微波技术与天线傅文斌习题答案第4章
《微波技术与天线》习题答案
第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。
1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。
1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。
用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。
1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。
微波技术与天线复习题答案
设特性阻抗为 Z °的无耗传输线的驻波比,第一个电压波节点离负载的距离为《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为50的均匀传输线终端接负载 R 100 ,求负载反射系数i,在离负载0.2 ,0.25及0.5处的输入阻抗及反射系数分别为多少?1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两 导体间填充介电常数r 2.25的介质,求其特性阻抗及f 300MHz 时的波长。
则空气同轴线 乙 60ln b65.9a 当 r 2.25时,z 。
-60ln b43.9V r a 当f 300MHz 时的波长:0.67m1.3题解:1 (Z 1 Z °).( Z 1 Z 0) 1 3 (0.2 )j2 z1 j0.8 1ee 3(0.5 )13(二分之一波长重复性) 1 (0.25 ) 3Z 1 jZ 0tan 丨Z in (0.2 ) z 。
一129.4323.79乙n (0.25 ) 502/100 25(四分之一波长阻抗变换性)乙 n (0.5 ) 100(二分之一波长重复性)解:同轴线的特性阻抗Z 0Z2Z in -2500R 11.5方。
证明:令传输线上任意一点看进去的输入阻抗为Z in ,与其相距处看进去的输入阻抗为4Z n ,则有:Z 1 jZ °tan zZ 0jZ 1 tan zl min1,试证明此时的终端负载应为乙 Z o证明:对于无耗传输线而言:Z1Zj tan丨 min 1 Z in( 1 min 1)Z 0ZZ1j tan丨 min 1Zin(l min1)Z/由两式相等推导出:乙Z 01 j tan lmin1jtan lmin 1传输线上的波长为:cf 2 g— 2mr因而,传输线的实际长度为:I -0.5m4终端反射系数为:R1 Z0 R1 Z49490.96151输入反射系数为:1ej2 1in 1490.96151根据传输线的4的阻抗变换性,输入端的阻抗为:试证明无耗传输线上任意相距入/4的两点处的阻抗的乘积等于传输线特性阻抗的平Z in1 j tan I minijtan 1min 11.4特性阻抗为Z 0 100长度为 /8的均匀无耗传输线,终端接有负载① ② ③ 解:传输线始端的电压。
《微波技术与天线》傅文斌-习题标准答案-第4章
《微波技术与天线》傅文斌-习题答案-第4章————————————————————————————————作者:————————————————————————————————日期:238第4章 无源微波器件4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。
线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。
互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。
4.2推导Z 参量与A 参量的关系式(4-1-13)。
解 定义A 参量的线性关系为()()⎩⎨⎧-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为⎩⎨⎧+=+=22212122121111I Z I Z U I Z I Z U⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=c d c c bc ad ca Z Z Z Z 122211211Z 4.3从I S S =*T出发,写出对称互易无耗三口网络的4个独立方程。
解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。
三口网络的散射矩阵简化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112313231112131211S S S S S S S S S S 由无耗性,I S S =*T,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001*11*23*13*23*11*12*13*12*11112313231112131211S S S S S S S S S S S S S S S S S S39得1213212211=++S S S0*2313*1112*1211=++S S S S S S 0*1113*2312*1311=++S S S S S S 0*1123*2311*1312=++S S S S S S4.4二口网络的级联如图所示。
微波习题第四章答案-7页文档资料
4-1[解]远区场条件:k r>>11/kr>>1/( k r)2>>1/( k r)3 →只保留1/rrE≈(<<Eθ,忽略)近区场条件:k r<<1,r<<λ→r<<λ/2∏1/kr<<1/( k r)2<<1/( k r)3∴忽略1/r项jkre-→14-2[解]:f=3Mhz, ∴λ=100mr=10km,r>>λ/2π即A、B、C、D、E各点在电基本振子远区场(1)∴60sinA jkrI lE jre θπθλ-=A点:θ=00,E A=0 v/mB点:θ=300,| E A|= 9.42 ⨯10-5 v/mC点:θ=900,| E c|=| E max|=1.884⨯10-4v/m D点:θ=1500,| E D|=| E B | =9.42 ⨯10-5 v/mE点:θ=1800,E E =E A =0 v/m(2)若电流元垂直纸面,则A、B、C、D、E各点在H平面上,则各点场强相同,且为最大值| E max|=1.884⨯10-5v/m,极化方向均垂直于纸面。
4-4[解]:2l=λ/2 E面xoz面极值:θ=900,2700,零值:θ=00,18002l=1.5λ 六个极值: 900,500,1300,2300,2700,3100零值:00,70.50,109.50,1800,250.50,289.502l=2λ 四个最大值:θ=600,1200,2100,3300四个零值:θ=00,1800,900,4-6[解]:电流元:F (0)=f (θ)=sin θ半功率波瓣宽度:BW 为F 2(θ0.5)=1/2夹角。
所以,θ0.5 =450 则BW=2θ0.5=900 4-7[解]:l=0.25λ→2l=λ/2 半波振子 c o s (/2c o s )f ()s i n πθθθ=F 2(θ0.5)=1/2,θ0.5≈390,则BW=2θ0.5=780l=1λ→2l=2λ,cos(2cos )f ()sin πθθϕθ=∴ F 2(θ0.5)=1/2 4-8 [解]:2042(,)sin D d F d πππϕθϕθθ=⎰⎰电流元:22(,)=sin Fθϕθ 代入积分,得电流元方向系数D=1.5 4-9[解]: max| E'|FSLL=20lg| E|db =20lg0.01 db=-40db 又因为,D=100则任意方向 :D (θ)=(,)D F θϕ∙,max| (,)|(,)=| E|E F θϕθϕ副瓣max| E'|(,)=0.01| E|Fθϕ= 则第一副瓣:()=0.01100=1D θ⨯ 4-13[解]:2L=2m ,λ1=10m ,λ2=4m 有效长度:e l =2kl tg λπ代入: λ1=10m ,e1l = 1.032kltg m λπ= λ2=4m ,为半波偶极子,e2l 1.27m λπ≈= 4-25[解]: 1()=()=()g f f f ∆∆∆E 面方向图(纸平面)4-10 [解]: 由()f θ→()f θmax=1.414,θ=900所以由图:200.5( )0.4142sin 90 1.4142θ-+=,由max| |()=| E|E F θ定义4-11[解]: 由max 60D| E|=P r∑ 22max | E|r =60DP ∑且电流元D1=1.76db=1.5,半波振子D2=2.15db=1.64(a )1121max 2max 12260D | E || E |60D P r r P ∑∑=∙ (b )2221max 1122212max 260D | E |r 60D | E |r P P ∑∑=4-14[解]:对称振子的电流分布——近似认为与开路双线电流分布一致 4-16 已知电流元在、r=5km ,处电场为2mv/m ,求其辐射功率P ∑ [解]: 由max| E|(,)=| E|Fθϕ max | E|| E|(,)F θϕ∙=电流元(,)=sin Fθϕθ m a x 0| E |2| E|4m v /m s i n (,)30Fθϕ∴=== 由22max | E|r 60DP ∑=电流元D=1.5,22max | E|r 4.4w 60DP ∑== 4-17 已知P in =10w ,D=3,效率a 0.5η=求(1)r=10km 处电场值(2)若欲使r=20km 处电场和(1)中10km 处相同,方向系数应增加多大?[解]: a G D 30.5=1.5η==⨯由in max 60P G| E|r=得 (1) r =10km 处,-3max 36010 1.5| E|3v/m=3mv/m 101010⨯⨯==⨯⨯ (2) 设天线效率相同,输入功率相同由in amax 60P D | E|rη=4-18 设天线归于输入电流的辐射电阻和损耗电阻分别为r0R =4Ω,10R =1Ω,方向系数D=3,求其输入电阻R 0和增益G 。
微波技术与天线,课后答案
|U |max = UC = 450 V
|I|min = UC /Zbc = 0.5 A
|U |min = |I|minZ01 = 300 V
|I|max = |U |max/Z01 = 0.75 A
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
2-15 有一特性阻抗为75Ω、长为9λ/8的无耗传输线,测得电压结点 的 输入阻抗为25Ω,终端为电压腹点,求:(1)终端反射系数; (2)负载阻抗; (3)始端的输入阻抗; (4)距终端3λ/8处的反射系数。
图 5: ZL = 0的情况 2-26 ( ) 传输线电路如下图所示。图中,Z0 = 75Ω,R1 = 150Ω,R2 = 37.5Ω,行波 电压幅值|U +| = 150V 。 (1)试求信号源端的电流|ID|; (2)画出各传输线上的电压、电流幅值分布并标出极大、极小值; (3)分别计算负载R1、R2吸收的功率。 解: (1) CA段的输入阻抗为:ZCA = R1 = 150Ω; CB段的输入阻抗为:ZCB = Z02/R2 = 150Ω; C点阻抗为:ZC = ZCA//ZCB = 75Ω;
ZCE
=
Z02 2Z0
=
Z0/2
(10)
ZCF
=
Z0
微波技术与天线习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少解:1))(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
《微波技术与天线》习题集规范标准答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线习题包括答案.docx
《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为 50 的均匀传输线终端接负载 R 1100 ,求负载反射系数1 ,在离负载 0.2 , 0.25 及 0.5处的输入阻抗及反射系数分别为多少解: 1 ( Z 1Z 0 ) (Z 1 Z 0 ) 1 3(0.2) 1e j 2 z1 e j 0 .813(0.5)(二分之一波长重复性)3 (0.25 )13Z in (0.2 )Z 1jZ 0 tan l 29.4323.79Z 0jZ 1 tan lZ 0Z in (0.25 ) 502 /100 25(四分之一波长阻抗变换性)Z in (0.5) 100(二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗; 若在两导体间填充介电常数 r 2.25的介质,求其特性阻抗及 f300MHz 时的波长。
解:同轴线的特性阻抗 Z 060blnra则空气同轴线 Z 060 lnb65.9a当 r 2.25 时, Z 0 60b 43.9lnra当 f 300MHz 时的波长:cp0.67mfr题设特性阻抗为Z 0 的无耗传输线的驻波比,第一个电压波节点离负载的距离为l m in1,试证明此时的终端负载应为Z1 Z01j tan lmin 1j tan lmin 1证明:对于无耗传输线而言:Zin (l min 1)Z1Z 0 j tanlmin 1 Z 0Z1 j tanlmin 1 Z 0Zin (l min 1 )Z0/由两式相等推导出:Z1Z 0 1 j tan lmin 1j tan lmin 1传输线上的波长为:cfg2mr因而,传输线的实际长度为:gl0.5m4终端反射系数为:R1Z0490.9611Z 051R1输入反射系数为:in1e j 2 l490.96151根据传输线的 4 的阻抗变换性,输入端的阻抗为:2Z0Z in2500R1试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线,课后答案
T E11、T M11: λc = 2ab/ a2 + b2 = 61.57mm > λ, 故T E11、T M11波 型能传播
T E30: λc = 2a/3 = 48.09mm < λ,故T E30波型不能传播
T E21、T M21: λc = 2ab/ a2 + (2b)2 = 49.51mm < λ, 故T E21、T M21波 型能传播. 综上,能传输的波型为:T E10、T E20、T E01、T E11、T M11波型。
微波技术与天线课后部分习题解答1第三章34矩形波导存在哪3中状态
《微波技术与天线》课后部分习题解答
1 第三章
3-4 矩形波导存在哪3中状态?其导行条件是什么?
答:存在:(a)临界状态(k = kc或λ = λc或f = fc);(b)传输状 态(k < kc或λ < λc或f > fc);(c)截止状态(k > kc或λ > λc或f < fc)。
答:
(1)截止波长:λc = 2a = 4 (λ = 3 × 108/1 × 1010 = 3cm)
1−(
λ λc
)2
相移常数:β
=
2π λp
=
157.7
(2) λc = 9.12cm λp = 3.18cm β = 197.8
(3)各参数同(1)
(4)λc = 4.56cm λp = 2.25cm β = 282.3
(
m a
)2
+
(
n b
)2
+
(
p l
《微波技术与天线》习题答案
ln b 43.9 a
当 f 300MHz 时的波长:
p
f
c r
0.67m
1.3 题
设特性阻抗为 Z0 的无耗传输线的驻波比 ,第一个电压波节点离负载的距离为
.
.
lmin1 ,试证明此时的终端负载应为
Z1
Z0
1 j j
t anlmin1 t anlmin1
证明:
对于无耗传输线而言:
Z in(lmin 1)
1.11
设特性阻抗为 Z0 50 的均匀无耗传输线,终端接有负载阻抗 Z1 100 j75 为复
阻抗时,可用以下方法实现λ/4 阻抗变换器匹配:即在终端或在λ/4 阻抗变换器前并接一段
终端短路线, 如题 1.11 图所示, 试分别求这两种情况下λ/4 阻抗变换器的特性阻抗 Z01 及短
路线长度 l。 (最简便的方式是:归一化后采用 Smith 圆图计算)
1 e j0.8 3
(0.5) 1 (二分之一波长重复性) 3
(0.25) 1 3
Zin (0.2 )
Z0
Z1 Z0
jZ0 jZ1
t an l t an l
29.43
2 3.7 9
Zin(0.25) 502 /100 25 (四分之一波长阻抗变换性)
Zin(0.5) 100
(二分之一波长重复性)
令并联短路线和负载并联后的输入阻抗为 Z 2 .
Z 2 =1/ Re[Y1] 156 则 Z 01 Z0Z2 =88.38
(2)
令 4
特性阻抗为 Z 01 ,并联短路线长为 l
Z in2 Z01
Z1 Z01 j t an Z01 Z1 j t an
4
微波技术习题解答(部分)概要
欲使 A 处无反射,要求有 ZinA Z0 得到
2 Z0 Z01 jZ0 ZL tan l Z01ZL jZ01 tan l
由上式得 又
Z01 100 2
tan l 2
c 3 108 m 0.1m 10cm 9 f 3 10
arc tan 2
微波技术基础课后习题
杜 英
2011.5.1
第二章 传输线理论
2-6 如图所示为一无耗传输线,已知工作频率 f 3GHz , Z0 100 ,
ZL 150 j50 ,欲使 A 处无反射,试求
l 和
Z 01 。
答案:由输入阻抗定义知
ZinA Z01 Z L jZ01 tan l Z01 jZ L tan l
3 108 答案:当工作频率 f 5GHz , m 60mm 9 5 10
矩形波导TE、TM波截止波长公式为:
c
2
m a n b
2
2
当矩形波导的尺寸为 a b 109.2mm 54.6mm ,各波型的截止波长c 为
第三章 微波传输线
矩形波导中能传输的波型有 TE10 TE20 TE01 TE11 TM11 TE21 TM 21
2
p
1 c
2
vg v 1 c
2
第三章 微波传输线
3-9 一个空气填充的矩形波导,要求只传输 TE10 模,信号源的频率为 10GHz,试确定波导的尺寸,并求出相速 vp 、群速 vg 及相波长 p 答案: f 10 Hz
10
c 3 108 m 3cm 10 f 10
T T e j S12 e j12 S21 e j21
微波技术与天线部分课后答案
微波技术与天线* 1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.02131)2.0(j z j e e --=Γ=Γ 31)5.0(=Γλ 31)25.0(-=Γλ Ω-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z Ω=100)5.0(λin Z1.3设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯= 证明: 1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(* 1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距λ/4处看进去的输入阻抗为'in Z ,则有: zjZ Z z jZ Z Z ββtan tan Z 10010in ++= )()(4tan 4tan Z 10010in λβλβ++++='z jZ Z z jZ Z Z =z jZ Z z jZ Z Z ββcot cot 10010-- 所以有: 20Z Z Z in in ='⨯故可证得传输线上相距的二点处阻抗的乘积等于传输线的特性阻抗。
1.6 设某一均匀无耗传输线特性阻抗为Z 0=50Ω,终端接有未知负载Z 1。
微波技术与天线傅文斌习题答案
第2章 微波传输线2.1什么是长线?如何区分长线和短线?举例说明。
答 长线是指几何长度大于或接近于相波长的传输线。
工程上常将1.0>l 的传输线视为长线,将1.0<l 的传输线视为短线。
例如,以几何长度为1m 的平行双线为例,当传输50Hz 的交流电时是短线,当传输300MHz 的微波时是长线。
2.2传输线的分布参数有哪些?分布参数分别与哪些因素有关?当无耗传输线的长度或工作频率改变时分布参数是否变化?答 长线的分布参数一般有四个:分布电阻R 1、分布电感L 1、分布电容C 1、分布电导G 1。
分布电容C 1(F/m )决定于导线截面尺寸,线间距及介质的介电常数。
分布电感L 1(H/m )决定于导线截面尺寸,线间距及介质的磁导率。
分布电阻R 1(Ω/m )决定于导线材料及导线的截面尺寸。
分布电导G 1(S/m ) 决定于导线周围介质材料的损耗。
当无耗传输线(R 1= 0,G 1= 0)的长度或工作频率改变时,分布参数不变。
2.3传输线电路如图所示。
问:图(a )中ab 间的阻抗0=ab Z 对吗?图(b )中问ab 间的阻抗∞=ab Z 对吗?为什么?答 都不对。
因为由于分布参数效应,传输线上的电压、电流随空间位置变化,使图(a )中ab 间的电压不一定为零,故ab 间的阻抗ab Z 不一定为零;使图(b )中a 点、b 点处的电流不一定为零,故ab 间的阻抗ab Z 不一定为无穷大。
2.4平行双线的直径为2mm ,间距为10cm ,周围介质为空气,求它的分布电感和分布电容。
解 由表2-1-1,L 1=1.84×10-6(H/m ),C 1=6.03×10-12(F/m )2.5写出长线方程的的解的几种基本形式。
长线方程的解的物理意义是什么? 答(1)复数形式()()()z L L z L L I Z U I Z U z U ββj 0j 0e 21e 21--++= ()()()z L L z L L I Z U Z I Z U Z z I ββj 00j 00e 21e 21---+=(2)三角函数形式()z Z I z U z U L L ββsin j cos 0+=()z I z Z U z I L Lββcos sin j+= (3)瞬时形式()()A z t A t z u ϕβω++=cos , ()B z t B ϕβω+-+cos ()()A z t Z A t z i ϕβω++=cos ,0()B z t Z B ϕβω+--cos 0其中,()L L I Z U A 021+=,()L L I Z U B 021-= 物理意义:传输线上的电压、电流以波动的形式存在,合成波等于入射波与反射波的叠加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 无源微波器件4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。
线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。
互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。
4.2推导Z 参量与A 参量的关系式(4-1-13)。
解 定义A 参量的线性关系为()()⎩⎨⎧-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为⎩⎨⎧+=+=22212122121111I Z I Z U I Z I Z U⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=c d c c bc ad ca Z Z Z Z122211211Z 4.3从I S S =*T出发,写出对称互易无耗三口网络的4个独立方程。
解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。
三口网络的散射矩阵简化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112313231112131211S S S S S S S S S S 由无耗性,I S S =*T,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001*11*23*13*23*11*12*13*12*11112313231112131211S S S S S S S S S S S S S S S S S S 得1213212211=++S S S0*2313*1112*1211=++S S S S S S 0*1113*2312*1311=++S S S S S S 0*1123*2311*1312=++S S S S S S4.4二口网络的级联如图所示。
写出参考面T 1、T 2之间的组合网络的A 参量。
(参考面T 1处即组合网络的端口1,参考面T 2处即组合网络的端口2)解 []⎥⎦⎤⎢⎣⎡=1j 011B A []⎥⎥⎦⎤⎢⎢⎣⎡=θθθθcos sin 1j sin j cos 002Z Z A Z[]⎥⎦⎤⎢⎣⎡=1j 013B A[][][][]321A A A A =⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡+-+=1j 01cos sin sin 1j j sin j cos 000B BZ Z B Z θθθθθ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛+-+-=θθθθθθθθsin cos cos sin sin 11j sin j sin cos 00000BZ BZ B Z B Z BZ (l βθ=)4.5微波电路如图所示。
已知四口网络的S 矩阵是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=0j 10j 001100j 01j 021S其端口2、3直接接终端反射系数为2Γ、3Γ的负载,求以端口1、4为端口的二口网络的散射矩阵。
解 由表4-1-4,四口网络的工作条件是222Γ=b a ,333Γ=b a ,代入式(4-1-23)得()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+Γ+Γ+-=+++-=+++-=+Γ+Γ+-=43343224214434321313424321212433132212110021002100210021a b S b S a b a S a a a S b a S a a a S b a b S b S a b即()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧Γ+Γ-=+-=+-=Γ+Γ-=332244134123322121212121jb b b ja a b a ja b b jb b将上式中32,b b 的表达式代入41,b b 的表达式,得()()[]341241121Γ++Γ+=ja a a ja j b ()()[]32432121Γ+Γ+Γ+Γ-=ja a ()()[]341241421Γ++Γ+=ja a j a ja b ()()[]32432121Γ-Γ+Γ+Γ=a ja记[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡4441a a S b b ,得 []()()⎥⎦⎤⎢⎣⎡Γ-ΓΓ+ΓΓ+ΓΓ+Γ-=3232323221j j S4.6试按要求对学过的二口元件进行列表归纳:(1)按名称、类型、功用、特性;(2)按与第二章学过的元件比较。
答4.7简述4λ结构的工作原理。
它被应用于哪些微波元件中?答 4λ结构的工作原理(以扼流式短路活塞为例,图4-2-1 b ):将BA 、DC 看成4λ传输线段,因AC 点短路,由倒置性BD 点开路。
再将AB 、A ′B ′也看成4λ传输线段,因BD 点(即BB ′点)开路,故AA ′点短路(即电接触良好)。
应用于扼流式短路活塞、抗流接头4.8欲利用阶梯波导实现两段尺寸分别为2.5×1.3 cm 2和2.5×0.8 cm 2的波导的连接。
当工作波长λ= 3cm 时,试求(1) 阶梯波导段的窄边b=? (2) 阶梯波导段的长度l =? (3) 阶梯波导段的单模传输条件。
解 (1)cm 02.18.03.121=⨯==b b b (2)()221a p λλλ-==3.75cm ,cm 9375.0475.34===p λ(3)a a 2<<λ,cm 5cm 5.2<<λ4.9什么是禁戒规则?在T 形接头分析中它有何作用?答指偶模激励只能激励起对称场,不能激励起反对称场,或者说反对称场被禁戒;奇模激励只能激励起反对称场而对称场被禁戒。
作用:(1)可用于分析TE 10波的场结构的对称性;(2)可用于分析E-T 、H-T 和魔T 。
4.10 E-T 接头的端口1、2匹配,证明适当选择参考面后,其S 矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100001010S解 三口网络的S 矩阵是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211S S S S S S S S S S 依题意:02211==S S ,由互易性,2112S S =,3132S S =,2332S S =,由反对称场性质,1323S S -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=3313131312131200S S S S S S S S 由无耗性,I S S =*T,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--33*13*13*13*12*13*1233131313121312000S S S S S S S S S S S S S S ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001即1213212=+S S ①0*1313=S S ②12332*13213=+-+S SS ③由式②,013=S ;由式①,112=S ,若适当选择参考面,112=S ;由式③,133=S 。
若适当选择参考面,133=S 。
因此有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100001010S4.11推导魔T 的S 矩阵并利用该S 矩阵简述其特性。
(提示:利用魔T 等效网络的对称性、互易性和无耗性,以及魔T 中场的对称性和反对称性)解 四口网络的S 矩阵是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211S S S S S S S S S S S S S S S S S 依题意:当E 臂、H 臂为端口匹配状态时,033=S ,044=S ;由旁臂 1、旁臂2的对称性,2211S S =;由互易性,()j i j i S S ji ij ≠==;4,3,2,1,,由E-T 接头的反对称场性质和H-T 接头的对称场性质,1323S S -=,1424S S =,04334==S S 。
得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000241423132423111214131211S S S S S S S S S S S S S 由无耗性,I S S =*T,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100001000010000100000000*14*14*13*13*14*13*11*12*14*13*12*11241423132423111214131211S S S S S S S S S S S S S S S S S S S S S S S S 即1214213212211=+++S S S S (1)0*1414*1313*1112*1211=+-+S S S S S S S S (2)0*1312*1311=-S S S S (3)0*1412*1411=+S S S S (4)由式(3)、式(4),01211=-S S ,01211=+S S ,故01211==S S 。
由式(2),1413S S =,代入式(1),并适当选择参考面得211413==S S 。
因此,得魔T 的S 矩阵是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=001100111100110021S 由上述S 矩阵,易知魔T 具有:(1)匹配性。
例如,若使04433==S S ,则自动有02211==S S 。
(2)均分性。
例如,若从端口1输入,则从E 臂、H 臂等分输出;若从E 臂输入,则从端口1、2等分输出。
(3)隔离性。
例如,若从端口1输入,则端口2无输出;若从E 臂输入,则H 臂无输出。
4.12由魔T 组成的输出调节器如图所示,其中,功率从端口1输入,从端口2输出;端口3、4分别接短路活塞。
为使端口2的输出最大,试分析3l 和4l 应满足什么条件?解 魔T的散射矩阵是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=001100111100110021S 由表4-1-4,魔T的工作条件是32j 33eθ--=b a ,42j 44e θ--=b a ,式中,33 βθ=,44 βθ=。
代入上式有()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=++-=-++=--+=----43214432132j 42j 32122j 42j 321100210021e e 0021e e 00214343a a a a b a a a a b b b a ab b b a ab θθθθ即()432j 42j 31e e21θθ----=b b b ①()432j 42j 32e e21θθ---=b b b ②()21321a a b -=③()21421a a b +=④将式③、式④代入式②()()[]432j 212j 212e e 21θθ--+---=a a a ab ()()[]43432j 2j 22j 2j 1e e e e 21θθθθ-----++-=a a功率从端口1输入,为使端口2的输出最大,也就是使电压传输系数的模21S T =最大,即求下式的最大值:432j 2j 21e e 21θθ--+=S 将上式化简:()342j 21e 121θθ--+=S ()()()343434j j j e e e 21θθθθθθ-----+=()34cos -=β()pλπ342cos -=显然,上式取最大值的条件是()πλπn p=-342即() ,3,2,1,0234==-n npλ4.13如图所示可调式同轴型功分器将信号源的功率分配给匹配负载1、2,其中,两个短路活塞用连杆联动,短路活塞与主馈线AB 的距离分别为1l 和2l ,且412p l l λ+=。