2019级数学分析(1)期末复习(大字)9页

合集下载

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结数学分析是数学的一个重要分支,它研究数学对象的极限、连续性和变化率等性质。

在数学分析的学习过程中,我们掌握了许多重要的知识点,下面我将对其中的一些知识点进行总结。

1. 极限与连续在数学分析中,极限是一个非常重要的概念。

我们通常用符号lim来表示一个函数的极限,如lim (x→a) f(x)。

极限可以理解为函数在某一点附近值的稳定性。

如果极限存在且与a点无关,我们就说函数在a点是连续的。

在求极限的过程中,常用的方法有代数运算法、夹逼准则、洛必达法则等。

2. 导数与微分导数是函数在某一点的变化率,也可以理解为函数的斜率。

函数f(x)在点x=a处的导数可以用f'(a)或df/dx(x=a)表示。

导数的计算方法有基本求导法则和高阶导数法则等。

微分是一个近似的概念,它表示函数在某一点附近的线性近似。

微分有利于研究函数的性质和进行近似计算。

3. 积分与微积分基本定理积分是求解曲线下面的面积或曲线长度的运算。

在积分计算中,常用的方法有换元法、分部积分法、定积分的性质等。

微积分基本定理是微积分中的核心理论之一,它将导数与积分联系起来。

基本定理分为牛顿-莱布尼茨公式和柯西中值定理两部分,它们在微积分的理论和应用中都起着重要的作用。

4. 级数与收敛性级数是无穷多项之和,其求和问题是数学分析中的一个重要内容。

级数的收敛性判断是一个关键问题,主要有比较判别法、积分判别法、根值判别法等。

级数的收敛性与和的计算直接关系到级数的应用,如泰勒级数、傅里叶级数等。

5. 无穷极限与无穷小量无穷极限是指当自变量趋于无穷大或无穷小时,函数的趋势和性质。

无穷小量的概念是微积分的基础,它表示比自变量趋于零更小的量。

在求解极限、导数等问题时,无穷小量具有非常重要的应用价值。

6. 参数方程与极坐标参数方程是一种以参数形式给出函数方程的表达方式。

在参数方程中,通常我们会用一个参数来表示自变量和函数值,通过参数的取值范围可以得到函数图形。

2019-2020第一学期数学分析期末考试试题

2019-2020第一学期数学分析期末考试试题

2019-2020本科数学系期末考试试题数学分析(一)(A 卷)本试卷共4道大题,满分100分.一、选择题(本大题10分,每小题2分)1. 设数列{}n x 单调增,{}n y 单调减,且0lim =−∞→n n n x y ,则( A )(A ){}n x 、{}n y 均收敛 (B ){}n x 收敛,{}n y 发散 (C ){}n x 发散,{}n y 收敛 (D ){}n x 、{}n y 均发散2. 设函数)(1)(3x x x f ϕ−=,其中)(x ϕ在1=x 处连续,则0)1(=ϕ是)(x f 在1=x 处可导的( A )(A )充分必要条件 (B )必要但非充分条件(C )充分但非必要条件 (D )既非充分也非必要条件 3. 设0()0f x '=是)(x f 在0x 取得极值的( D )(A )充分条件; (B )必要条件; (C )充要条件; (D )既非充分条件也非必要条件.4. 设()353−=x y ,下述结论正确的是( A )(A )()0,3是曲线)(x f y =的拐点; (B )3=x 是)(x f 的极值点; (C )因为)3(f ''不存在,所以()0,3不是曲线)(x f y =的拐点;(D )当3<x 时,曲线)(x f y =为凹的,当3>x 时,曲线)(x f y =为凸的.5. 设xe e xf xx1arctan 11)(11+−=,则0=x 是)(x f 的( C )(A )连续点 (B )第一类(非可去)间断点 (C )可去间断点 (D )第二类间断点6. 设)(x f y =且21)(0='x f ,则当0>∆x 时,在0x 处dy 是( B ) (A) 与x ∆等价的无穷 (B) 与x ∆同阶但不等价的无穷小; (C) 比x ∆高阶的无穷 (D) 比x ∆低阶的无穷小 二、填空题(本大题10分,每小题2分)1. 若)(0x f '存在,则=−−→000)()(limx x x f x x xf x x 000()()f x x f x '−.2. 曲线21xy xe =的渐近线方程是 0x =.3. 设⎪⎩⎪⎨⎧==te y t e x ttcos 2sin ,则曲线上点(0,1)M 处的法线方程是12=+y x .4. 设x x x f 2sin )(2=,则)2()20(πf = 19202π⋅ .三、计算题(本大题35分,每小题5分)1.(5分)求极限20sin )1()cos 1(limx e x x x x −−→答案与评阅要点:由于 0→x 时,2~cos 12x x − ,22~sin x x ,x e x ~1−所以 21)(2lim sin )1()cos 1(lim 22020−=⋅−⋅=−−→→x x x x x e x x x x x2.(5分)求极限()tan 2lim sin xx x π→;答案与评阅要点: 令()tan sin xy x =,ln tan ln sin y x x =.22221cos ln sin sin lim ln lim lim cot csc x x x xx x y x x πππ→→→⋅==−2lim sin cos 0x x x π→=−⋅=,所以 原式=01e =. 3.(5分)求极限30sin (1)lim x x e x x x x→−+ 答案与评阅要点:2331()2!3!xx x e x o x =++++,33sin ()3!x x x o x =−+3333001()sin (1)16lim lim 6xx x x o x e x x x x x →→+−+== 4.(5分)计算不定积分33tan sec x xdx ⎰答案与评阅要点:⎰xdx x 33sec tan ⎰=x xd x sec sec tan 22⎰−=x xd x sec sec )1(sec 22.sec 31sec 5135C x x +−=5.(5分)计算不定积分⎰+−dx xx xx 5cos sin sin cos答案与评阅要点:⎰+−dx xx xx 5cos sin sin cos ⎰++=5cos sin )cos (sin x x x x d .)cos (sin 4554C x x ++=6.(5分)计算不定积分⎰−dxxx 224答案与评阅要点:设2sin ()22x t t ππ=−<<,则2cos .dx tdt =⎰−dx xx 224⎰=tdt t tcos 2cos 2sin 42dt t ⎰−=)2cos 1(2C t t +−=2sin 2 .4212arcsin22C x x x +−−=7.(5分)计算不定积分⎰xdx x ln 3答案与评阅要点:⎰xdxx ln 3⎰=)4(ln 4x xd ⎰−=dx x x x 3441ln 41.161ln 4144C x x x +−=四、证明题(本大题45分)1.(10分)设函数()f x 在],[b a 上二阶可导,0)()(='='b f a f .证明存在一点),(b a ∈ξ,使得)()()(4)(2a fb f a b f −−≥''ξ.答案与评阅要点:因为2()()()()()()2222a b a b f a bf f a f a a a ξ''+++'=+−+−1()2a b a ξ+<< 2()()()()()()2222a b a b f a bf f b f b b b ξ''+++'=+−+−2()2a b b ξ+<<(5分) 两式相减,因为0)()(='='b f a f ,得2211()()[()()]()08f b f a f f b a ξξ''''−+−−=,记12()max{(),()}f f f ξξξ''''''=,则2222112111()()()()()(()())()()()884f b f a f f b a f f b a f b a ξξξξξ''''''''''−=−−≤+−≤−即)()()(4)(2a fb f a b f −−≥''ξ,证明完毕.(5分)2.(10分)证明数列{}n x 收敛,其中11x =,113()2n n nx x x +=+,1,2,n =,并求lim n n x →∞.答案与评阅要点:1131()22n n n x x x +=+≥=,21313()022n n n n n n nx x x x x x x +−−=+−=≤,故有1n n x x +≤(5分)故{}n x 单调减有下界,从而lim n n x →∞存在设lim n n x A →∞=,在113()2n n nx x x +=+两边取极限得13()2A A A =+,从而A =5分)3.(15分)设函数()f x 定义在区间(,)a b 上:(1)(5分)用εδ−方法叙述()f x 在(,)a b 上一致连续的概念; (2)(5分)设01a <<,证明1()sin f x x=在(,1)a 上一致连续; (3)(5分)证明1()sinf x x=在(0,1)上非一致连续. 答案与评阅要点:(1)对0ε∀>,0δ∃>,对12,(,)x x a b ∀∈,只要12x x δ−<,就有12()()f x f x ε−<(5分)(2)对0ε∀>,取2a δε=,12,(,1)x x a ∀∈,只要12x x δ−<,12121212111111()()sinsin 2cos sin 22x x x x f x f x x x +−−=−= 121222121211x x x x x x x x a a δε−−≤−=<<=故1()sinf x x=在(,1)a 上一致连续.(5分) (1)在(0,1)内取2n x n π=,2(1)n x n π'=+,取012ε=,对0δ∀>,只要n 充分大总有2(1)n n x x n n δπ'−=<+,而1201()()sin sin 122n n f x f x ππε+−=−=>,故1()sinf x x=在(0,1)非一致连续.(5分) 4.(10分)(1)(5分)叙述函数极限lim ()x f x →+∞的归结原则,并应用它lim sin x x →+∞不存在. (2)(5分)叙述极限lim ()x f x →+∞存在的柯西收敛准则;并证明lim sin x x →+∞不存在.证明:(1)设()f x 在[,)a +∞有定义.lim ()x f x →+∞存在的充分必要条件是:对任意含于[,)a +∞,当lim n n x →∞=+∞时当lim n n x →∞=+∞时且趋于+∞的数列{}n x ,极限lim ()n n f x →∞存在且相等.取2,2,2n n x n x n πππ'''==+则lim lim 2,n n n x n π→∞→∞'==+∞lim lim(2),2n n n x n ππ→∞→∞''=+=+∞但lim ()lim sin(2)0,n n n f x n π→∞→∞'==lim ()limsin(2)1,2n n n f x n ππ→∞→∞''=+=lim ()lim (),n n n n f x f x →∞→∞'''≠故lim ()x f x →+∞不存在.(5分)(2)设函数()f x 在[,)a +∞有定义,则极限lim ()x f x →+∞存在的充要条件是:对于任何0,ε>存在正数0(),M M a >>当12,x x M >时有12|()()|.f x f x ε−<对于012ε=及任意正整数M,取122,2,2x M x M πππ=+=则有1,x M >2,x M >且有1201|()()|sin 2sin 21,22f x f x M M πππε⎛⎫−=+−=>= ⎪⎝⎭所以lim sin x x →+∞不存在.(5分)试题来源:微信公众号 学术之星。

数学分析(1)复习要点

数学分析(1)复习要点

数学分析(一)复习要点第一章函数、极限与连续1、区间与邻域。

2、基本初等函数的性质。

3、求函数的定义域。

4、函数的复合运算。

5、数列与函数极限的精确定义,用定义证明简单极限。

6、单调有界原理、加逼准则及其相关证明。

7、几个常用不等式与两个重要极限公式。

8、无穷小的概念与性质,无穷小阶的比较。

9、等价无穷小替换定理及常用等价无穷小公式。

10、函数连续的概念。

11、间断点的概念、分类及判别。

12、闭区间上连续函数的最值性质与零点定理。

第二章导数与微分1、导数与微分的定义、几何意义。

2、函数的可导性、可微性及连续性的关系,“微商”的含义。

3、基本初等函数的求导公式与微分公式。

4、导数的四则运算法则与复合函数的求导法则。

5、隐函数的求导方法、对数求导法、参数方程确定函数的求导公式。

6、高阶导数的概念与二、三阶导数的计算。

第三章微分学基本定理及其应用1、微分中值定理及其相关命题的证明。

2、求不定式极限的洛必达法则及其与等价无穷小替换定理的综合运用。

3、函数的单调性、凹凸性的判别,极值与拐点的求法(必要条件和充分条件)。

4、闭区间上连续函数的最值、以及实际问题中简单最值的求法。

5、曲线渐近线的求法。

6、不等式的证明(利用函数的单调性、凹凸性,拉格朗日中值定理及泰勒公式等)。

7、方程根的讨论。

第四章不定积分1、原函数与不定积分的概念,积分运算与微分运算的互逆性。

2、基本积分公式(22个)。

3、求不定积分的“凑微分法”(第一类换元法)。

4、求不定积分的第二类换元法。

5、求不定积分的分部积分法,LIATE选择法,被积函数为一个函数时如何分部积分。

6、利用“凑微分法”求简单有理函数的不定积分。

7、利用第二类换元法求简单无理函数的不定积分。

数学分析总结复习提纲

数学分析总结复习提纲

数学分析总结复习提纲数学分析(一)总结复习提纲用词说明:本提纲中冠以“掌握、理解、熟悉”等词的内容为较高要求内容,冠以“会、了解、知道”等词的内容为较低要求内容。

一、内容概述第一章函数、极限与连续§1函数1. 实数集的性质,2. 区间与邻域的概念及其表示,3. 函数的概念与几个特殊函数,4. 函数的奇偶性、周期性、单调性和有界性,4. 复合函数的概念与运算,5. 反函数的定义与性质,6. 初等函数的概念与基本初等函数的性质。

§2 数列极限1. 数列极限的定义以及用定义证明极限,2. 收敛数列的性质,3. 子列的概念以及收敛数列与其子列之间的关系。

§3 函数极限1. ∞x时函数的极限,2. 0x→x→时函数的极限,3. 函数极限的性质,4. 函数极限与数列极限的关系。

§4 无穷小与无穷大1. 无穷小的概念以及函数极限与无穷小的性质,2. 无穷大的概念以及无穷小与无穷大的关系。

§5 极限运算法则1. 无穷小的性质,2. 极限四则运算法则,3. 复合函数的极限运算法则,4. 加逼准则。

§6 单调有界原理与两个重要极限1. 单调有界原理,2. 几个常见不等式,3. 两个重要极限公式。

§7 无穷小的比较1. 无穷小量阶的比较概念,2. 等价无穷小的性质。

§8 函数的连续性与间断点1.函数的连续性概念,2. 函数的间断点及其分类。

§9 连续函数的运算与初等函数的连续性1. 连续函数的四则运算,2. 反函数的连续性,3. 复合函数的连续性,4. 初等函数的连续性。

§10 闭区间上连续函数的性质1. 有界性与最大值最小值定理,2. 零点定理与介值定理。

第二章导数与微分§1 导数的概念1.导数概念的引进,2. 导数的定义,3. 导数的几何意义,4. 函数的连续性与可导性的关系。

§2 函数的求导法则1.导数的四则运算法则,2. 反函数的求导公式,3. 复合函数的求导法则,4. 基本求导公式与求导法则。

《数学分析》考试知识点.

《数学分析》考试知识点.

《数学分析》考试知识点.第一篇:《数学分析》考试知识点.《数学分析》考试知识点题目类型及所占比例:填空题(20分)、解答题(60分)、证明题(70分)考试范围:一、极限和函数的连续性考试内容:映射与函数的概念及表示法,函数的四则运算、复合函数与反函数的求法,函数的有界性、奇偶性、单调性与周期性;数列与函数极限的定义与性质,函数的左右极限,无穷小量与无穷大量的概念及关系、无穷小量与无穷大量的阶,极限的计算; 3 函数的连续性和一致连续性; 4 实数系的连续性; 5 连续函数的各种性质。

考试要求:理解映射与函数的概念,掌握函数的表示法;会函数的四则运算、复合运算;知道反函数及隐函数存在的条件及求法;了解初等函数的概念,会求初等函数的定义域;理解函数与数列极限(包括左右)的概念,会用极限的概念证明有关极限的命题;熟练掌握极限的四则运算及性质;会问题及简单的求函数熟练掌握数列极限与函数极限的概念;理解无穷小量的概念及基本性质。

掌握极限的性质及四则运算性质,能够熟练运用两面夹原理和两个特殊极限。

掌握实数系的基本定理。

熟练掌握函数连续性的概念及相关的不连续点类型。

熟练掌握闭区间上连续函数的性质。

二、一元函数微分学考试主要内容:微分的概念、导数的概念、微分和导数的意义;求导运算;微分运算;微分中值定理;洛必达法则、泰勒展式;导数的应用。

考试要求:理解导数和微分的概念。

熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则、复合函数求导法则,会求分段函数的导数。

熟练掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor展式。

能用导数研究函数的单调性、极值,最值和凸凹性。

掌握用洛必达法则求不定式极限的方法。

三、一元函数积分学考试主要内容:定积分的概念、性质和微积分基本定理;不定积分和定积分的计算;定积分的应用;广义积分的概念和广义积分收敛的判别法。

考试要求:理解不定积分的概念。

掌握不定积分的基本公式,换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分。

《数学分析》期末复习用 各章习题+参考答案

《数学分析》期末复习用 各章习题+参考答案

f f f (x) = x + 2 ; 2x + 3
f f f f (x) = 2x + 3 。 3x + 5
9. f (x) = f (x) + f (−x) + f (x) − f (−x) , f (x) + f (−x) 是偶函数, f (x) − f (−x) 是奇
2
2
2
2
函数.
⎧− 4x + 3
2⋅4⋅6⋅
⋅ (2n) 。 (提示:应用不等式 2k > (2k − 1)(2k + 1) )。
9. 求下列数列的极限:

lim
n→∞
3n2 + 4n − 1 n2 +1 ;

n3 + 2n2 − 3n + 1
lim
n→∞
2n3 − n + 3 ;
2

3n + n3
lim
n→∞
3n+1
+ (n + 1)3
k∈Z ⎝
2
2⎠
(4) y = x −1 ,定义域: (− ∞,−1) ∪ [1,+∞),值域: [0,1)∪ (1,+∞).
x +1
5.(1)定义域: ∪ (2kπ ,(2k +1)π ),值域: (− ∞,0]; k∈Z
(2)定义域:

k∈Z
⎢⎣⎡2kπ

π 2
,2kπ
+
π 2
⎤ ⎥⎦
,值域: [0,1];
1
(3)定义域:
[−
4,1] ,值域:
⎢⎣⎡0,

(完整版)《数学分析》考试知识点.

(完整版)《数学分析》考试知识点.

《数学分析》考试知识点题目类型及所占比例:填空题(20分)、解答题(60分)、证明题(70分)考试范围:一、极限和函数的连续性考试内容:1映射与函数的概念及表示法,函数的四则运算、复合函数与反函数的求法,函数的有界性、奇偶性、单调性与周期性;2数列与函数极限的定义与性质,函数的左右极限,无穷小量与无穷大量的概念及关系、无穷小量与无穷大量的阶,极限的计算;3函数的连续性和一致连续性;4实数系的连续性;5连续函数的各种性质。

考试要求:1理解映射与函数的概念,掌握函数的表示法;会函数的四则运算、复合运算;知道反函数及隐函数存在的条件及求法;了解初等函数的概念,会求初等函数的定义域;2理解函数与数列极限(包括左右)的概念,会用极限的概念证明有关极限的命题;熟练掌握极限的四则运算及性质;会问题及简单的求函数熟练掌握数列极限与函数极限的概念;理解无穷小量的概念及基本性质。

掌握极限的性质及四则运算性质,能够熟练运用两面夹原理和两个特殊极限。

掌握实数系的基本定理。

熟练掌握函数连续性的概念及相关的不连续点类型。

熟练掌握闭区间上连续函数的性质。

二、一元函数微分学考试主要内容:微分的概念、导数的概念、微分和导数的意义;求导运算;微分运算;微分中值定理;洛必达法则、泰勒展式;导数的应用。

考试要求:理解导数和微分的概念。

熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则、复合函数求导法则,会求分段函数的导数。

熟练掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor展式。

能用导数研究函数的单调性、极值,最值和凸凹性。

掌握用洛必达法则求不定式极限的方法。

三、一元函数积分学考试主要内容:定积分的概念、性质和微积分基本定理;不定积分和定积分的计算;定积分的应用;广义积分的概念和广义积分收敛的判别法。

考试要求:理解不定积分的概念。

掌握不定积分的基本公式,换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分。

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。

常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。

常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。

大一数学分析期末知识点

大一数学分析期末知识点

大一数学分析期末知识点在大一数学分析的学习过程中,学生将接触到许多基础的数学知识点。

这些知识点在期末考试中占据重要的地位,对于学生来说是必须要熟练掌握的。

本文将着重介绍大一数学分析期末考试中常涉及的几个主要知识点。

1. 函数与极限在数学分析的学习中,函数与极限是一个非常重要的基础概念。

学生需要了解函数的定义、性质和图像表示方法。

同时,对于函数的极限也是非常重要的。

学生需要学会计算函数的极限,理解极限存在与否的条件,并能够应用极限理论解决相关问题。

2. 数列与级数数列与级数是数学分析中的另一个核心内容。

学生需要了解数列的定义、分类和性质,能够计算数列的极限。

对于级数,学生需要学会判断级数的敛散性,掌握级数求和的方法,并了解级数收敛的判定方法。

3. 微分学微分学是数学分析的重要内容之一。

学生需要熟练掌握函数的导数概念与计算方法,理解导数的几何与物理意义,并能够应用导数解决相关问题。

此外,学生还需要了解高阶导数、隐函数与参数方程的微分计算方法。

4. 积分学积分学是数学分析的另一个重要内容。

学生需要熟悉不定积分和定积分的定义与计算方法,了解换元积分法和分部积分法等积分技巧,并能够应用积分解决相关问题。

此外,对于柯西定理和牛顿-莱布尼茨公式的理解也是必要的。

5. 常微分方程常微分方程是数学分析的一门重要的应用课程。

学生需要了解一阶和二阶常微分方程的基本概念、解的存在唯一性以及一些特殊类型的微分方程解法,并能够应用常微分方程解决实际问题。

以上所列举的知识点只是大一数学分析期末考试中的主要内容,还有其他相关知识点也是需要学生积极掌握的。

学生在备考期末考试时,应该注重理解概念,熟练掌握运算方法,并进行大量的练习,加强对知识点的理解与应用能力。

通过系统的学习与反复的训练,相信大家能够在大一数学分析期末考试中取得优异的成绩!。

数学分析知识点

数学分析知识点

数学分析知识点数学分析是数学的一个重要分支,主要研究数和函数的性质、极限、连续性等,是培养学生逻辑思维和数学推理能力的基础课程之一。

本篇文章将介绍数学分析的几个重要知识点。

一、极限极限是数学分析中的核心概念之一,指函数在某一点或无穷远处的趋势或性质。

常见的有数列极限和函数极限。

数列极限是指数列中的元素随着下标的增大或减小而趋于某一定值。

对于数列{an},当n趋于无穷大时,如果存在一个实数a,使得对于任意给定的正数ε,总存在正整数N,使得当n大于N时,有|an-a|<ε,就称数列{an}以a为极限,记作lim(n→∞)an = a。

函数极限是指函数在某一点的取值随着自变量的变化趋于某一值。

对于函数f(x),当x趋于某一实数a时,如果存在一个实数L,使得对于任意给定的正数ε,总存在正数δ,当0<|x-a|<δ时,有|f(x)-L|<ε,就称函数f(x)以L为极限,记作lim(x→a)f(x) = L。

二、连续性连续性是函数的一个重要性质,指函数在某一点的函数值随着自变量的变化而连续变化。

对于函数f(x),如果在定义域内任意一点a的邻域内都有lim(x→a)f(x) = f(a),则称函数f(x)在点a连续。

连续性的一个重要定理是介值定理。

如果函数f(x)在闭区间[a,b]上连续,并且f(a)≠f(b),则对于[a,b]上的任意实数c,都存在一个实数x0,使得a<x0<b且f(x0)=c。

三、导数导数是函数的变化速率的度量,也是数学分析的一个重要概念。

对于函数f(x),如果在某一点a的邻域内存在lim(x→a)(f(x)-f(a))/(x-a),则称f(x)在点a可导,这个极限值称为f(x)在点a的导数,记作f'(a)。

导数具有一些重要的性质,如乘积法则、求导法则、链式法则等。

其中乘积法则指出,如果函数f(x)和g(x)都在某一点a可导,则(fg)'(a) = f'(a)g(a) + f(a)g'(a)。

高数复习资料

高数复习资料

高等数学期末复习资料第 1 页(共9 页)高等数学第一章函数与极限函数与极限函数与极限函数与极限第一节函数○函数基础(高中部分相关知识)(★)○邻域(去心邻域)(★)....,|Uaxxa.........,|0Uaxxa......第二节数列的极限数列的极限数列的极限数列的极限○数列极限的证明(★)【题型示例】已知数列..nx,证明..limnxxa...【证明示例】N..语言1.由nxa...化简得...gn.,∴..Ng......2.即对0...,..Ng.......,当Nn.时,始终有不等式nxa...成立,∴..axnx (i)第三节函数的极限函数的极限函数的极限函数的极限○0xx.时函数极限的证明(★)【题型示例】已知函数..xf,证明..Axfxx..0lim【证明示例】...语言1.由..fxA...化简得..00xxg....,∴....g.2.即对.. . 0 ,....g..,当00xx....时,始终有不等式..fxA...成立,∴ f .x. Ax x.. 0lim○..x时函数极限的证明(★)【题型示例】已知函数 f .x. ,证明..Axfx (i)【证明示例】X..语言1.由..fxA...化简得..xg..,∴ (X)2.即对.. . 0 ,...gX..,当Xx.时,始终有不等式..fxA...成立,∴..Axfx (i)第四节无穷小与大无穷小与大无穷小与大无穷小与大无穷小与大○无穷小与大的本质(★)函数..xf无穷小...0lim.xf函数..xf无穷大.....xflim○无穷小与大的相关定理推论(★)(定理三)假设 f .x. 为有界函数,..xg为无穷小,则....lim0fxgx......(定理四)在自变量的某个化过程中,若在自变量的某个化过程中,若..xf为无穷大,则无穷大,则无穷大,则..1fx.为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若..xf为无穷小,且..0fx.,则..xf1.为无穷大【题型示例】计算:....0limxxfxgx......(或..x)1.∵..fx≤M∴函数..fx在0xx.的任一去心邻域...,0xU.内是有界的;(∵..fx≤M ,∴函数..fx在Dx.上有界;)2...0lim0..xgxx即函数..xg是0xx.时的无穷小;(..0lim...xgx即函数g.x. 是x . . 时的无穷小;)3.由定理可知....0lim0xxfxgx.......(....lim0xfxgx........)第五节极限运算法则极限运算法则极限运算法则极限运算法则极限运算法则○极限的四则运算法(★)(定理一)加减法则(定理二)乘除法则关于多项式..px、..xq商式的极限运算设:.....................nnnmmmbxbxbxqaxaxaxp110110则有...............0lim00baxqxpxmnmnmn...........000lim00xxfxgxfxgx......................0000000,00gxgxfxgxfx.....(特别地,当....00lim0xxfxgx..(不定型)时,通常分子分母约去公因式约去公因式约去公因式即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便可求解出极可求解出极可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9xxx...高等数学期末复习资料第 2 页(共9 页)【求解示例】解:因为3.x,从而可得3.x,所以原式....23333311limlimlim93336xxxxxxxxx.............其中3x.为函数..239xfxx...的可去间断点倘若运用罗比达法则求解(详见第三章二节):解:....00233323311limlimlim9269xLxxxxxxx.............○连续函数穿越定理(复合函数的极限求解)(★)(定理五)若函数..xf是定义域上的连续函数,那么,....00limlimxxxxfxfx...............【题型示例】求值:93lim23 (xxx)【求解示例】22333316limlim9966xxxxxx.........第六节极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要○夹迫准则(P53P53)(★)第一个重要极限:1sinlim0..xxx∵........2,0.x,xxxtansin..∴ 1sinlim.. xxx0000lim11limlim1sinsinsinlimxxxxxxxxxx.............(特别地,000sin()lim1xxxxxx....)○单调有界收敛准则(P57P57)(★)第二个重要极限:exxx..........11lim(一般地,(一般地,(一般地,(一般地,........limlimlimgxgxfxfx.........,其中..0lim.xf)【题型示例】求值:11232lim (xxxx)【求解示例】....211121212122121122122121lim21221232122limlimlim121212122lim1lim121212lim121xxxx xxxxxxxxxxxxxxxxxxxx...................................................................................................解:....12lim1212121212122lim121xxxxxxxxxeeee.......................................第七节无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小的比较无穷小的比较无穷小的比较)○等价无穷小(★)1...~sin~tan~arcsin~arctan~ln(1)~1UUUUUUUe..2.UUcos1~212.(乘除可替,加减不行)【题型示例】求值:....xxxxxx31ln1lnlim20.....【求解示例】..............3131lim31lim31ln1lim31ln1lnlim,0,000020........................xxxxxxxxxxxxxxxxxxxxx所以原式即解:因为第八节函数的连续性函数的连续性函数的连续性函数的连续性函数的连续性○函数连续的定义(★)......000limlimxxxxfxfxfx......○间断点的分类(P67P67)(★).........)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数.......xaexfx2,00..xx应该怎样选择数a,使得..xf成为在R上的连续函数?【求解示例】1.∵......2010000feeefaafa...................2.由连续函数定义......efxfxfxx.......0limlim00∴ea.高等数学期末复习资料第 3 页(共9 页)第九节闭区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质○零点定理(★)【题型示例】证明:方程】证明:方程】证明:方程】证明:方程....fxgxC..至少有一个根介于a与b之间【证明示例】1.(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)......xfxgxC....在闭区间..,ab上连续;2.∵....0ab....(端点异号)3.∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间..ba,内至少有一点.,使得..0...,即....0fgC.....(10...)4.这等式说明方程这等式说明方程这等式说明方程这等式说明方程....fxgxC..在开区间在开区间.a,b.内至少有一个根.第二章导数与微分导数与微分导数与微分导数与微分第一节导数概念○高等数学中导的定义及几何意(P83P83)(★)【题型示例】已知函数】已知函数】已知函数........baxexfx1,00..xx在0.x处可导,求a,b【求解示例】1.∵....0010fefa............,......00001120012feefbfe...................2.由函数可导定义..........0010002ffafffb..................∴1,2ab..【题型示例】求..xfy.在ax.处的切线与法方程(或:过(或:过(或:过..xfy.图像上点..,afa....处的切线与法处的切线与法处的切线与法处的切线与法方程)【求解示例】1...xfy...,..afyax....|2.切线方程:......yfafaxa....法线方程:......1yfaxafa.....第二节函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则○函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则★)1.线性组合(定理一):线性组合(定理一):()uvuv..........特别地,当1....时,有()uvuv......2.函数积的求导法则(定理二):函数积的求导法则(定理二):()uvuvuv.....3.函数商的求导法则(定理三):函数商的求导法则(定理三):2uuvuvvv...........第三节反函数和复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数..xf1.的导数【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得..xf为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域D上单调、可导,且..0..xf;∴....11fxfx........○复合函数的求导法则(★)【题型示例】设..2arcsin122lnxyexa....,求y.【求解示例】................2222222arcsin122arcsin122222arcsin1222arcsin1222arcsin1222arcsin122arcsiarcsin12 211121*********xxxxxxxyexaexaxxaexaxexaxxxexxaeaeexa.......................................................... .......解:2n1222212xxxxxxa.............第四节高阶导数○........1nnfxfx.......(或....11nnnndydydxdx..........)(★)【题型示例】求函数..xy..1ln的n阶导数【求解示例】..1111yxx......,......12111yxx...............,..........2311121yxx....................……..1(1)(1)(1)nnnynx........!第五节隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导○隐函数的求导(等式两边对x求导)(★)【题型示例】试求:方程】试求:方程】试求:方程】试求:方程yexy..所给定的曲线所给定的曲线所给定的曲线所给定的曲线C:..xyy.在点..1,1e.的切线方程与法【求解示例】由y y . x . e 两边对x 求导即..yyxe.....化简得1yyey.....∴eey (11111)高等数学期末复习资料第 4 页(共9 页)∴切线方程:..exey (1111)法线方程:....exey (111)○参数方程型函数的求导【题型示例】设参数方程.........tytx..,求22dxyd【求解示例】1.....ttdxdy.....2...22dydydxdxt..........第六节变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变(不作要求)第七节函数的微分函数的微分函数的微分函数的微分○基本初等函数微分公式与运算法则(★★★)..dxxfdy...第三章中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用第一节中值定理○引理(费马)(○引理(费马)(★)○罗尔定理(★)【题型示例】现假设函数..fx在..0,.上连续,在上连续,在上连续,在..0,.上可导,试证明:..0,....,使得....cossin0ff.......成立【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....sinxfxx..显然函数..x.在闭区间.0,. .上连续,在开区间开区间.0,. . 上可导;2.又∵....00sin00f.......sin0f......即....00.....3.∴由罗尔定理知....0,..,使得,使得. .c . . ossin0 f. f ... . . . 成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x.时,xeex..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令函数..xfxe.,则对1x..,显然函数..fx在闭区间..1,x上连续,在开区间..1,x上可导,并且..xfxe..;2.由拉格朗日中值定理可得,..1,x...使得等式..11xeexe....成立,又∵1ee..,∴..111xeexeexe......,化简得xeex..,即证得:当x .1时,x e ex . .【题型示例】证明不等式:当0x.时,..ln1xx..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....ln1fxx..,则对0x..,函数,函数 f .x. 在闭区间..0,x上连续,在开区上连续,在开区上连续,在开区上连续,在开区间.0,. . 上可导,并且..11fxx...;2.由拉格朗日中值定理可得,由拉格朗日中值定理可得,..0,x...使得等式......1ln1ln1001xx.......成立,化简得..1ln11xx....,又∵..0,x..,∴..111f......,∴..ln11xxx....,即证得:当x .1时,x e ex . .第二节罗比达法则罗比达法则罗比达法则罗比达法则○运用罗比达法则进行极限算的基本步骤(★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比达法则的三个前提条件A.属于两大基本不定型(0,0..)且满足条件,则进行运算:........limlimxaxafxfxgxgx.....(再进行1、2步骤,反复直到结果得出)B.☆不属于两大基本定型(转化为基本不定型)⑴0..型(转乘为除,构造分式)【题型示例】求值:0limlnxxx...【求解示例】..10000201lnlnlimlnlimlimlim111lim0xxLxxxxxxxxxxxxxa.................................解:(一般地,..0limln0xxx.....,其中,R...)⑵...型(通分构造式,观察母)【题型示例】求值:011limsinxxx........【求解示例】200011sinsinlimlimlimsinsinxxxxxxxxxxxx...........................解:........000000002sin1cos1cossinlimlimlimlim0222LxxLxxxxxxxxxx..................高等数学期末复习资料第 5 页(共9 页)⑶00型(对数求极限法)【题型示例】求值:0limxxx.【求解示例】....0000limlnln000002ln,lnlnln1lnln0limlnlimlim111limlim0limlim11xxxxxLxyyxxxxxyxyxxxxxx xyxxxxyeeex...................................解:设两边取对数得:对对数取时的极限:,从而有⑷1.型(对数求极限法)【题型示例】求值:..10limcossinxxxx..【求解示例】..........01000000limlnln100lncossincossin,ln,lncossinln0limlnlimlncossincossin10limlim1,cossin1 0lim=limxxxxLxxyyxxxxyxxyxxxyxyxxxxxxxxyeeee.................................解:令两边取对数得对求时的极限,从而可得⑸0.型(对数求极限法)【题型示例】求值:tan01limxxx.......【求解示例】....tan002000202200011,lntanln,1ln0limlnlimtanln1lnlnlimlimlim1sec1tantantansinsinlimlimlixxx xLxxxLxyyxxxyxyxxxxxxxxxxxxx...................................................................解:令两边取对数得对求时的极限,00limlnln0002sincosm0,1lim=lim1xxyyxxxxyeee.........从而可得○运用罗比达法则进行极限算的基本思路(★)0000001.......................(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分)⑶取对数获得乘积式(通过对数运算将指提前)第三节泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理(不作要求)(不作要求)(不作要求)(不作要求)第四节函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸○连续函数单调性(单调区间)(★)【题型示例】试确定函数】试确定函数】试确定函数】试确定函数..3229123fxxxx....的单调区间【求解示例】1.∵函数..fx在其定义域R上连续,且可导∴..261812fxxx....2.令......6120fxxx.....,解得:,解得:,解得:121,2xx..3.(三行表).(三行表).(三行表).(三行表)x..,1..1..1,22..2,....fx......fx极大值极小值4.∴函数 f .x. 的单调递增区间为....,1,2,....;单调递减区间为..1,2【题型示例】证明:当0x.时,1xex..【证明示例】1.(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数)设..1xxex....,(0x.)2...10xxe.....,(x . 0 )∴....00x....3.既证:当x . 0 时,1 x e .x.【题型示例】证明:当x . 0 时,..ln1xx..【证明示例】1.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设....ln1xxx....,(x . 0 )2...1101xx......,(x . 0 )∴....00x....3.既证:当x . 0 时,l . . n1 .x .x○连续函数凹凸性(★)【题型示例】试讨论函数2313yxx...的单调性、极值的单调性、极值的单调性、极值的单调性、极值的单调性、极值凹凸性及拐点【证明示例】高等数学期末复习资料第 6 页(共9 页)1.....236326661yxxxxyxx........................320610yxxyx................120,21xxx......3.(四行表)x(,0)..(0,1)1(1,2)2(2,)..y.....y......y1(1,3)4.⑴函数 2 3 y 1 3xx . ..单调递增区间为(0,1), (1,2) 单调递增区间为( ,0) .. , (2,) .. ;⑵函数 2 3 y 1 3xx . ..的极小值在0x.时取到,为..01f.,极大值在2x.时取到,为..25f.;⑶函数 2 3 y 1 3xx . ..在区间( ,0) .. , (0,1)上凹,在区间(1,2), (2,) .. 上凸;⑷函数 2 3 y 1 3xx . ..的拐点坐标为..1,3第五节函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小○函数的极值与最关系(★)⑴设函数..fx的定义域为的定义域为的定义域为D,如果Mx.的某个邻域..MUxD.,使得对..MxUx..,都适合不等式....Mfxfx.,我们则称函数 f .x. 在点..,MMxfx....处有极大值..Mfx;令..123,,,...,MMMMMnxxxxx.则函数 f .x. 在闭区间..,ab上的最大值M满足:......123max,,,,...,,MMMMnMfaxxxxfb.⑵设函数 f .x. 的定义域为D,如果,如果mx.的某个邻域..mUxD.,使得对,使得对,使得对..mxUx..,都适合不等,都适合不等,都适合不等,都适合不等,都适合不等式....mfxfx.,我们则称函数我们则称函数我们则称函数我们则称函数 f .x. 在点..,mmxfx....处有极小值..mfx;令..123,,,...,mmmmmnxxxxx.则函数 f .x. 在闭区间.a,b. 上的最小值m满足:......123min,,,,...,,mmmmnmfaxxxxfb.;【题型示例】求函数..33fxxx..在..1,3.上的最值【求解示例】1.∵函数 f .x. 在其定义域. 1 . ,3 . 上连续,且可导∴..233fxx....2.令......3110fxxx......,解得:121,1xx...3.(三行表).(三行表).(三行表).(三行表)x1...1,1.1..1,3f. .x...f .x.极小值极大值4.又∵......12,12,318fff......∴........maxmin12,318fxffxf.....第六节函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘(不作要求)(不作要求)(不作要求)第七节曲率(不作要求)(不作要求)(不作要求)(不作要求)第八节方程的近似解方程的近似解方程的近似解方程的近似解方程的近似解(不作要求)(不作要求)(不作要求)(不作要求)第四章不定积分第一节不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质○原函数与不定积分的概念(★)⑴原函数的概念:假设在定义区间I上,可导函数上,可导函数上,可导函数..Fx的导函数为..Fx.,即当自变量,即当自变量,即当自变量,即当自变量xI.时,有时,有....Fxfx..或....dFxfxdx..成立,则称成立,则称成立,则称成立,则称F.x. 为..fx的一个原函数⑵原函数存在定理:(★)如果函数..fx在定义区间I 上连续,则在I 上必存在可导函数..Fx使得 F . . . . xfx . . ,也就是说:连续函数一定存在原(可导必)⑶不定积分的概念(★)在定义区间I 上,函数上,函数f .x. 的带有任意常数项C的原函数称为 f .x. 在定义区间I 上的不定积分,即表示为:....fxdxFxC...(.称为积分号, f .x. 称为被积函数,..fxdx称为积分表达式,x则称为积分变量)○基本积分表(★)○不定积分的线性性质(分项积公式)(★)........1212kfxkgxdxkfxdxkgxdx..........第二节换元积分法换元积分法换元积分法换元积分法○第一类换元法(凑微分)((凑微分)((凑微分)((凑微分)(★)(dy . f ..x.. dx 的逆向应用)........fxxdxfxdx......................高等数学期末复习资料第7 页(共9 页)【题型示例】求221dxax..【求解示例】222211111arctan11xxdxdxdCaxaaaaxxaa............................解:【题型示例】求121dxx..【求解示例】....111121************dxdxdxxxxxC.............解:○第二类换元法(去根式)(★)(dy . f ..x.. dx的正向应用)⑴对于一次根式(0,abR..):axb.:令taxb..,于是2tbxa..,则原式可化为t⑵对于根号下平方和的形式(0a.):22ax.:令tanxat.(22t.....),于是arctanxta.,则原式可化为secat;⑶对于根号下平方差的形式( a . 0 ):a.22ax.:令sinxat.(2 2t. .. ..),于是arcsinxta.,则原式可化为cosat;b.22xa.:令secxat.(02t...),于是arccosatx.,则原式可化为tanat;【题型示例】求12 1dxx . . (一次根式)【求解示例】2211122112121txxtdxtdtdxtdtdttCxCtx.....................解:【题型示例】求22axdx..(三角换元)【求解示例】....2sin()222222arcsincos22cos1cos221sin2sincos222xattxtadxataaxdxatdttdtaattCtttC.................... .............解:第三节分部积法分部积法分部积法分部积法○分部积法(★)⑴设函数..ufx.,..vgx.具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其分部积公式可表示为:udvuvvdu....⑵分部积法函数排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”○运用分部积法计算不定积分的基本步骤:⑴遵照分部积法函数排序次对被;⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(vdxdv...)⑶使用分部积公式:udvuvvdu . . ..⑷展开尾项vduvudx.....,判断a.若vudx...是容易求解的不定积分,则直接计,则直接计,则直接计算出答案(容易表示使用基本积分、换元法算出答案(容易表示使用基本积分、换元法与有理函数积分可以轻易求解出结果);与有理函数积分可以轻易求解出结果);b.若v udx . . . 依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至⑵、⑶,直至⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2xexdx..【求解示例】....222222222222222xxxxxxxxxxxxxxxexdxxedxxdexeedxxexedxxexdexexeedxxexeeC................ .........解:【题型示例】求sinxexdx..【求解示例】........sincoscoscoscoscoscossincossinsincossinsinxxxxxxxxxxxxxxexdxedxexxdeexexdxexedxexe xxdeexexexdx...........................解:..sincossinsinxxxxexdxexexxde.......即:∴..1sinsincos2xxexdxexxC.....第四节有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分○有理函数(★)设:........101101mmmnnnPxpxaxaxaQxqxbxbxb.............对于有理函数....PxQx,当..Px的次数小于..Qx的次数时,有理函次数时,有理函次数时,有理函次数时,有理函. .. .P xQ x是真分式;当是真分式;当是真分式;当是真分式;当P.x. 的次数高等数学期末复习资料第8 页(共9 页)大于. . Q x 的次数时,有理函. .. .P xQ x是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数将有理函数将有理函数将有理函数. .. .P xQ x的分母Q.x. 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示为一次因式..kxa.;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为二次质因式..2lxpxq..,(240pq..);即:......12QxQxQx..一般地:nmxnmxm.........,则参数nam..22bcaxbxcaxxaa...........则参数,bcpqaa..⑵则设有理函数. .. .P xQ x的分拆和式为:............122klPxPxPxQxxaxpxq.....其中........1122...kkkPxAAAxaxaxaxa................2112222222...llllPxMxNMxNxpxqxpxqxpxqMxNxpxq...............参数121212,,...,,,,...,lklMMMAAANNN.........由待定系数法(比较)求出⑶得到分拆式后项积即可求解【题型示例】求21xdxx..(构造法)【求解示例】......221111111111ln112xxxxdxdxxdxxxxxdxdxdxxxxCx................................第五节积分表的使用积分表的使用积分表的使用积分表的使用积分表的使用(不作要求)(不作要求)(不作要求)(不作要求)第五章定积分极其应用定积分极其应用定积分极其应用定积分极其应用定积分极其应用第一节定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质○定积分的义(★)....01limnbiiaifxdxfxI.........( f .x. 称为被积函数,f . . xdx称为被积表达式,x则称为积分变量,a称为积分下限,b称为积分上限,..,ab称为积分区间)○定积分的性质(★)⑴....bbaafxdxfudu...⑵..0aafxdx..⑶....bbaakfxdxkfxdx.......⑷(线性质)........1212bbbaaakfxkgxdxkfxdxkgxdx..........⑸(积分区间的可加性)......bcbaacfxdxfxdxfxdx.....⑹若函数..fx在积分区间.a,b. 上满足..0fx.,则..0bafxdx..;(推论一)若函数 f .x. 、函数、函数..gx在积分区间在积分区间在积分区间.a,b. 上满足....fxgx.,则....bbaafxdxgxdx...;(推论二)....bbaafxdxfxdx...○积分中值定理(不作要求)第二节微积分基本公式微积分基本公式微积分基本公式微积分基本公式微积分基本公式○牛顿-莱布尼兹公式(★)(定理三)若果函数..Fx是连续函数..fx在区间..,ab上的一个原函数,则......bafxdxFbFa...○变限积分的导数公式(★)(上导―下)..............xxdftdtfxxfxxdx...................【题型示例】求21cos20limtxxedtx...【求解示例】..221100coscos2002limlim解:ttxxxLxdedtedtdxxx.........高等数学期末复习资料第9 页(共9 页)........2222221coscos000cos00coscos0cos010sinsinlimlim22sinlim2cossin2sincoslim21limsincos2 sincos21122xxxxxLxxxxxxeexxexxdxedxxxexexxexxxee.......................................第三节定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部○定积分的换元法(★)⑴(第一换元法)........bbaafxxdxfxdx......................【题型示例】求20121dxx..【求解示例】....222000111121ln212122121ln5ln5ln122解:dxdxxxx...............⑵(第二换元法)设函数....,fxCab.,函数..xt..满足:a.,...,使得....,ab......;b.在区间.在区间.在区间..,..或..,..上,....,ftt.......连续则:......bafxdxfttdt............【题型示例】求40221xdxx...【求解示例】..221210,43220,1014,332332311132222113111332223522933解:ttxxxtxttxdxdxtxttdttdttxt........................................⑶(分部积法)........................bbaabbbaaauxvxdxuxvxvxuxdxuxdvxuxvxvxdux..............○偶倍奇零(★)设....,fxCaa..,则有以下结论成立:⑴若....fxfx..,则....02aaafxdxfxdx....⑵若....fxfx...,则..0aafxdx...第四节定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用(不作要求)第五节定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用(不作要求)第六节反常积分(不作要求)(不作要求)(不作要求)(不作要求)如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式21arctan1dxxCx....的证明。

2019高数一下学期期末考试及答案

2019高数一下学期期末考试及答案

1. (8分)交换二次积分的次序2121310122(,)(,)(,)y y dy f x y dx dy f x y dx dy f x y dx -++⎰⎰⎰⎰⎰⎰.解 1、画出二重积分的积分区域------绘制每个小区域各1分,合计--------- 3分 2、交换二次积分12(,)(,)x Df x y dxdy dx f x y dy +==⎰⎰⎰原式------------------------------------------------------------8分评分说明没有绘图直接写答案至多只能给5分;第2步,交换二次积分,4个上下限,酌情给分2. (6分)求曲面22z x y =+被平面2z =所截部分的面积.解 1、所截部分在坐标面xOy的投影是一个圆盘:222x y +=;------------------------------------------------------------ 1分2、面积元:dS =;------------------------------------------------------------ 3分3、写出面积公式,并计算二重积分()()32202222200114812114268312133DS d rdrd r r d d ππππθθθθπ===+=+==⎰⎰⎰⎰------------------------------------------------------------ 6分3. (6分)求二重积分Drd σ⎰⎰,其中D 是心脏线(1cos )r a θ=+与圆周r a =()0a >所围的不包含原点的区域.解 1、画图;------------------------------------------------------------ 1分 2、确定极坐标下的积分区域(),,(1cos )22D r a r a ππθθθ⎧⎫=-≤≤≤≤+⎨⎬⎩⎭;------------------------------------------------------------ 2分3、计算d rdrd σθ=(1cos )22a aDrd d r rdr πθπσθ+-=⋅⎰⎰⎰⎰------------------------------------------------------------ 3分()()(1cos )3(1cos )(1cos )322222223332322223232031133(1cos )13cos 3cos cos 3323cos 3cos cos 32123131322322+92a a a a aDard d r rdr rd r d a ad d a d a θπππθθππππππππσθθθθθθθθθθθθθππ+++-----=⋅==⎡⎤=+-=++⎣⎦=++⎛⎫=⋅+⋅⋅+⋅ ⎪⎝⎭⎛=⎝⎰⎰⎰⎰⎰⎰⎰⎰⎰3a ⎫ ⎪⎭------------------------------------------------------------ 6分评分说明1、二次积分,前面的容易(1分),后面的复杂(2分)2、第二个定积分的计算,对称性、递推公式2cos n d πθθ⎰,都是给分点4. (10分)设Γ为柱面222x y y += 与平面y z =的交线,从z 轴正向看为顺时针,计算2I y dx xydy xzdz Γ=++⎰.解(方法一) 1、曲线的参数方程:cos 1sin ,:201sin x y z θθθπθ=⎧⎪=+→⎨⎪=+⎩---------xyz θ各1分-----------------------------4分2、将第二型曲线积分化为定积分计算()()()2022221sin sin cos 1sin cos 1sin I y dx xydy xzdzd πθθθθθθθΓ=++⎡⎤=-+++++⎣⎦⎰⎰--------------------------------------6分()()()()()()()()222022022022202220221sin sin 2cos 1sin 1sin 1sin sin 2cos 1sin 2sin 3sin 2sin 4sin3sin 2sin 4sin 3sin 44sin d d d d d d ππππππθθθθθθθθθθθθθθθθθθθθθθπθθ⎡⎤=+-+⎣⎦⎡⎤=++-⎣⎦=+-++=--++=--++=-+⎰⎰⎰⎰⎰⎰-------------------------------------8分220416sin 1416022d ππθθππ=-+=-+⋅⋅=⎰---------------------10分解(方法二) 圆柱体与平面的截面是一个椭圆,该椭圆记为S ,并取椭圆的下侧,法方向方向余弦为 ---------------------1分())cos ,cos ,cos 0,1,1αβγ=-。

数学分析复习提纲(全部版)

数学分析复习提纲(全部版)

数学分析(4)复习提纲第一部分 实数理论§1 实数的完备性公理一、实数的定义在集合R 内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称R 为实数域或实数空间。

(1)域公理: (2)全序公理:(3)连续性公理(Dedekind 分割原理):设R 的两个子集A ,A '满足: 1°ΦA ΦA ≠'≠, 2°R A A ='⋃3°x x A x A x '<⇒'∈'∀∈∀,则或A 中有最大元而A '中无最小元,或A 中无最大元而A '中有最小元。

评注 域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。

二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。

主要有如下几个公理: 确界原理: 单调有界定理: 区间套定理:有限覆盖定理:(Heine-Borel )聚点定理:(Weierstrass)致密性定理:(Bolzano-Weierstrass) 柯西收敛准则:(Cauchy)习题1 证明Dedekind 分割原理与确界原理的等价性。

习题2 用区间套定理证明有限覆盖定理。

习题3 用有限覆盖定理证明聚点定理。

评注 以上定理哪些能够推广到欧氏空间n R ?如何叙述?§2 闭区间上连续函数的性质有界性定理:上册P168;下册P102,Th16.8;下册P312,Th23.4 最值定理:上册P169;下册下册P102,Th16.8介值定理与零点存在定理:上册P169;下册P103,Th16.10一致连续性定理(Cantor 定理):上册P171;下册P103,Th16.9;下册P312,Th23.7 习题4 用有限覆盖定理证明有界性定理 习题5 用致密性定理证明一致连续性定理§3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)N -ε定义 评注 确界定义易于理解;聚点定义易于计算;N -ε定义易于理论证明 习题6 用区间套定理证明有界数列最大(小)聚点的存在性。

2019年数学分析报告总结.doc

2019年数学分析报告总结.doc

总结报告数统学院2011212193 张艳这是数学分析的最后一学期,我们学习了十六章到十九章的内容,十六章讲的是多元函数的极限与连续,在这章学习中 1.明确认识多元函数与一元函数的相同和不同之处,进而掌握多元函数研究问题的手法与特点;2.明确研究多元函数的目的及多元函数的用途。

本章的重点是平面点集的有关概念与二元函数的连续性;难点是二元函数极限的讨论。

首先我们要知道其中含有的一些基本知识第一节须了解平面点集,领域,点集E的内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集等概念,多元函数的概念,二元函数的定义、记法、图象,点列的极限的定义。

十六章第一节主要内容需熟悉中的四个完备性定理:Cauchy收敛准则,闭集套定理,聚点原理,有限复盖定理,二元函数的定义域和求值;第二节必须了解累次极限和重极限,并且知道二者的关系,掌握重极限的常用性质(局部保号性,局部有界性,四则运算性,夹逼性)。

第三节是体会二元函数连续的含义,了解二元初等函数的含义以及二元初等函数的连续性;熟练掌握连续函数的局部性质(局部保号性,局部有界性,四则运算性,复合函数的连续性),有界闭集上连续函数的整体性质(有界性和最值性,一致连续性),连通集上连续函数的介值性。

十七章讲的是多元函数微分学,在这章学习中 1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。

本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。

第一节中了解可微性与全微分,偏导数,知道可微的条件;连续、偏导数存在及可微之间的关系;掌握多元函数微分中值公式; 可微性的几何意义与应用。

第二节复合函数微分法,要学会求复合函数的偏导数或导数,运用链式发则。

第三节方向导数和梯度,知道其的定义,主要是学会方向导数和梯度。

第四节Taylor公式和极值问题,了解高级偏导数的定义并且要学会求,中值定理和泰勒公式的灵活运用,最后就是极值问题,掌握求函数最值的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009级数学分析(1)期末复习 第一部 各章内容基本要求第一章 实数集与函数1. 熟练掌握绝对值的三角不等式;理解实数的完备性、有理数的稠密性。

2. 熟练掌握有界集、无界集的概念;掌握上、下确界的概念及其等价刻画,明白上、下确界与最大、最小值的联系与区别;理解确界原理。

3. 掌握邻域、空心邻域的概念。

4. 掌握函数的概念及其表示方法;明白函数与其反函数的关系;理解函数是一种对应关系,函数未必都能画出图像;熟悉一些特殊函数取整函数、Dirichlet 函数、符号函数及其表示。

5. 掌握基本初等函数与初等函数的概念。

6. 掌握函数的有界性、奇偶性、单调性、周期性,理解周期的概念。

例1. 分别求 121|1,2,3,...,[0,1]S n S n ⎧⎫===⎨⎬⎩⎭的上、下确界,并证明之。

例2. 求集合(){}|0,1Sx x =∈是无理数的上、下确界,并证明之。

例3. 对任一实数集S ,证明 sup S = sup {S ⋃ {sup S}}。

例4. 证明,任何函数 f 都可以写成一个奇函数与一个偶函数之和。

第二章 数列极限1. 掌握数列极限的 ε-N 定义及其几何意义,明白极限是一种趋势,它与数列的任何有限多项无关(其任一子列都收敛且有同一极限)。

2. 掌握数列收敛性与有界性的关系。

3. 掌握收敛数列的极限唯一性、数列有界性、保号性、保序性。

4. 掌握单调有界收敛准则,两边夹定理,Cauchy 收敛准则,子列收敛判别法。

5. 掌握极限四则运算性质,掌握一些常见的以0为极限的收敛数列1ln 1,,,,,kn n n n n q n n a aαα其中 0,||1,||1,q a k N α><>∈,懂得适时变形,并能熟练运用之。

例5. 用ε-N 语言证明 22011lim02010n n n π→∞+=-。

例6. 证明,若lim 0n n a a →∞=>,则存在N > 0, 使得对 任意 n > N 有 ,22n a a a ⎛⎫∈⎪⎝⎭。

例7. 证明,若 inf S ∉ S, 则存在数列 x n ∈ S ,使得(1) x n 单调递减;(2)lim inf n n x S →∞= 。

例8. 证明,若数列 { x n } 从某项开始恒满足 | x n - x n-1 | < 1/n 2, 则数列 { x n }收敛【cauchy 准则】。

例9.求2lim n n →∞++。

【两边夹定理】例10. 若1(2,2)x ∈-,11,2,3,...n x n +==.证明:数列}{n x 收敛,并求其极限。

【单调有界收敛定理】第三章 函数极限1. 掌握函数极限的 ε-δ定义、ε- M 定义及其几何刻画,明白极限是一种趋势,它与函数在指定点的函数值无关。

2. 掌握函数左、右极限的定义及其与函数极限的关系,会用它判别分段函数在分段点处的极限存在性。

3. 掌握函数极限的唯一性、局部有界性、局部保号性。

4. 掌握函数极限存在的两边夹定理,Cauchy 收敛准则以及归结原则,掌握单调有界函数的左右极限存在性准则。

5. 掌握无穷大量、无穷小量的概念、性质及其阶(同阶、高阶、等价),理解无穷小量与有界量乘积还是无穷小量;明白无穷大量与无界量的联系与区别;掌握等价无穷大量、无穷小量代换定理。

6. 掌握两个重要极限及其变形,熟记当x → 0时如下几个常用等价无穷小量:sin x ~x , e x – 1 ~ x , ln(1+ x ) ~ x , 1– cos x ~ x 2/2, tan x ~ x , arcsin x ~ x , arctan x ~ x .7. 掌握极限四则运算性质、复合函数极限法则。

8. 会用极限四则运算性质、复合函数极限法则、两个重要极限以及等价无穷小量代换定理计算各种极限,尤其是不定式极限(00,,0,,1,00∞∞∞∞-∞∞)。

9. 理解渐近线的概念及其含义,会求三种不同的渐近线。

例11. 用ε-δ语言证明 ()22lim13x x→-=。

例12. 已知()21,0sin ln(1)()0,0tan arcsin ,0.2(1cos )x e x x x f x x x x x x ⎧-⎪>⎪+⎪==⎨⎪⎪<-⎪⎩求0lim()x f x →。

例13. 求22221cos sin (ln )lim .20112012x x x x x x x x →∞+++- 例14. 求()21/0limcos .x x x →例15.求3x →例16.求12lim .1x x →⎛ -⎝例17. 求下列曲线的渐近线:(1)321x y x x+=-; (2) y =- 第四章 函数的连续性1. 掌握连续函数的概念及其四则运算、复合运算性质;理解初等函数的连续性;理解左、右连续与函数连续的关系,会用它判别分段函数在分段点处的连续性。

2. 掌握间断点的概念及其分类,会判断一些特殊函数或分段函数的间断点类别。

3. 掌握连续函数的局部有界性、局部保号性。

4. 掌握函数在区间上一致连续的概念,会证明函数的一致连续性和非一致连续性。

5. 理解有界闭区间上连续函数的有界性、最值性、介值性和一致连续性。

例18. 分别求函数 ||/y x x =与Dirichlet 函数D(x )的间断点及其类别. 例19. 求函数11sin y x x=的间断点,并指出其类别。

例20. 求a ,b 的值,使得函数sin ,0ln(1)()0,0,0.x ax xx x f x x x ⎧+>⎪+⎪⎪==⎨⎪<为( - 2π, 2π)上的连续函数。

例21. 证明函数()f x x α=当α > 1 时在 [ 0, +∞ ) 上不一致连续;当0 < α ≤ 1 时在 [ 0, +∞ ) 上一致连续。

例22. 设函数f , g 都在区间I (有界或无界区间)一致连续且有界,则函数fg 在区间I 一致连续。

例23. 设函数f , g 都在有界闭区间 [a , b ] 连续,并且满足 ([,])([,])f a b g a b ⊂,则对任意点122011,,...,[,]x x x a b ∈,必存在至少一点[,]a b ξ∈使得20111()2011().jj f x g ξ==∑例24. 设函数f 在有界闭区间 [a , b ] 连续,并且满足([,])[,]f a b a b ⊂,则必存在至少一点[,]a b ξ∈使得().f ξξ=例25. 设函数f 在某有界闭区间有定义,且在有理点上取值为无理数,在无理点上取值为有理数,求证:f 不是连续函数。

第五章 导数和微分1. 掌握导数与微分的概念,理解其实质及意义、联系与区别;清楚函数在一点处的可导性、连续性、极限存在性及有界性的关系;掌握左、右导数的概念及其与函数可导性的关系,并会用左、右导数判别分段函数在分段点处的可导性及导数计算。

2. 掌握函数导数的四则运算、复合运算、反函数的求导法则;熟记六种基本初等函数的导数;记住一些常见初等函数的导数公式;理解一阶微分形式的不变性。

3. 掌握含参量函数的一阶、二阶导数求法。

4. 掌握函数极值点、稳定点的定义及其关系;熟悉导函数的介值定理(Darboux 定理)。

5. 理解高阶导数与高阶微分的概念;掌握函数乘积的高阶导数计算公式(莱布尼茨公式)。

6. 理解导数的几何意义与物理意义,会利用导数求曲线的切线及法线方程;会求用参数表示的函数的一阶及二阶导数;会用微分进行简单的近似计算。

例26. 求下列函数的导函数与微分:(1)22(y x a x =+ (2)ln(y x =; (3)ln tan2xy =; (4)arcsin(sin cos )y x x =;(5)22arctan1x y x =-;(6)22x xy e-+=;(7)lny =(8)(n y x =; (9)(0)xy x x = , >;(10)2ln (0)2a y x a =+>。

例27. 求,,b a 使sin ,0,()ln(1),0.x x f x a x b x ≤⎧=⎨++>⎩于0x =可导.例28. 设函数1cos ,0()0,0m x x f x xx ⎧ ≠⎪=⎨⎪ =⎩(m 为正整数). 试问:(1)m 等于何值时,()f x 在0x =连续;(2)m 等于何值时,()f x 在0x =可导; (3)m 等于何值时,'()f x 在0x =连续.例29. 求由参数方程(ln tan cos )2sin t x a t y a t⎧=+⎪⎨⎪=⎩决定的函数的导数. 例30. 求由下列参数方程决定的函数的二阶导数: (1)(sin )(1cos )x a t t y a t =-⎧⎨=-⎩;(2)'()'()()x f t y tf t f t =⎧⎨=-⎩.例31. 求下列函数的高阶导数: (1)2ln y x x =,求''y ;(2)sin(2)y x =,求'''y ;(3)22,x y x e =求()n y。

例32. 求下列曲线在指定点P 的切线方程和法线方程:(1)2,(2,1)4x y P =; (2)cos ,(0,1)y x P = ;(3)2222cos sin t t x e t y e t⎧=⎪⎨=⎪⎩,t = 0点P(1,0). 第六章 微分中值定理及其应用1. 掌握洛尔中值定理、拉格朗日中值定理和柯西中值定理的条件、结论及其含义与相互关系,能够灵活使用其解决一些存在性问题,证明一些不等式;理解这些定理条件的重要性和非必要性。

2. 掌握导数极限定理,并会用它判别分段函数在分段点处的可导性及导数计算。

3. 熟练掌握函数单调性的导数判别法,会据此计算函数的单调区间。

4. 熟练掌握函数极值的一、二阶导数判别法,能够熟练使用其解决一些应用性极值与最值问题;理解函数极值的高阶导数判别法。

5.熟练掌握求不定式极限的洛必达法则,能够用其解决不定式极限问题(00,,0,,1,00∞∞∞∞-∞∞)。

6. 掌握泰勒多项式的概念,掌握泰勒定理(泰勒公式),理解泰勒定理的思想,会求指定函数在指定点的泰勒展式,并写出其皮亚诺型余项和拉格朗日型余项,会用泰勒多项式逼近函数。

例33. 证明:方程20n x px qx r +++=(n ≥3为正整数,p , q , r ,为实数)当n 为偶数时至多有4个实根;当n 为奇数时至多有3个实根。

例34. 求证:n 次多项式最多有n 个实根。

例35. 应用拉格朗日中值定理证明下列不等式:(1)1,0;x e x x >+≠ (2)arcsin ,(0,1).x x x >∈ 例36. 设函数()f x 二阶可导且()0f x ''>, 利用Lagrange 中值定理证明:()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. 例37. 应用函数的单调性证明下列不等式:(1)2ln(1),0;2x x x x x -<+<>(2)13, 1.x x>->例38. 确定下列函数的单调区间:(1)22ln ;y x x =- (2)21;x y x-= (3)22sin ;y x x =-例39. 求下列函数的极值:(1)ln(1);y x x =-+ (2)1;y x x=+ (3)331;y x x =-+ (4)21arccot ln(1).2y x x =++ 例40. 求下列函数在指定区间上的最大值与最小值(1)3229121, [0,3];y x x x =-++ (2)232, [-10,10];y x x =-+例41. 给定长为l 的线段,试把它分成两段,使以这两段为边所围成的矩形面积为最大. 例42. 求下列待定型的极限: (1)0ln(1)lim;cos 1x x x x →+-- (2)0tan lim ;sin x x xx x →--(3)011lim ;1x x x e →⎛⎫-⎪-⎝⎭ (4)0ln cos lim ;ln cos x ax bx → (5)111lim ;ln 1x x x →⎛⎫-⎪-⎝⎭(6)lim()tan ;2x x x ππ→- (7)lim (,0);b ax x x a b e →+∞> (8)ln lim(b,c>0).c bx xx →+∞ 例43. 求下列函数的在指定点的指定阶数的泰勒展式,分别写出其皮亚诺型余项和拉格朗日型余项。

相关文档
最新文档