff",4.datatable: .word 01C7H ;c1=1/(8*9).word 030BH ;c2=1/(6*7).word 0666H ;c3=1/(4*5).word 1556H ;c4=1/(2*3)d_x .usect "sin_vars",1d_squr_x .usect "sin_vars",1d_temp .usect "sin_vars",1d_sinx .usect "sin_vars",1c_1 .usect "sin_vars",1.textSSBX FRCTSTM #d_coeff,AR5RPT #3MVPD #table,*AR5+STM #d_coeff,AR3STM #d_x,AR2STM #c_1,AR4ST #7FFFH,c_1SQUR *AR2+,A ;A=x^2ST A,*AR2 ;(AR2)=x^2||LD *AR4,B ;B=1MASR *AR2+,*AR3+,B,A ;A=1-x^2/72,T=x^2MPYA A ;A=T*A=x^2(1-x^2/72)STH A,*AR2 ;(d_temp)=x^2(1-x^2/72)MASR *AR2-,*AR3+,B,A ;A=1-x^2/42(1-x^2/72),T=x^2(1-x^2/72)MPYA *AR2+ ;B=x^2(1-x^2/42(1-x^2/72))ST B,*AR2 ;(d_temp)=x^2(1-x^2/42(1-x^2/72))||LD *AR4,B ;B=1MASR *AR2-,*AR3+,B,A ;A=1-x^2/20(1-x^2/42(1-x^2/72))MPYA *AR2+ ;B=x^2(1-x^2/20(1-x^2/42(1-x^2/72)))ST B,*AR2 ;(d_temp)=B||LD *AR4,B ;B=1MASR *AR2-,*AR3+,B,A ;A=1-x^2/6(1-x^2/20(1-x^2/42(1-x^2/72)))MPYA d_x ;B=x(1-x^2/6(1-x^2/20(1-x^2/42(1-x^2/72))))STH B,d_sinx ;sin(theta)RET.end*******************************************************中断向量文件vectors.asm******************************************************.title "vectors.asm".ref start.sect ".vectors"B start.end*******************************************************链接命令文件******************************************************vectors.objsinx.obj-O sinx.out-m sinx.map-estartMEMORY{PAGE 0:EPROM: org=0090H,len=0F70HVECS: org=0080H,len=0010HPAGE 1:SPRAM: org=1000H,len=1000HDARAM: org=2000H,len=2000H}SECTIONS{.text :>EPROM PAGE 0.data :>EPROM PAGE 0STACK :>SPRAM PAGE 1sin_vars :>DARAM PAGE 1coeff :>DARAM PAGE 1.vectors :>VECS PAGE 0}(2)编译、链接项目文件sinx.pjt。

正弦信号发生器设计1

正弦信号发生器设计1

目录摘要1.系统方案选择与论证1.1正弦信号输出方案1.2信号调制方案2.系统的总体设计与实现2.1系统正弦信号发生器的设计2.1.1正弦信号的仿真和分析2.1.2其他信号的仿真和分析2.2系统调制模块的设计2.2.1调幅电路(AM)2.2.2调频电路(FM)2.2.3 PSK电路2.2.4 ASK电路3.总结4.附录正弦信号发生器(A题)摘要:本系统是以ICL8038集成芯片为核心器件,附加线性调制电路,滤波和积分放大电路等模块组成的一种正弦信号发生器,制作简单,功能多。

所得到的信号输出稳定度和线性度满足题目要求,在输出的正弦信号的幅度上可以实现1V~6V内任意可调,输出频率范围虽然没有达到题目所要求的1KHz~10MHz范围,的是我们实现了在1Hz~1MHz范围内任意可调。

本文主要介绍了正弦信号发生器的设计与其所具有的功能,实现了竞赛题目的基本部分和提高部分的一些功能要求。

系统的硬件分为六个模块,即正弦信号产生模块,AM调幅电路模块,FM调频电路模块,PSK电路模块,ASK电路模块,单片机控制器与键盘显示电路模块。

一、正弦信号输出方案分析与论证正弦信号的产生可以分为以下两种方法:其一,可用专用的芯片产生,如MAX038,ICL8038等。

使用MAX038芯片,设计简单,可以产生精度和稳定度高,且频率范围大的正弦信号。

其二,采用数字合成方案(DDS),DDA技术频率高、转换速度快、信号纯度高、相位可控、输出信号无电流脉冲叠加、输出平稳渡过且相位和保持连续变化。

其方案原理流程图如下:DDS原理框图从题目要求来看,要求设计的正弦信号发生器的精度和稳定度都很高。

MAX038专用信号发生芯片在现在的条件下不能进行设计和相关的仿真,DDS方案的复杂度和难度都非常大,因此不容易实现。

从各个方面的因素来考虑,并且根据现有条件和自身的实际情况,我们采用芯片产生的方法,用的是ICL8038芯片。

ICL8038是一种具有多种波形输出的精密振荡集成电路, 只需调整个别的外部组件就能产生从0.001Hz~1MHz 的低失真正弦波、三角波、矩形波等脉冲信号。

正弦信号发生器方案设计

正弦信号发生器方案设计

正弦信号发生器设计方案一、方案比较论证所有方案可按模拟式和数字式分为两大类模拟式:①利用电阻、电容、运放等传统器件搭建LC或RC正弦信号发生器。

通过改变电路中的元件的参数值来调节输出频率。

这种方式成本低廉,但由于采用大量分立器件,受其工作原理的限制频率稳定度较低(只有10-3量级)。

另外实现扩展功能中的各种调制等也比较麻烦,电路复杂,调试困难,精度差。

②采用专用信号发生芯片MAX038来实现正弦信号波形的输出。

是美信公司的低失真单片信号发生集成电路,内部电路完善,使用该器件能够产生精确的高频三角、锯齿、正弦及方波。

使用该芯片设计简单,但扩展功能电路部分实现起来和采用分立器件同样复杂,而且频率精度和稳度均难以达到要求。

③采用基于锁相环(PLL)技术或者非线性器件频率变换技术的频率合成器。

由晶体振荡器和锁相环组成的系统中,前者保证工作频率稳定度,后者完成输出频率的调整,但是这时输出频率只能是晶体谐振频率的整数倍。

故虽然频率稳定能达到要求却很难做到频率输出范围1KHZ—10MHZ和100HZ步进的要求。

数字式:①采用AD公司专用的DDS芯片AD9851合成FM和AM的载波,采用传统的模拟调制方式来实现AM调制和FM调制。

但该方案需要额外的模拟调制FM和AM的调制电路,且制作和调制电路都比较麻烦,还难免引入一定的干扰,而且此方案中的PSK调制也不容易实现。

②采用AD公司的AD9856作为调制芯片,是内含DDS的正交调制芯片,可以实现多进制的数字幅度调制,多进制的数字相位调制和多进制的数字幅度相位联合调制。

故AM 调制,PSK调、ASK调制都可以通过它实现但是AD9856不便于调频且控制复杂。

③利用微处理器和DAC实现DDS信号产生器。

微处理器能够实现DDS的电路结构,即实现相位累加器、波形的数据表、同时实现数字/模拟转换器的控制时序。

利用微处理器完成加法运算需要读取的数据进行运算,再把运算结果送到目标单元。

单片机制作简易正弦波信号发生器(DAC0832)

单片机制作简易正弦波信号发生器(DAC0832)

调试时,电源的质量需要较高,不然的话,波形不易观察看清楚。

//河北工程大学信电学院自动化系//设计调试成功***************将DA输出的 0V ~ -5V范围扩展成 -5V ~ +5V范围,电路如下图:***************如若VO2输出更平滑一些,可以在VO2处接一个小电容,滤掉高频。

(一)过程分析计算如下:✧第一级运放出来的V o1=-N*V ref/256。

当V ref为+5V时,V o1=0~ -5V。

其中,V ref为参考电压,N为8位数字量输出到DAC0832✧并结合第二级运放,是否可以推出来如下式子:V o2=-(2*V o1+V ref)=-(2*-N*V ref/256+V ref)=-(-2N*V ref/256+V ref)=2N*V ref/256-V ref当参考电压V ref=5V时,V o2=10N/256-5。

由于要求输出的是正弦波xsinθ,幅值x不定,下面考虑幅值x分别取5和1的情况:●当输出波形为5 sinθ时:5 sinθ=V o2=2N*V ref/256-V ref=10N/256-5 //此时V ref=+5V得sinθ=2N/256-1●当输出波形为sinθ时:sinθ=V o2=2N*V ref/256-V ref=10N/256-5 //此时V ref=+5V得sinθ=10N/256-5最后可以考虑输出波形的频率问题。

例如要求输出特定频率的正弦波。

(二)针对输出的不同幅值波形✓当输出波形为5 sinθ时:得sinθ=2N/256-1这里我们要求进步为一度。

具体到进步大小,和内存RAM或者ROM有关,即和你存放数据表的空间有关。

放到哪个空间都可以。

(这里周期采样最多256个点,步数可以为1、2、5等,自己视情况而定,这里由于是360度,256个采样点,故步的大小360/256=1.4=△θ,由此算的前三个θ=0,1.4,2.8……,对应N为0x80,0x83,0x86……)通过sinθ的特征和计算部分数据发现规律:0~90度与90~180度大小是对称的;181~270度与270~359度是对称的。

正弦波信号发生器制作

正弦波信号发生器制作

正弦波信号发生器制作一、原理及工作方式1.参照信号源:可以使用晶体振荡器作为参照信号源,晶体振荡器的频率非常稳定,精度高,可以提供准确的参照频率。

2.振荡器:振荡器可以根据参照信号源产生一个与之匹配的频率信号,一般使用的是集成电路中的RC振荡器或LC振荡器。

3.滤波器:在振荡器输出的信号中含有很多谐波成分,需要通过滤波器去掉非基波的频率成分,使输出信号更接近理想的正弦波。

4.放大器:滤波器输出的信号还需要一定的放大才能达到输出阻抗。

正弦波信号发生器的工作方式一般分为模拟和数字两种。

模拟方式主要是通过电路实现信号的生成和放大,传统的信号发生器属于这种方式。

数字方式则是采用数字电路和数字信号处理器来实现信号的生成,这种方式可以实现更高精度和更多功能的信号发生器。

二、制作过程下面是一种基于模拟方式的正弦波信号发生器的制作过程。

1.选择元件:根据所需的频率范围选择适当的振荡器和滤波器,通常可以选择集成电路中的RC振荡器和LC滤波器。

同时还需要选择一款合适的放大器来放大滤波器输出的信号。

2.连接电路:按照电路原理图将选定的元件连接起来,根据元件的引脚和功能进行正确的连线。

3.调试:连接完成后,对电路进行调试。

首先需要确认参照信号源是否正常工作,然后调节振荡器的频率,观察信号的变化。

接下来调整滤波器的频率,使输出信号更接近理想正弦波。

最后调整放大器的放大倍数,使输出信号达到所需的幅度。

三、功能扩展除了基本的频率、幅度和相位调节之外,正弦波信号发生器还可以通过增加其他功能模块来实现更多的功能。

比如:1.频率计:增加频率计模块,可以实时测量输出信号的频率。

2.相位偏移:增加相位调节模块,可以实现对输出信号的相位进行调整。

3.数字控制:使用数字信号处理器来实现对信号发生器的数字控制,可以通过软件界面实现更加便捷的操作和参数调节。

4.波形选择:增加多种波形输出的功能,可以输出正弦波、方波、三角波等多种波形,满足不同实验的需求。

制作一个正弦信号发生器的设计

制作一个正弦信号发生器的设计

制作一个正弦信号发生器的设计
一、正弦信号发生器的概念
正弦信号发生器是一种可以产生所需频率的正弦波信号的设备,可以
帮助开发者测量和分析频率特性,也可以用于相关系统的诊断。

正弦信号
发生器可以产生指定频率的正弦波形,以满足不同系统的需求。

它也可以
通过波形对比法进行精确的波形测量,用于分析电子系统特性。

(1)电路设计
正弦信号发生器的电路设计主要有两种:一种是基于模拟电路的设计,另一种是基于数字电路的设计。

(1)模拟电路
模拟电路设计采用的是电路模块,主要有振荡器、滤波器、缓冲器和
调制电路。

(a)振荡器
振荡器主要由振荡电路和调整元件组成,振荡器的作用是形成振荡的
正弦波,以满足信号发生器产生不同频率的要求。

(b)滤波器
滤波器的作用是滤除振荡器产生的额外噪声,以得到纯净的正弦信号。

(c)缓冲器
缓冲器的主要作用是将振荡器的正弦波输出,缓冲器的作用是减少信
号失真,使正弦波更加完美。

(d)调制电路
调制电路的作用是对信号发生器产生的正弦波进行调制,使其能够输出更加稳定的信号频率。

(2)数字电路
采用数字电路设计的正弦信号发生器。

制作一个正弦信号发生器的设计

制作一个正弦信号发生器的设计

★项目2:数字信号源
项目简述:设计制作一个正弦信号发生器。

(1)正弦波输出频率范围:1kHz~10MHz;
(2)具有频率设置功能,频率步进:100Hz;
(3)输出信号频率稳定度:优于10-2;
(4)输出电压幅度:1V到5V这间;
(5)失真度:用示波器观察时无明显失真。

(6)输出电压幅度:在频率范围内
50负载电阻上正弦信号输出电压的峰-峰值V opp=6V±1V;
(7)产生模拟幅度调制(AM)信号:在1MHz~10MHz范围内调制度m a可在30%~100%之间程控调节,步进量50%,正弦调制信号频率为1kHz,调制信号自行产生;
(8)产生模拟频率调制(FM)信号:在100kHz~10MHz频率范围内产生20kHz最大频偏,正弦调制信号频率为1kHz,调制信号自行产生;
(9)产生二进制PSK、ASK信号:在100kHz固定频率载波进行二进制键控,二进制基带序列码速率固定为10kbps,二进制基带序列信号自行产生;
开发时间:2007 开发人数:1
运行环境:windows xp、Quartus II
相关内容:(还未整体综合)
下面是调幅原理图:
下面是调频原理图:
下面是正弦信号发生器设计原理图:
下面是PSK设计原理图:。

正弦波信号发生器设计(课设)

正弦波信号发生器设计(课设)

课程设计I(论文)说明书(正弦波信号发生器设计)2010年1月19日摘要正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。

本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。

以op07和555定时器构成正弦波和方波的发生系统。

Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。

正弦波方波可以通过示波器检验所产生的信号。

测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。

关键词:正弦波方波 op07 555定时器目录引言 (2)1 发生器系统设计 (2)1.1系统设计目标 (2)1.2 总体设计 (2)1.3具体参数设计 (4)2 发生器系统的仿真论证 (4)3 系统硬件的制作 (4)4 系统调试 (5)5 结论 (5)参考文献 (6)附录 (7)1引言正弦波和方波是在教学中经常遇到的两种波形。

本文简单介绍正弦波和方波产生的一种方式。

在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。

1、发生器系统的设计1.1发生器系统的设计目标设计正弦波和方波发生器,性能指标要求如下:1)频率范围100Hz-1KHz ;2)输出电压p p V ->1V ;3)波形特性:非线性失真~γ<5%。

1.2总体设计(1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网络组成。

2图1.1正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1;φa+φb=±2nπ;A=X。

/Xid; F=Xf/X。

;正弦波振荡电路必须有基本放大电路,本设计以op07芯片作为其基本放大电路。

基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。

反馈网络中两个反向二极管起到稳压的作用。

振荡电路的振荡频率f0是由相位平衡条件决定的。

一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含一个具有选频特性的选频网络。

正弦信号发生器的设计

正弦信号发生器的设计

正弦信号发生器的设计正弦信号是电子工程中非常常见的一种波形信号。

在很多应用场合中,为了满足一些特殊的输出要求,设计一个合适的正弦信号发生器是非常必要的。

本文将介绍如何设计一个简单的正弦信号发生器。

一、介绍正弦信号正弦信号是一种基本的周期信号,在数学和工程领域都有广泛的应用。

正弦信号的数学表达式为:y(t) = A*sin(ωt+φ),其中A为振幅,ω为角频率,φ为相位差。

正弦信号具有周期性和连续性,可以描述很多物理和电子现象,如机械振动、电磁波等。

在电子工程领域中,正弦信号可以用于通讯系统、音频系统、数码系统等各个方面。

如果需要设计一个正弦波信号发生器,一些基本要素必须要考虑。

这些要素包括输出幅度、输出频率、工作电源和电路稳定性。

以下是正弦信号发生器的设计方案:1.输出幅度要设计一个正弦信号发生器,首先要确定所需要的输出幅度范围。

对于数字信号处理器(DSP)的输出,其输出幅度通常在±1.0之间。

如果需要更大的输出幅度,可以通过放大引脚信号或者使用外部放大器实现。

2.输出频率输出频率可以由外部时钟或者基准晶振决定。

如果想要实现可调节的输出频率,可以在电路中使用像50-100MHz这样的精准低噪声晶振。

可以根据应用需求选择不同的晶振和滤波器电路。

3.工作电源正弦波信号发生器的工作电源应该保证稳定性和可靠性。

在低频和中频应用中,标准稳压器可以提供足够的电源稳定性;在高频应用中,需要使用低噪声电源或者瞬态响应较好的电源来保证信号质量。

4.电路稳定性正弦波信号发生器的电路必须要保证稳定性。

这可以通过使用负反馈电路、保持简单电路结构和使用稳定的输出功率等方法来实现。

此外,振荡器的端部是一个有驱动能力的阻抗,因此需要使用与振荡器相匹配的驱动设计。

下面是一个简单的正弦波信号发生器电路图:在图中,U1是一个晶体管振荡器,C4和L2是功率扩大电路,R1和R2是反馈电路,C1和C2是用于稳定电路的滤波电容,C3则被用来过滤高频噪声。

正弦波信号发生器制作

正弦波信号发生器制作
成本与普及度
正弦波信号发生器的成本和普及度也是需要解决的问题。为了降低成本和提高普及度,可以开发具有市 场竞争力的产品,优化生产工艺,降低制造成本,同时加强市场推广和宣传。
THANK YOU
波形转换电路
波形转换电路是将振荡信号转换成正弦波信号的关键部分,通常采用 RC电路或LC电路等。
03功率放大电路源自功率放大电路的作用是将转换后的正弦波信号进行放大,以满足输出功
率的要求。
应用领域
科学研究
正弦波信号发生器在科学研究领域中广泛应用于物理、化 学、生物和材料科学等领域,如振动分析、光谱分析、生 物电信号处理等。
正弦波信号发生器制作
目录
• 正弦波信号发生器简介 • 正弦波信号发生器的硬件设计 • 正弦波信号发生器的软件设计 • 正弦波信号发生器的调试与优化 • 正弦波信号发生器的应用实例 • 正弦波信号发生器的未来发展与挑战
01
正弦波信号发生器简介
定义与特点
定义
正弦波信号发生器是一种能够产生正弦波信号的电子设备。
工程实验
在工程实验中,正弦波信号发生器可用于模拟各种物理量, 如电压、电流、力等,以便进行各种实验和测试。
测试测量
正弦波信号发生器在测试测量领域中广泛应用于各种电子 设备和仪器的测试和校准,如示波器、频谱分析仪、信号 发生器等。
02
正弦波信号发生器的硬件设计
电源电路设计
电源电路
为整个信号发生器提供 稳定的直流电源,通常 采用线性电源或开关电
幅度精度
提高信号幅度的精度,以 满足高精度应用需求。
05
正弦波信号发生器的应用实例
在通信系统中的应用
信号传输
正弦波信号发生器可以产生稳定的正弦波信号,用于通信系 统中的信号传输。这种信号具有恒定的振幅、频率和相位, 能够保证信号传输的质量和稳定性。

正弦波信号发生器的设计与实现

正弦波信号发生器的设计与实现

正弦波信号发生器的设计与实现中文摘要正弦波信号发生器广泛地应用于电子电路、自动控制系统和教学实验等领域,是工业与实验领域重要的信号激励源。

系统是以STC89C52单片机,AD9850集成电路为核心器件,设计并实现了频率、幅值连续可调的正弦波发生器。

通过按键控制可实现正弦波频率的预置和幅度调节,步进精度为1Hz和10Hz,同时通过LCD12864液晶屏显示其对应频率。

经测试:系统输出正弦波连续可调,频率范围100Hz ~1MHz,分辨率1Hz;幅值范围1v~10v。

关键词:信号发生器;正弦波;STC89C52;AD9850Design and implementation of sine wave signal generatorABSTRACTSine wave signal generator is widely used in electronic circuits, automatic control system and teaching experiment etc., is an important signal source of industrial and experimental field.STC89C52 microcontroller, AD9850 integrated circuit are the core device of this system.The design and implementation of a sine wave generator frequency, amplitude adjustable. we can achieve the preset of sine wave frequency and adjust of the amplitude through the button control .The stepping accuracy of this design is 1Hz and 10Hz.The system can achieve the function of displaying the corresponding frequency through the LCD12864.After testing:the system output sine wave is continuous and adjustable, the frequency range of 100Hz to 1MHz, the resolution of 1Hz; range 1V ~ 10V.KEYWORD:Sine wave generator; sine wave; STC89C52 ; AD9850目录第一章绪论 01.1论文设计背景和意义 01.2波形发生器的发展 01.3信号发生器的实现方法 (1)本章小结 (2)第二章系统总体方案设计 (3)2.1设计的要求及系统功能 (3)2.2DDS的基本原理 (3)2.3功能分析 (4)2.3.1主控模块功能分析 (4)2.3.2 信号发生模块功能分析 (5)2.3.3液晶显示模块功能分析 (5)2.3.4放大模块功能分析 (5)本章小结 (5)第三章系统硬件设计 (6)3.1单片机控制模块设计 (6)3.1.1 STC89C52单片机 (6)3.1.2时钟电路 (7)3.1.3复位电路 (7)3.2信号产生模块设计 (7)3.2.1 DDS结构 (7)3.2.2累加器 (8)3.2.3 控制相位的加法器 (8)3.2.4 控制波形的加法器 (8)3.2.5 D/A转换器 (8)3.2.6 AD9850集成模块 (8)3.3显示模块设计 (10)3.4.1 LCD12864基本特性 (10)3.4.2 LCD12864的设计使用 (11)3.4键盘输入控制模块设计 (11)3.5放大模块设计 (12)3.5.1 反相比例放大电路 (12)3.5.2 运算放大器OP37 (12)3.5.3 直流稳压模块 (12)3.5.4 lm7815/lm7915系列 (13)本章小结 (13)第四章系统软件设计 (15)4.1系统主程序设计 (15)4.2键盘扫描程序设计 (15)4.3显示程序设计 (16)4.4频率设定程序设计 (17)本章小结 (17)第五章系统调试 (18)5.1软件调试 (18)5.1.1 编程语言的选择 (18)5.1.2 系统开发环境 (18)5.2测试仪器 (19)5.3电源测试数据记录 (19)5.4系统测试 (19)5.5测试分析 (20)本章小结 (20)第六章总结 (21)参考文献 (22)致谢................................................................................................................................... 错误!未定义书签。

正弦信号发生器方案资料.doc

正弦信号发生器方案资料.doc

正弦信号发生器方案资料.doc总体方案构思唐正宗、刘飞、董必陈基本功能○1○2 唐正宗、刘飞 扩展功能○2 刘飞、陈庆庆 扩展功能○3 董必陈、吴河飞扩展功能○3 董玉东摘要本系统基于DDS 信号源的工作原理,以单片机和FPGA 为控制中心,采用DDS 集成芯片AD9851实现了在30MHz 至12MHz 频率范围内正弦信号的无失真输出,扩展了AM 、FM 、ASK 、FSK 、PSK 等多种调制功能,输出级采用乙类推挽功率放大器电路以提高系统的负载能力,50欧姆负载下输出峰—峰值0~6V 可调。一方案论证与选择1.题目要求以指标分析根据题目要求,所设计的系统应可以输出较宽频带且频率稳定度足够高的正弦信号,并具有一定的负载能力,同时可输出指标满足要求的AM 、FM 、ASK 、FSK 信号。综合题目指标要求及相关分析,得到该系统的功能框图。本系统的设计细分为以下几个部分:频率合成模块、AGC 模块、幅度控制模块、功率放大模块、调制模块及人机交互模块。2.(1)频率合成模块方案一:选用单片压控函数发生器MAX038.若将MAX038输出设置在正弦波模式下,只需要很少的外部原件,就可以输出高频特性较好、频率范围较宽的正弦波。但由于其为压控型芯片,产生信号的频率稳定性差、精度低、抗干扰能力不强、灵活性差。方案二:锁相式频率合成方案该方案可产生频率精度较高的正弦波信号,可在一定程度上解决既要频率稳定度高、又要频率在较大范围内可变的矛盾,但频率受VCO 可变频率范围的影响。高低频率比不可能很高,难以实现1kHz 至10MH z 宽频带及步进100Hz 的要求。波形 发生功放 模块键盘 显示调制 模块单片机及晶振N 分鉴相低通VC可编程方案三、采用基于单片机和FPGA 的DDS 技术由于时钟频率可D\A 转换速率的限制,此方案不使输出信号实现很高的频率,难以达到题目1kHz 至10kHz 的宽频带要求。方案四、选用DDS 集成芯片实现AD9851是AD 公司提出的高集成度单片DDS 芯片,内部有一个32b 的相位累加器、10b 高性能D\A 转换器和一个高速比较器,可以实现全数字频率合成以及时钟发生功能。选用AD9851作为本系统的核心频率合成模块完全可满足题目要求,实现输出信号在1kHz 至10MH z 频段可调,频率稳定度优于10exp-4,以及步进100Hz 的指标,故频率合成模块选用方案四。(2)AGC 模块为了保证输出幅度的稳定性,在频率合成滤波之后要使用自动增益控制(AGC)电路。方案一:选用场效应管和运算放大器来实现。此电路结构简单、原件少、易于实现,但稳定性差,难以达到题目要求。方案二:选用集成芯片AD603实现AD603是一种低噪声的压控放大器,可以提供精确的、线性的对数增益控制,故选用此方案设计AGC 模块。(3)幅度控制模块为了使输出峰-峰值在0~6V 线性连续可调,需要设计幅度控制模块。 方案一: 采用运算放大器和数字电位器组成的程控放大电路来实现。 由于数字电位器阶数有限,故不可能做到幅度连续可调。 方案二:采用以AD603为核心芯片的电压控制幅度模块AD603 是一种低噪声的压控放大器,可以提供精确的、线性的对数增益控制,我们只需要精确控制AD603的控制电压,就可以实现对输出信号的精确控制。控制电压由12位高精度串行DA 转换器MAX536输出,故可实现近似的连续可调。所以选用此方案设计幅度控制模块。(5)调制部分题目发挥部分要求所设计的正弦信号发生器可产生AM 信号、FM 信号以及二进制PSK 、ASK 信号。对于AM 信号,本系统采用常规的双平衡四象限模拟乘法器MC1496实现;对于二进制PSK 、ASK 、FSK 信号,采用二进制键控的形式实现。题目要求对1kHz 的正弦信号进行FM 调制,则只需在RAM 中存储正弦数据表,直接读出进行调制即可。3.系统总体实现方案相位累波形存D /A 滤波器参考频率控制字 波形输出采用集成DDS芯片AD9851作为波形发生模块,产生所需要的正弦波,经过截止频率为20MHz的无源滤波器滤波,再经过以AD603为核心的AGC电路稳幅,然后经过以AD603和MAX536为核心的幅度控制模块,最后经过乙类功放输出,由此即完成基本的波形输出要求。采用DDS技术实现1kHz和100kHz正弦信号输出,用于各种信号调制。二、理论分析与计算1.DDS原理根据DDS芯片AD9851的工作原理,若累加器时钟为Fc,累加器位数为N,累加器值为FN,频率控制字的位数为FM,外部参考时钟频率为20MHz,经内部6倍频后,可得到AD9851内部工作频率120MHz,最终合成信号的频率可由式A-1决定,相位由式A-2决定。F=FM*FC/2^N=0.027FM (A-1)Θ=2∏FN/2^N=2∏FN/2^32 (A-2)2.AD603的工作原理本系统AGC电路以及幅度控制电路中均采用了集成可变增益放大器AD603,现将其电路控制增益原理分析如下。AD603的对数增益为:Av=40Vg+10 (A-3)其中,Vg为差分控制输入电压,由式A-3可以得出,对数增益与电压之间是线性关系。三、主要功能电路设计1.功能合成器模块如图A-5所示,在该模块中AD9851工作于并行模式下,通过8位数据总线D0~D7来完成全部40位控制数据的输入。复位信号RESET有效状态下,输入数据地址,指针指向第一个输入寄存器,W-CLK 上升沿写入8位数据,并把指针指向下一个输入寄存器。连续5个W-CLK 上升沿后,即完成40位控制数据的输入。当FQ-UD上升沿到来时,40位数据从输入寄存器锁存到频率和相位控制寄存器,从而更新DDS的输入频率和相位。2.低通滤波电路模块考虑到AD9851的输出信号中带有120μV直流偏置电压及高次谐波分量,本系统在AD9851输出端加入了隔直电容和20MHz低通滤波电路3.AGC模块鉴于滤波器自身的频率特性及输出信号均匀性的要求,本系统使用了自动增益控制电路。如图A-7所示,AGC电路由可控增益放大器AD603和晶体管对管2N3906、2N3904构建。AD603采用双电源供电方式,其控制范围为80dB可满足题目设计要求。后级恒流源在B点提供稳定的电流,且在B点由于电容C3与晶体管2N3904的分流及C3的充分放电作用,使得B点电压随着输入信号幅值的增大而减小,并反馈到增益控制端,改变AD603的增益从而实现了自动增益控制。经实验调制,该AGC电路在输入信号峰-峰值为100mV~6V的情况下,可实现300Hz~10MHz范围内稳定输出峰-峰值为1.9V的无失真正弦信号。4.幅度控制模块幅度控制模块用于控制输出信号的幅度,使输出正弦信号峰-峰值在0~6V连续可调。考虑到AD603的频带适应性,选用两级AD603级联的电路模式。其两路独立的控制电压由12位串行电压输出型DA转换芯片MAX536提供,如图A-8所示。5.功能放大模块在信号输出端增加功能放大模块,以保证该正弦信号发生器的负载能力满足题目要求。鉴于运算放大器AD811自身负载驱动能力的限制,本模块选用AD811配合高频功率对管2SD667(NPN型)2SD647(PNP型)搭配电压串联负反馈的同向放大器电路。如图A-9所示,前级由AD811组成同向放大器,放大倍数为Av=1+R3/R1;后级选用功率对管构成乙类功率推挽输出形式提供负载驱动电流。经实验测试,整个电路的输出阻抗小于15Ω,同频带大于10MHz,且带内平坦,通带内部平度小于0.1 dB;空载时可对从DC到10MHz范围内,峰-峰值为20V的正弦信号无失真输出;输出端接50Ω负载时,无失真的最大输出电压峰-峰值达到10V,并且在峰-峰值为10V的输出状态下,频率大于2MHz仍无失真现象,以上各项指标均达到和超过了题目要求。6.幅度调整(AM模块)幅度调整的核心器件选用模拟乘法器MC1496,将载波信号和被调整信号相乘即可得到AM调幅波。通过改变被调制信号的偏置而达到改变调制度的效果。该直流偏置由MAX536提供,由单片机通过FPGA对其进行预置或改变。为了保证调幅波的频率纯净且无载波高次谐波分量,输入端接入15MHz无源滤波器。整个模块对电源做了相应的退耦处理。在滤波器输出端得到了效果较好的调幅波波形。具体电路如图A-10所示。7.频率调整(FM模块)本设计采用了数字FM调制的方法。实现框图如图A-11。具体控制思想为:单片机输入中心频率和最大频偏,然后启动数字FM,FPGA 内部时钟单元将产生一个256kHz 的时钟,用于累加8×256b 正弦波表地址,得出相应正弦幅度量化值。此幅度一方面作为输出信号输出至外部DA 的数据端口,用于恢复正弦信号;另一方面作为频率控制字的计算数据,根据相应公式计算出频率控制字。写时序控制器在时钟的作用下将生成的频率控制字写到DDS 芯片AD9851内,从而产生一个频率与正弦信号幅度成比例的调幅信号。8.ASK 、FSK 、PSK 控制模块根据ASK 、FSK 、PSK 控制的原理,这几种数字键控调制都可以在FPGA 内部通过修改DDS 的参数来实现。由于实现起来较为容易,故仅给出实现框图.1kHZ 正弦输出FM 输FM 控制及时钟控频率控8×256b 正弦波AD9851D-A 输AD9851频率出数字调频实现框图ASK 调制信号FPGA 实现ASK 输出框图FSK 调制信号FPGA 实现输出FSK 框图FSK 调制正弦波0x80基带序数据D/A 数数据D/A频率正弦时钟相位基带频率DDS相位数据选DDSD/A信号FSKFSK 实现FSK 输出相位基带。

实验八正弦波信号发生器

实验八正弦波信号发生器

桂林电子科技大学EDA技术及应用实验报告(实验八)实验名称:正弦波信号发生器生命与环境科学学院生物医学工程作者:学号:实验日期:2012年10月22日一、实验目的1、进一步熟悉quartustwo及其LPM_ROM与FPGA硬件资源的使用方法。

2、掌握逻辑分析仪的使用方法。

二、实验内容采用原理图输入的方法,在quartus two 上完成正弦信号发生器的设计,包括仿真和使用逻辑分析仪对其进行分析。

三、实验原理图如图所示,为正弦波发生器的模块化结构,该信号发生器由计数器或地址发生器和正弦波信号数据ROM组成。

结构图中,地址发生器由7位计数器担任,正弦数据ROM有7位地址线,8位数据线,含128个8位数据(一个周期)。

地址发生器的时钟clk的输入频率f0与每周期的波形数据点数(在此选择128点),以及输出的频率f的关系是:f=f0/128,正弦信号数据的采样率是128,即clk频率为正弦信号频率的128倍。

硬件实现:首先设计一个ROM,用来存放正弦函数的幅度数据;用一个计数器来指定ROM地址的增加,输出相应的幅度值。

这样在连续的时间内显示的就是一个完整的正弦波形。

ROM和计数器都可以通过quartus 自带的IP模块生成。

四、实验步骤新建工程->新建Block Diagram/Schematic File->绘制原理图,其中count为7位计数器(地址发生器),como为正弦波存储ROM。

->新建memory initializtion file,输进需要在ROM 中存储的数据。

保存文件,命名为sin.mif.其中存储的数据为:五、实验仿真六、逻辑分析仪的使用新建逻辑分析仪文件,设置端口选择时钟触发信号:选择激励信号:选择需要观察的信号:保存,编译,下载到硬件。

点击,运行逻辑分析仪,即可以得到分析结果。

七、硬件验证用示波器接上信号输出端,观察信号。

八、实验结果1、逻辑分析仪上显示正弦波。

正弦信号发生器

正弦信号发生器

正弦信号发生器摘要本系统以一款高性能单片机作为CPU,配合FPGA控制DDS芯片生成正弦信号,以及FM、ASK、PSK信号。

用FPGA设计生成的调制信号外加DA转换,便可经模拟乘法器和DDS芯片实现AM调制。

CPLD负责键盘扫描和LCD显示,并协调CPU和FPGA的总线通信。

AbstractThe system uses a high qutality MCU as CPU to create sine wave by control ling DDS chip and cooperating with FPGA,and modulate by FM、ASK、PSK. If FPGA have a DA conversion,DDS chip and it can modulate amplitude by multiplication.CPLD scans keyboard,displays LCD and assort the communications of CPU with FPGA.一、方案设计与论证1 正弦波生成方案方案一:采用模拟分立元件方案。

采用分立元件振荡电路可产生正弦波,通过调整元件参数可改变输出频率,成本较低,但采用模拟器件由于元件分散,电阻、电容等器件参数决定了整个系统的性能,因而产生的频率稳定度差、抗干扰能力弱、精度低,而且频率步进困难,灵活性很差,难以达到设计的要求。

方案二:采用锁相式频率合成方案。

锁相式频率合成法是把一个高稳定度和高精确度的标准频率经过加减乘除等算术运算产生离散频率,抑制杂散分量,具有较好的窄带跟随性,基本解决了频率稳定精确度和频率要在较大范围内可调的矛盾。

缺点是受压控震荡器vco可变频率范围以及锁定时间较长的影响,高低频率比不能做到设计所要求的那么高,更重要的是FM、PSK、ASK用其实现比较困难。

方案三:采用单片机外加数模转换实现DDS直接频率合成方案。

正弦波信号发生器完整

正弦波信号发生器完整

辽宁工学院单片机与接口技术课程设计(论文)题目:正弦波信号发生器院(系):信息科学与工程学院专业班级:通信034班学号: 030305101学生姓名:李方胜指导教师:刘毅教师职称:副教授起止时间:06-07-03至06-07-16课程设计(论文)任务及评语目录第1章课程设计目的与要求 (1)1.1 课程设计目的 (1)1.2 课程设计的实验环境 (1)1.3 课程设计的预备知识 (1)1.4 课程设计要求 (1)第2章课程设计内容 (2)第3章课程设计的考核 (2)3.1 课程设计的考核要求 (2)3.2 课程性质与学分 (2)第4章硬件与软件系统设计 (3)4.1硬件系统框图及分析 (3)4.2各部分功能实现 (3)4.3输出正弦信号的硬件及软件设计实现 (8)4.4软件流程图及其分析 (9)4.5总体电路图及电路性能分析 (13)4.6设计总结 (14)参考文献器件列表第1章课程设计目的与要求1.1 课程设计目的“单片机与接口技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。

因此,要求学生能综合应用所学知识,设计与制造出具有较复杂功能的小型单片机系统,并在实践的基本技能方面进行一次系统的训练。

能够较全面地巩固和应用“单片机”课程中所学的基本理论和基本方法,并初步掌握小型单片机系统设计的基本方法。

培养独立思考、独立收集资料、独立设计规定功能的单片机系统的能力;培养分析、总结及撰写技术报告的能力。

1.2 课程设计的实验环境利用windows操作系统及应用软件进行绘图和编程。

1.3 课程设计的预备知识熟悉单片机与接口技术课程的相关知识及电子线路CAD工具软件。

1.4 课程设计要求按课程设计指导书提供的课题,根据第二章给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容:1、对设计课题进行简要阐述,并说明设计任务及具体要求。

2、论述系统设计方案,并画出总体电路结构图及功能分割图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。






→ X a X i X f
Xa X f
振荡条件



→ X f •
X0

Xf

1
Xa Xa X0
••
A F A Fa f 1 →
动画
A F 1 幅度平衡条件
A F A F 1 相位平衡条件
AF = a+ f= 2n
n = 0,1,2...
振荡电路的振荡频率f0
振荡频率f0由相位平衡条件决定。 正弦波振荡电路只在一个频率下(f0)满足相位平衡条件。
所以Af≥3。加入Rf、R1支路,构成串
联电压负反馈。
Af
1
Rf R1
3
当电路达到稳定平衡状态时:

AV 3

FV
Vf Vo
1 3
f
f0
1 2π RC
(4) 电路的稳幅过程
振荡电路的稳幅作用是靠热敏电阻R1实现的。R1是正 温度系数热敏电阻,当输出电压升高,R1上所加的电压 升高,即温度升高,R1的阻值增加,负反馈增强,输出 幅度下降。反之输出幅度增加。若热敏电阻是负温度系 数,应放置在Rf 的位置。
例1:
⑴.试分析D1、D2自动稳幅原理; ⑵.估算输出电压V0m;(VD=0.6V) ⑶.试画出若R2短路时,输出电压V0的波形; ⑷.试画出若R2开路时,输出电压V0的波形;
解:⑴.稳幅原理 当v0幅值很小时, D1、D2
接近开路,R’3=2.7K。
AV R2 R3' R1 / R1 3.3
UCC
uo
UoH
ui

C
ur

- UEE
(a)
0 uo
ur
ui
UoL 鉴别 不灵 敏区
(b)
电压比较器的符号及传输特性
1. 高电平(UoH)和低电平(UoL)
电压比较器可以用运放构成,也可用专
用芯片构成。用运放构成的比较器,其高电
平UoH可接近于正电源电压(UCC),低电平UoL 可接近于负电源电压(-UEE)。 场合,对输出加以限幅,如图所示。其中图
正弦信号产生电路原理
正弦波发生电路能产生正弦波输出,它是在 放大电路的基础上加上正反馈而形成的,它是各 类波形发生器和信号源的核心电路。正弦波发生 电路也称为正弦波振荡电路或正弦波振荡器。
正弦波振荡电路的振荡条件
RC正弦波振荡电路
LC正弦波振荡电路
石英晶体振荡电路
正弦波振荡电路的振荡条件
正弦波振荡电路就是一个没有输入信号的 带选频网络的正反馈放大电路。
当v0幅值较大时, D1或D2
导通,R’3减小,AV下降。
V0 幅值趋与稳定。
⑵.估算输出电压V0m (VD=0.6V)
稳幅时: AV 9.1K R3' 5.1K / 5.1K 3
R3' 1.1K
I
I 0.6V
1.1K
V0m
1.1K 5.1K 9.1K
15.3K 0.6V V0m 1.1K 5.1K 9.1K
ω=ω0=1/RC 或 f = f0 =1/2πRC
FVmax=1/3 f 0
当 f=f0 时的反馈系 数 与频率f0无关。此时的
相角 f =0。即改变频率不
会影响反馈系数和相角,在 调节谐振频率的过程中,不 会停振,也不会使输出幅度 改变。
RC串并联网络的频率特性曲线
(3)振荡的建立与稳定
为满足振荡的幅度条件 A F =1,
4、若要得到一个输出幅值可调的正弦波信号,如何 解决?在输出正弦波信号加入直流偏移量,如何 解决?
5、注意:集成运算放大器电源端要加入滤波电容。
正弦波发生器所用元件
1、14脚IC座;集成运算放大器LM324。 2、10k电位器。 3、电阻若干。 4、二极管1N4148. 5、电容若干。
1
一、电压比较器的基本特性
7–49(a)
±(UVZ+UVD),
图7–49(b)电路的高低电平等于±(UVZ+UVD)。
8.35V
⑶.若R2短路时
AV R2 R3' R1 / R1
AV<3,电路停振, 输出电压V0的波形为
(4). 若R2开路时,输出电压V0的波形
运算放大器的基本应用(I) ─ 正弦波 发生器 制作
集成运放的外引线排列
LM324 图12-5
uA741引脚及符号
正弦波发生器电路图
图3.2.1 RC桥式正弦波振荡器


选频网络可设在 A 中或 F 中。
选频网络由RC元件或LC元件组成。
低频
1HZ ~1MHZ
高频 1MHZ以上
RC正弦波振荡电路
电路原理
(1) 电路的构成
RC 串并联网络是 正反馈网络,Rf 和R1 为负反馈网络。
RC串并联网络与Rf、R1负反馈支路正好构成一个桥 路,称为桥式。
(2)RC串并联选频网络的选频特性
其反相输入端加信号ui,同相输入端加参 考电压(ur)。比较器一般是开环工作,其增 益 很 大 。 所 以 , 当 ui < ur 时 , 输 出 为 “ 高 ” ; 反 之 , 当 ui > ur 时 , 输 出 为 “低”。而当ui接近ur时,输出电平发生转 换,此刻同相端和反相端可看成“虚短 路”。其它时刻U+与U-可能差得很远(即 U+≠U-)。电压比较器的输入为模拟量,输 出为数字量(0或1),可作为模拟和数字电 路的接口电路,也可作为一位模–数转换 器,在实际中有着广泛应用。
电压比较器的功能是比较两个输入电压 的大小,据此决定输出是高电平还是低 电平。高电平相当于数字电路中的逻辑 “1”,低电平相当于逻辑“0”。比较器 输 出 只 有 两 个 状 态 , 不 论 是 “ 1” 或 是 “0”,比较器都工作在非线性状态。所 以,“虚短路”概念不能随便应用。
图给出了电压比较器的符号及传输特性。
运算放大器的基本应用(II) ─ 信号放大、转换制作
正弦波输入
正弦波输出
方波输出
正弦波发生器 调试
1、按图焊接好电路。用万用表仔细检查电路安装的 正确性。
2、接通±5V电源,调节电位器RW,用示波器观察到 一个不失真的正弦波;用交流毫伏表测量正弦波 大小。
3、用示波器或频率计测量振荡频率fO,并与理论值进 行比较。
Z1 R (1/ j C)
Z2 R //(1/ j C)
R
1 j RC
FV
Vf Vo
Z2 Z1 Z2
R (1/
R(/ 1 j RC)
j C) R /1 j RC
R 1
R
j C1
j RC R
1
3
j
RC
ቤተ መጻሕፍቲ ባይዱ
1 RC
令ω0=1/RC
FV
3
1
j
0
0
FV
3
1
j
0
0
反馈系数
当C1 =C2、R1 =R2时:
相关文档
最新文档