人教版初一七年级上册数学练习题及答案全册

合集下载

最新人教版七年级数学上册测试题及答案全套

最新人教版七年级数学上册测试题及答案全套

最新人教版七年级数学上册测试题及答案全套《有理数》单元检测考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.用四舍五入法按要求对3.1415926分别取近似值,其中错误的是()A.3.1(精确到0.1)B.3.141(精确到千分位)C.3.14(精确到百分位)D.3.1416(精确到0.0001)2.下列说法正确的是()A.0.750精确到百分位B.3.079×104精确到千分位C.38万精确到个位D.2.80×105精确到千位3.3的相反数是()A.﹣3B.﹣C.D.34.﹣的绝对值是()A.﹣3B.3C.D.﹣5.下列各数与﹣6相等的()A.|﹣6|B.﹣|﹣6|C.﹣32D.﹣(﹣6)6.定义运算a⊕b=a(1﹣b),下面给出了关于这种运算的四个结论:①2⊕(﹣2)=6;②a⊕b=b⊕a;③若a+b=0,则(a⊕a)+(b⊕b)=2ab;④若a⊕b=0,则a=0其中正确结论的序号是()A.①②B.②③C.③④D.①③7.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1|D.﹣|a|﹣18.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)9.记S1=1×1=1×1!,S2=2×2×1=2×2!;S3=3×3×2×1=3×3!…S n=n•n•(n﹣1)…3×2×1=n•n!;则S=S1+S2+S3+…+S8=()A.9!﹣1B.9!+1C.9!+8!D.9!10.已知有10包相同数量的饼干,如果将其中1包饼干平分给23名学生,最少剩3片.如果将此10包饼干平分给23名学生,那么最少剩下的饼干的片数是()A.0B.3C.7D.10二.填空题(共4小题)11.如果向东走10米记作+10米,那么向西走15米可记作米.12.已知|x|=2,|y|=5,且x>y,则x+y=.13.2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.14.若•|m|=,则m=.三.解答题(共5小题)15.同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x与3的两点之间的距离可以表示为.(2)如果|x﹣3|=5,则x=.(3)同理|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+2|+|x﹣1|=3,这样的整数是.(4)由以上探索猜想对于任何有理数x,|x+3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.16.计算:(1)2+(﹣6)﹣(﹣3)(2)(﹣2.5)÷(﹣1)×(﹣11).17.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?18.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).19.黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.参考答案与试题解析一.选择题(共10小题)1.用四舍五入法按要求对3.1415926分别取近似值,其中错误的是()A.3.1(精确到0.1)B.3.141(精确到千分位)C.3.14(精确到百分位)D.3.1416(精确到0.0001)【分析】利用四舍五入的方法,根据精确的数位确定出近似值,即可做出判断.【解答】解:A、3.1(精确到0.1),正确;B、3.142(精确到千分位),故本选项错误;C、3.14(精确到百分位),正确;D、3.1416(精确到0.0001),正确,故选B.2.下列说法正确的是()A.0.750精确到百分位B.3.079×104精确到千分位C.38万精确到个位D.2.80×105精确到千位【分析】根据近似数的精确度分别进行判断,即可得出答案.【解答】解:A、0.750精确到千分位,故本选项错误;B、3.079×104精确到十位,故本选项错误;C、38万精确到万位,故本选项错误;D、2.80×105精确到千位,故本选项正确;故选D.3.3的相反数是()A.﹣3B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.4.﹣的绝对值是()A.﹣3B.3C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C5.下列各数与﹣6相等的()A.|﹣6|B.﹣|﹣6|C.﹣32D.﹣(﹣6)【分析】利用绝对值以及乘方的性质即可求解.【解答】解:A、|﹣6|=6,故选项错误;B、﹣|﹣6|、﹣6,故选项正确;C、﹣32=﹣9,故选项错误;D、﹣(﹣6)=6,故选项错误.故选B.6.定义运算a⊕b=a(1﹣b),下面给出了关于这种运算的四个结论:①2⊕(﹣2)=6;②a⊕b=b⊕a;③若a+b=0,则(a⊕a)+(b⊕b)=2ab;④若a⊕b=0,则a=0其中正确结论的序号是()A.①②B.②③C.③④D.①③【分析】本题需先根据a⊕b=a(1﹣b)的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论.【解答】解:∵a⊕b=a(1﹣b),①2⊕(﹣2)=2×[1﹣(﹣2)]=2×3=6,故①正确;②a⊕b=a×(1﹣b)=a﹣abb⊕a=b(1﹣a)=b﹣ab,故②错误;③∵(a⊕a)+(b⊕b)=[a(1﹣a)]+[b(1﹣b}]=a﹣a2+b﹣b2,∵a+b=0,∴原式=(a+b)﹣(a2+b2)=0﹣[(a+b)2﹣2ab]=2ab,故③正确;④∵a⊕b=a(1﹣b)=0,∴a=0或1﹣b=0,故④错误.故选D.7.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1|D.﹣|a|﹣1【分析】负数一定小于0,可将各项化简,然后再进行判断.【解答】解:A、﹣(﹣3+a)=3﹣a,a≤3时,原式不是负数,故A错误;B、﹣a,当a≤0时,原式不是负数,故B错误;C、∵﹣|a+1|≤0,∴当a≠﹣1时,原式才符合负数的要求,故C错误;D、∵﹣|a|≤0,∴﹣|a|﹣1≤﹣1<0,所以原式一定是负数,故D正确.故选D.8.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.9.记S1=1×1=1×1!,S2=2×2×1=2×2!;S3=3×3×2×1=3×3!…S n=n•n•(n﹣1)…3×2×1=n•n!;则S=S1+S2+S3+…+S8=()A.9!﹣1B.9!+1C.9!+8!D.9!【分析】根据新定义得到S=1×1!+2×2!+3×3!+…+8•8!=1+2×2!+3×3!+…+8•8!═3!+3×3!+…+8•8!﹣1,然后根据新定义依次从左向右加即可.【解答】解:S=S1+S2+S3+…+S8=1×1!+2×2!+3×3!+…+8•8!=1+2×2!+3×3!+…+8•8!=2+2×2!+3×3!+…+8•8!﹣1=3!+3×3!+…+8•8!﹣1=4×3!+…+8•8!﹣1=4!+…+8•8!﹣1=8!×9﹣1=9!﹣1.故选A.10.已知有10包相同数量的饼干,如果将其中1包饼干平分给23名学生,最少剩3片.如果将此10包饼干平分给23名学生,那么最少剩下的饼干的片数是()A.0B.3C.7D.10【分析】若将其中1包饼干平分给23名学生,最少剩3片,则这包饼干有y=23x+3(x是大于0的整数).将此10包饼干平分给23名学生,若每一包饼干还分相同的片数,则可知10包饼干最少剩30片,再平分给23名学生,可求得最少剩的片数.【解答】解:设这包饼干有y片,则y=23x+3(x是大于0的整数),而10y=230x+30,考虑余数,故最少剩7片.最少剩7片.答:最少剩下的饼干的片数是7片;故选:C.二.填空题(共4小题)11.如果向东走10米记作+10米,那么向西走15米可记作﹣15米.【分析】明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:∵向东走10米记作+10米,∴向西走15米记作﹣215米.故答案为:﹣15.12.已知|x|=2,|y|=5,且x>y,则x+y=﹣3或﹣7.【分析】先求得x、y的值,然后根据x>y分类计算即可.【解答】解:∵|x|=2,|y|=5,∴x=±2,y=±5.∵x>y,∴x=2,y=﹣5或x=﹣2,y=﹣5.∴x+y=2+(﹣5)=﹣3或x+y=﹣2+(﹣5)=﹣7.故答案为:﹣3或﹣7.13.2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.14.若•|m|=,则m=3或﹣1.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.三.解答题(共5小题)15.同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x与3的两点之间的距离可以表示为|x﹣3| .(2)如果|x﹣3|=5,则x=8或﹣2.(3)同理|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+2|+|x﹣1|=3,这样的整数是﹣2、﹣1、0、1.(4)由以上探索猜想对于任何有理数x,|x+3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据距离公式即可解答;(2)利用绝对值求解即可;(3)利用绝对值及数轴求解即可;(4)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示x与3的两点之间的距离可以表示为|x﹣3|,故答案为:|x﹣3|;(2)∵|x﹣3|=5,∴x﹣3=5或x﹣3=﹣5,解得:x=8或x=﹣2,故答案为:8或﹣2;(3)∵|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,|x+2|+|x﹣1|=3,∴这样的整数有﹣2、﹣1、0、1,故答案为:﹣2、﹣1、0、1;(4)有最小值,理由是:∵丨x+3丨+丨x﹣6丨理解为:在数轴上表示x到﹣3和6的距离之和,∴当x在﹣3与6之间的线段上(即﹣3≤x≤6)时:即丨x+3丨+丨x﹣6丨的值有最小值,最小值为6+3=9.16.计算:(1)2+(﹣6)﹣(﹣3)(2)(﹣2.5)÷(﹣1)×(﹣11).【分析】(1)将减法转化为加法,根据加法法则计算可得;(2)将除法转化为乘法,再计算乘法计算即可得.【解答】解:(1)原式=2﹣6+3=﹣1;(2)原式==﹣15.17.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【分析】(1)本题先根据题意列出式子解出结果即可.(2)根据要求列出式子解出结果即可.(3)先算出刚买股票所花的钱,然后再算出周六卖出股票后所剩的钱,最后再减去当时购买时所花的钱,则剩下的钱就是所收益的.【解答】解:(1)星期四收盘时,每股是34.2元;(2)本周内最高价是每股37.4元,最低价每股33.7元;(3)买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元.18.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解答】解:解法1,(﹣)÷(﹣+﹣)=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.19.黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.【分析】(1)首先要知道平方不能改变一个数的奇偶性,而且题目的操作都不能改变3个数的奇偶性,由这可以判断不能变为56、57、58;(2)不能;若能,则2007一定可以表示为两个正整数的平方和,即2007=m2+n2(m,n为正整数),然后利用余数定理得到2007与3被4除余数相同,而m2+n2不可能被4除余数是3,所以假设是错误的;(3)不能;若能,由(2)知,因为2008≡0(mod4),同样根据(2)可以推出m2+n2不可能被4除余数是0,所以假设是错误的.【解答】解:(1)不能;当黑板上的三个数为1、2、3时,不论进行哪种操作都不能改变3个数的奇偶性,即三个数必为2个奇数1个偶数,因此不能变为56、57、58.(2)不能;若能,则2007一定可以表示为两个正整数的平方和,即2007=m2+n2(m,n为正整数).又任意一个自然数m,必有m2≡0(mod4)或m2≡1(mod4),所以m2+n2≡0(mod4)或m2+n2≡1(mod4)或m2+n2≡2(mod4),而2007≡3(mod4),因此不可能.(3)不能;若能,由(2)知,因为2008≡0(mod4),不妨设2008=(2m)2+(2n)2(其中m、n为正整数),因此m2+n2=502.又任意一个自然数m,必有m2≡0(mod8)或m2≡1(mod8),所以m2+n2≡0(mod8)或m2+n2≡1(mod8)或m2+n2≡2(mod8),而502≡6(mod8),因此不可能.《整式的加减》单元测试考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.下列去括号正确的是()A.﹣(5x+1)=﹣5x+1B.﹣(4x+2)=﹣2x﹣1C.(2m﹣3n)=m+n D.﹣(m﹣2x)=﹣m﹣2x2.单项式﹣x2y的系数和次数分别是()A.,3B.﹣,3C.﹣,2D.,23.下列式子﹣2x,,0,,中单项式的个数为()A.2B.3C.4D.54.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是3B.系数是﹣,次数是4C.系数是﹣5,次数是4D.系数是﹣5,次数是35.下列各式①m;②x+5=7;③2x+3y;④;⑤中,整式的个数有()A.1个B.2个C.3个D.4个6.下列说法正确的是()A.ab+c是二次三项式B.多项式2x2+3y2的次数是4C.0和π都是单项式D.是整式7.将代数式4a2b+3ab2﹣2b2+a3按a的升幂排列的是()A.﹣2b3+3ab2+4a2b+a3B.a3+4a2b+3ab2﹣2b3C.4a2b+3ab2﹣2b3+a3D.4a2b+3ab2+a3﹣2b38.下列各式计算中,正确的是()A.2a+2=4a B.﹣2x2+4x2=2x2C.x+x=x2D.2a+3b=5ab9.多项式x3﹣2x2+5x+3与多项式2x2﹣x3+4+9x的和一定是()A.奇数B.偶数C.2与7的倍数D.以上都不对10.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7B.6C.5D.4二.填空题(共4小题)11.化简:4a﹣(a﹣3b)=.12.若﹣x m+3y与2x4y n+3是同类项,则(m+n)2017=.13.若单项式﹣8x3m+n y的次数为5,若m,n均为正整数,则m﹣n的值为.14.已知多项式3x2﹣y3﹣5xy2﹣x3﹣1,按x的降幂排列:.三.解答题(共5小题)15.已知A=2x2﹣9x﹣11,B=﹣6x+3x2+4,且B+C=A(1)求多项式C;(2)求A+2B的值.16.先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中x=﹣,y=1.17.化简:(1)6x﹣(2x﹣3)(2)﹣5(3a2b﹣ab2)+(ab2+3a2b)18.某校初二年级有A、B、C三个课外活动小组,各组人数相等,但A中的女生比B中的女生多4名,B 中的女生比C中的女生多1名.如果从A调10人去B中,再从B调10人去C中,最后从C调10人回A 中,结果各组的女生人数都相等.已知从C调入A的学生中只有2名女生.问分别从A,B调出的人数中各有几名女生?19.如果A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1,且3A+6B的值与x的取值无关,求+++++++﹣的值.参考答案与试题解析一.选择题(共10小题)1.下列去括号正确的是()A.﹣(5x+1)=﹣5x+1B.﹣(4x+2)=﹣2x﹣1C.(2m﹣3n)=m+n D.﹣(m﹣2x)=﹣m﹣2x【分析】直接利用去括号法则分别分析得出答案.【解答】解:A、﹣(5x+1)=﹣5x﹣1,故此选项错误;B、﹣(4x+2)=﹣2x﹣1,正确;C、(2m﹣3n)=m﹣n,故此选项错误;D、﹣(m﹣2x)=﹣m+2x,故此选项错误;故选:B.2.单项式﹣x2y的系数和次数分别是()A.,3B.﹣,3C.﹣,2D.,2【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式﹣x2y的系数和次数分别是:﹣,3.故选:B.3.下列式子﹣2x,,0,,中单项式的个数为()A.2B.3C.4D.5【分析】利用单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,进而得出答案.【解答】解:代数式﹣2x,,0,,中,﹣2x,,0是单项式,故单项式的个数有3个.故选:B.4.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是3B.系数是﹣,次数是4C.系数是﹣5,次数是4D.系数是﹣5,次数是3【分析】依据单项式的系数和次数的定义进行解答即可.【解答】解:单项式﹣的系数为﹣,次数为4.故选:B.5.下列各式①m;②x+5=7;③2x+3y;④;⑤中,整式的个数有()A.1个B.2个C.3个D.4个【分析】直接利用单项式和多项式统称为整式,进而分析得出答案.【解答】解:①m;②x+5=7;③2x+3y;④;⑤中,整式有①m;③2x+3y;④,共3个.故选:C.6.下列说法正确的是()A.ab+c是二次三项式B.多项式2x2+3y2的次数是4C.0和π都是单项式D.是整式【分析】根据单项式:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;多项式中次数最高的项的次数叫做多项式的次数.多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式进行分析即可.【解答】解:A、ab+c是二次二项式,故原题说法错误;B、多项式2x2+3y2的次数是2,故原题说法错误;C、0和π都是单项式,说法正确;D、是分式,故原题说法错误;故选:C.7.将代数式4a2b+3ab2﹣2b2+a3按a的升幂排列的是()A.﹣2b3+3ab2+4a2b+a3B.a3+4a2b+3ab2﹣2b3C.4a2b+3ab2﹣2b3+a3D.4a2b+3ab2+a3﹣2b3【分析】根据多项式的项的定义,可知本多项式的项为4a2b,3ab2,﹣2b2,a3,再由加法的交换律及多项式的升幂排列得出结果.【解答】解:多项式4a2b+3ab2﹣2b2+a3的各项为4a2b,3ab2,﹣2b2,a3.按字母a升幂排列为:﹣2b3+3ab2+4a2b+a3.故选A.8.下列各式计算中,正确的是()A.2a+2=4a B.﹣2x2+4x2=2x2C.x+x=x2D.2a+3b=5ab【分析】根据同类项的定义,及合并同类项的法则.【解答】解:A、2a+2=2(a+1);B、正确;C、x+x=2x;D、不能再计算.故选B.9.多项式x3﹣2x2+5x+3与多项式2x2﹣x3+4+9x的和一定是()A.奇数B.偶数C.2与7的倍数D.以上都不对【分析】此题首先利用整式加减的法则得到两个多项式的和,然后根据结果即可作出判断.【解答】解:(x3﹣2x2+5x+3)+(2x2﹣x3+4+9x)=14x+7结果是个多项式;又14x+7=7(2x+1),此处x为任意有理数,而并非只取正整数,∴结果不确定.故选D.10.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7B.6C.5D.4【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个正方形面积的差.【解答】解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=16﹣9=7,故选A.二.填空题(共4小题)11.化简:4a﹣(a﹣3b)=3a+3b.【分析】先去括号,然后合并同类项,依此即可求解.【解答】解:4a﹣(a﹣3b)=4a﹣a+3b=3a+3b.故答案为:3a+3b.12.若﹣x m+3y与2x4y n+3是同类项,则(m+n)2017=﹣1.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:∵与2x4y n+3是同类项,∴m+3=4,n+3=1,∴m=1,n=﹣2,∴(m+n)2017=(1﹣2)2017=﹣1,故答案为:﹣1.13.若单项式﹣8x3m+n y的次数为5,若m,n均为正整数,则m﹣n的值为0.【分析】直接利用单项式的次数定义结合正整数的定义分析得出答案.【解答】解:∵单项式﹣8x3m+n y的次数为5,∴3m+n+1=5,故3m+n=4,∵m,n均为正整数,∴m=1,n=1,则m﹣n的值为:1﹣1=0.故答案为:0.14.已知多项式3x2﹣y3﹣5xy2﹣x3﹣1,按x的降幂排列:﹣x3+3x2﹣5xy2﹣y3﹣1.【分析】按x的降幂排列就是把多项式按x的指数从大到小进行排列.【解答】解:多项式3x2﹣y3﹣5xy2﹣x3﹣1,按x的降幂排列为:﹣x3+3x2﹣5xy2﹣y3﹣1故答案为:﹣x3+3x2﹣5xy2﹣y3﹣1.三.解答题(共5小题)15.已知A=2x2﹣9x﹣11,B=﹣6x+3x2+4,且B+C=A(1)求多项式C;(2)求A+2B的值.【分析】(1)、(2)根据题意列出算式,根据整式的加减混合运算法则计算.【解答】解:(1)∵B+C=A,∴C=A﹣B=(2x2﹣9x﹣11)﹣(﹣6x+3x2+4)=2x2﹣9x﹣11+6x﹣3x2﹣4=﹣x2﹣3x﹣15;(2)A+2B=(2x2﹣9x﹣11)+2(﹣6x+3x2+4)=x2﹣x﹣﹣12x+6x2+8=7x2﹣x+.16.先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中x=﹣,y=1.【分析】先去括号,然后合并同类项,最后代入计算即可.【解答】解:原式=4x2y﹣[6xy﹣8xy+4+2x2y]+1=4x2y+2xy﹣4﹣2x2y+1=2x2y+2xy﹣3当x=﹣,y=1时,原式=2×(﹣)2×1+2×(﹣)×1﹣3=﹣.17.化简:(1)6x﹣(2x﹣3)(2)﹣5(3a2b﹣ab2)+(ab2+3a2b)【分析】先去括号,再合并同类项即可.【解答】解:(1)6x﹣(2x﹣3)=6x﹣2x+3=4x+3;(2)﹣5(3a2b﹣ab2)+(ab2+3a2b)=﹣15a2b+5ab2+ab2+3a2b=﹣12a2b+6ab2.18.某校初二年级有A、B、C三个课外活动小组,各组人数相等,但A中的女生比B中的女生多4名,B 中的女生比C中的女生多1名.如果从A调10人去B中,再从B调10人去C中,最后从C调10人回A 中,结果各组的女生人数都相等.已知从C调入A的学生中只有2名女生.问分别从A,B调出的人数中各有几名女生?【分析】我们先把B组女生人数设为x,则A组女生人数为x+4,C组女生人数为x﹣1,然后根据题意可得x+x+4+x﹣1=3x+3,=x+1,继而可确定出每组女生人数.【解答】解:我们先把B组女生人数设为x,则A组女生人数为x+4,C组女生人数为x﹣1,∵女生最后人数相等,∴经过调度之后,每个组的女生人数应为:x+x+4+x﹣1=3x+3,=x+1,∴每组女生人数应为(x+1)人,又∵C组调出2个女生,∴B组应该调出x+1﹣(x﹣1﹣2)=4个女生(其实就是C组缺多少个女生),而A组应该调出x+1﹣(x﹣4)=5个女生(同上,其实就是B组缺了多少女生).检验一下,A组原有x+4个女生,调出5个,调入2个,还有x+1个女生B组原有x个女生,调出4个,调入5个,还有x+1个女生C组原有x﹣1个女生,调出2个,调入4个,还有x+1个女生.答:A、B各调出5名和4名女生.19.如果A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1,且3A+6B的值与x的取值无关,求+++++++﹣的值.【分析】把A、B代入3A+6B,由3A+6B的值与x的取值无关可求出y的值;把y代入代数式进行计算即可.注意利用=﹣将式子化简.【解答】解:3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6=15xy﹣6x﹣9=(15y﹣6)x﹣9∵3A+6B的值与x的取值无关,∴15y=6,即y=.∴原式=1﹣+﹣+…+﹣﹣=1﹣﹣==.《一元一次方程》单元检测考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.方程3x+6=2x﹣8移项后,正确的是()A.3x+2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=﹣6﹣8D.3x﹣2x=8﹣62.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A.54+x=80%×108B.54+x=80%(108﹣x)C.54﹣x=80%(108+x)D.108﹣x=80%(54+x)3.设某数是x,若比它的2倍大3的数是8,可列方程为()A.2x﹣3=8B.2x+3=8C.x﹣3=8D.x+3=84.学生问老师多少岁了,老师说:我和你这么大时,你才4岁,你到我这么大时,我就37岁了,则老师比学生大()A.8岁B.9岁C.10岁D.11岁5.下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b26.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm27.某厂投入200 000元购置生产某新型工艺品的专用设备和模具,共生产这种工艺品x件,又知生产每件工艺品还需投入350元,每件工艺品以销售价550元全部售出,生产这x件工艺品的销售利润=销售总收入﹣总投入,则下列说法错误的是()A.若产量x<1000,则销售利润为负值B.若产量x=1000,则销售利润为零C.若产量x=1000,则销售利润为200 000元D.若产量x>1000,则销售利润随着产量x的增大而增加8.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340B.2x﹣4×72=4×340C.2x+4×72=4×340D.2x﹣4×20=4×3409.某轮船在两个码头之间航行,顺水航行需4小时,逆水航行需6小时,水流速度是2千米/小时,求两个码头之间距离x的方程是()A.B.C.D.10.若x +=3,求的值是( )A .B .C .D .二.填空题(共4小题)11.已知5x ﹣5与﹣3x ﹣9互为相反数,则x= .12.关于x 的方程2x +m=1﹣x 的解是x=﹣2,则m 的值为 .13.已知x 2﹣3y=5﹣y ,则3+2x 2﹣4y= .14.若方程6x +3=0与关于y 的方程3y +m=15的解互为相反数,则m= .三.解答题(共5小题)15.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为 ;若第1次输入的数为12,则第5次输出的数为 .(2)若输入的数为5,求第2016次输出的数是多少、(3)是否存在输入的数x ,使第3次输出的数是x ?若存在,求出所有x 的值;若不存在,请说明理由.16.列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款 元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?17.某农户2017年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).若该农户将水果拉到市场出售平均毎天出售1000千克,需8人帮忙,毎人每天付工资100元,农用车运费及其他各项税费平均每人300元.(1)当a=3,b=2时,农户在水果市场或在果园中出售完全部水果的总收入分别是多少元?(2)用a,b分别表示农户在水果市场或在果园中这两种方式出售完全部水果的纯收入?(纯收入=总收入﹣总支出)(3)若a=b+k(k>0),|k﹣2|=2﹣k且k是整数,若两种出售水果方式都在相同的时间内售完全部水果,试讨论当k为何值时,选择哪种出售方式较好.18.求关于x的方程2x﹣5+a=bx+1,(1)有唯一解的条件;(2)有无数解的条件;(3)无解的条件.19.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张采用A方法,其余采用B方法.(1)则裁剪出的侧面的个数是个,底面的个数是个(用x的代数式表示);(2)若x=5,则最多能做三棱柱盒子多少个?参考答案与试题解析一.选择题(共10小题)1.方程3x+6=2x﹣8移项后,正确的是()A.3x+2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=﹣6﹣8D.3x﹣2x=8﹣6【分析】本题只要求移项,移项注意变号就可以了.【解答】解:原方程移项得:3x﹣2x=﹣6﹣8.故选C.2.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A.54+x=80%×108B.54+x=80%(108﹣x)C.54﹣x=80%(108+x)D.108﹣x=80%(54+x)【分析】直接利用已知表示出绿洲面积和沙漠面积,进而绿洲面积占沙漠面积的80%得出等式求出答案.【解答】解:把x公顷沙漠改造为绿洲后,绿洲面积变为(54+x)公顷,沙漠面积变为(108﹣x)公顷,根据“绿洲面积占沙漠面积的80%”,可得方程:54+x=80%(108﹣x),故选:B.3.设某数是x,若比它的2倍大3的数是8,可列方程为()A.2x﹣3=8B.2x+3=8C.x﹣3=8D.x+3=8【分析】根据文字表述可得到其等量关系为:x的2倍+3=8,根据此列方程即可.【解答】解:根据题意得:2x+3=8.故选B.4.学生问老师多少岁了,老师说:我和你这么大时,你才4岁,你到我这么大时,我就37岁了,则老师比学生大()A.8岁B.9岁C.10岁D.11岁【分析】设老师比学生大x岁,则学生的年龄为(x+4)岁,老师的年龄为(2x+4)岁,根据老师的年龄比学生大x岁,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设老师比学生大x岁,则学生的年龄为(x+4)岁,老师的年龄为(2x+4)岁,根据题意得:37﹣(2x+4)=x,解得:x=11.故选D.5.下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b2【分析】根据方程的定义即可求出答案.【解答】解:方程是指含有未知数的等式.故选(B)6.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm2【分析】设围成的长方形的宽为x,则长为2x,根据周长=(长+宽)×2,即可得出关于x的一元一次方程,解之即可得出长方形的长和宽,再根据长方形的面积公式,即可求出结论.【解答】解:设围成的长方形的宽为x,则长为2x,根据题意得:2(x+2x)=12,解得:x=2,∴2x=4,∴围成长方形的面积为2×4=8(cm2).故选C.7.某厂投入200 000元购置生产某新型工艺品的专用设备和模具,共生产这种工艺品x件,又知生产每件工艺品还需投入350元,每件工艺品以销售价550元全部售出,生产这x件工艺品的销售利润=销售总收入﹣总投入,则下列说法错误的是()A.若产量x<1000,则销售利润为负值B.若产量x=1000,则销售利润为零C.若产量x=1000,则销售利润为200 000元D.若产量x>1000,则销售利润随着产量x的增大而增加【分析】用含x的代数式表示出销售利润后,化简,求得销售利润为零时的x的值,对各个选项分析判断.【解答】解:根据题意,生产这x件工艺品的销售利润=(550﹣350)x﹣200000=200x﹣200000,。

人教版七年级数学(上册)全册课时练习及答案

人教版七年级数学(上册)全册课时练习及答案

人教版七年级数学(上册)全册课时练习及答案第一章有理数1.1正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( ) A.-4米 B.+16米 C.-6米 D.+6米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.2.3相反数1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4绝对值 第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3有理数的加减法1.3.1有理数的加法 第1课时有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2有理数的减法 第1课时有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4有理数的乘除法1.4.1有理数的乘法 第1课时有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2有理数的除法 第1课时有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5有理数的乘方1.5.1乘方 第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1整式第1课时用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( ) A.(m +0.8n)元 B.0.8n 元 C.(m +n +0.8)元 D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1从算式到方程3.1.1一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD 的长.4.3角4.3.1角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数 1.1正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法 第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)283 2.B 3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。

人教版七年级上册数学教材同步练习全套(含答案)

人教版七年级上册数学教材同步练习全套(含答案)

人教版七年级上册数学教材同步练习全套第一章有理数《1.1正数和负数》同步练习能力提升1.团团和圆圆共同写了下列四组数:①-3,2.3,14;②34,0,212;③113,0.3,7;④1 2,15,2.其中,3个数都不是负数的是( )A.①②B.②④C.③④D.②③④2.如果+20%表示增加20%,那么-6%表示( )A.增加14%B.增加6%C.减少6%D.减少26%3.下列判断正确的是( )①+a一定不为0;②-a一定不为0;③a>0;④a<0A.①②B.③④C.①②③④D.都不正确4.观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是( )A.100B.-100C.101D.-101★5.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,则小嘉班的人数共有( )A.36B.37C.38D.396.已知一个乒乓球的标准质量为 2.70 g,把质量为 2.72 g的乒乓球记为+0.02 g,则质量为2.69 g的乒乓球应记为.7.墨西哥素有“仙人掌王国”之称.每食100 g仙人掌可以产生 27-2+3千焦的热量,27-2+3千焦的含义是产生的热量在千焦至千焦之间.8.前进 5 m记为+5 m,再前进-5 m,则总共走了m,这时距离出发地m.9.张老师以班级平均分为基准成绩,超过基准成绩记为正,不足记为负.他把甲、乙、丙、丁四位同学的成绩简记为+8,-6,+12,-3(单位:分).又知道甲同学的成绩为85分,问其他三名同学的成绩是多少?10.某条河某星期周一至周日的水位变化量(单位:m)分别为+0.1,+0.4,-0.25,-0.1,+0.05,+0.25,-0.1,其中正数表示当天水位比前一天上升了,且上周日的水位是50 m.(1)水位哪天最高,哪天最低,分别为多少?(2)与上周日相比,本周日的水位是上升了还是下降了?上升(下降)了多少?创新应用★11.观察下面一列数,探究其规律: -1,12,-13,14,-15,16,…. 请问:(1)第7个数、第8个数、第9个数分别是什么? (2)第100个数是多少?它是正数还是负数?(3)分数12016,12017是不是这列数中的数?如果是,是第几个数? (4)如果把这一列数无限地排列下去,将与哪个数越来越接近?参考答案能力提升 1.D 2.C3.D a 可正、可负、可为0.4.A5.A6.-0.01 g7.25 308.10 0 前进-5m 相当于后退5m,所以总共走了10m,又回到出发地,即距离出发地0m.9.分析:本题可根据甲的成绩为85分,计算班级的平均分,再结合乙、丙、丁的记分,分别求出他们的成绩.解:因为甲的成绩为85分,且甲的记分为+8, 所以班级平均分是85-8=77(分). 所以乙的成绩是77-6=71(分); 丙的成绩是77+12=89(分); 丁的成绩是77-3=74(分).10.解:(1)周二水位最高,周一水位最低,分别为50.5m 和50.1m. (2)0.1+0.4-0.25-0.1+0.05+0.25-0.1=0.35(m), 因此,与上周日相比,本周日的水位上升了,上升了0.35m. 创新应用11.解:(1)第7个数是-17,第8个数是18,第9个数是-19. (2)第100个数是1100,1100是正数.(3)分数12016是这列数中的数,且是第2016个数;12017不是这列数中的数,当分母为奇数时,这个数应是负数.(4)如果把这列数无限地排列下去,将与0越来越接近.1.2 有理数《1.2.1 有理数》同步练习能力提升1.在-225,π,0,14,-5,0.333…六个数中,整数的个数为( ) A.1B.2C.3D.42.- 12不属于( ) A.负数B.分数C.整数D.有理数3.在下列集合中,分类正确的是( ) A.正数集合{5,32,0.5,…}B.非负数集合{0,-2,-3.6,…},…}C.分数集合{-4.5,7,13,-9,8,…}D.整数集合{5124.在有理数中,不存在这样的数( )A.既是整数,又是负数B.既不是整数,也不是负数C.既是正数,又是负数D.既是分数,又是负数,0,-2,10,+21,其中非负数有,5.已知下列各数:-4,3.5,13非正数有.6.有理数中,是整数而不是正数的是,是分数而不是负分数的是,最小的正整数是.7.用“√”表示表中各数属于哪类数.8.将下面一组数填入相应集合的圈内:-0.5,-7,+2.8,-900,-31,99.9,0,4.2(1) (2)9.写出五个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数都是有理数.10.在七(1)班举行的“数学晚会”上,A,B,C,D,E五名同学的手上各拿着一张卡片,卡片上分别写着下列各数:2,-12,0,-3,16,主持人要求同学们按照卡片上的这些数的特征,将这五名同学分成两组或者三组来表演节目(每组人数不限).如果让你来分,那么你会如何分组呢?创新应用★11.黑板上有10个有理数,小明说“其中有6个正数”,小红说“其中有6个整数”,小华说“其中正分数的个数与负分数的个数相等”,小林说“负数的个数不超过3个”.请你根据四名同学的叙述判断这10个有理数中共有几个负整数.参考答案能力提升1.C-225是分数;π=3.1415926…是无限不循环小数;0,14,-5是整数;0.333…是循环小数.2.C -12既是负数,又是分数,还是有理数.3.A4.C5.3.5,13,0,10,+21 -4,0,-26.0和负整数正分数 17.8.解:(1)(2)9.分析:非正数指的是负数和0,非负数指的是正数和0. 解:(答案不唯一)如-2,-1,0,1,2或-3,-1,0,3,4.10.解:(答案不唯一)如按整数、分数分成两组分别是2,0,-3和-12,1 6 .创新应用11.解:由小红说可知有4个分数,由小华说可知有2个正分数和2个负分数,由小明可知有4个非正数,由小林说可知有3个负数,另一个非正数为0,所以负整数有1个.《1.2.2 数轴》同步练习能力提升1.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数2.数轴上的点A与原点距离6个单位长度,则点A表示的数为( )A.6或-6B.6C.-6D.3或-33.在数轴上,表示-17的点与表示-10的点之间的距离是( )A.27个单位长度B.-27个单位长度C.7个单位长度D.-7个单位长度★4.如图所示,数轴上的点P,O,Q,R,S表示某城市一条大街上的5个公交车站点,现在有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间5.在数轴上,表示数-6,2.1,-12,0,-412,3,-3的点中,在原点左边的点有个, 表示的点与原点的距离最远.6.点M表示的有理数是-1,点M在数轴上向右移动3个单位长度后到达点N,则点N表示的有理数是.7.数轴上与原点距离小于4的整数点有个.8.在数轴上,与-2所对应的点距离3个单位长度的点所表示的数是.9.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.10.喜羊羊的家、懒羊羊的家、学校与美羊羊的家依次位于一条东西走向的大街上,喜羊羊家位于学校西边30 m处,美羊羊家位于学校东边100 m处,喜羊羊从学校沿这条大街向东走了40 m,接着向西走了100 m到达懒羊羊家,试用数轴表示出喜羊羊家、学校、美羊羊家、懒羊羊家的位置.★11.如图所示,在数轴上有A,B,C三点,请根据数轴回答下列问题:(1)将点B向左移动3个单位长度后,这时三个点所表示的数中哪一个最小?是多少?(2)将点A向右移动4个单位长度后,这时三个点所表示的数中哪一个最大?是多少?(3)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?创新应用★12.如图所示,一只蚂蚁从原点出发,先向右爬行2个单位长度到达点A,再向右爬行3个单位长度到达点B,然后再向左爬行9个单位长度到达点C.(1)写出A,B,C表示的数;(2)实际上,蚂蚁最终是从原点出发向什么方向爬行了几个单位长度?★13.利用数轴解答,有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品.当他爬到梯子正中1级时,二楼窗口喷出火来,他就往下退了3级,等到火势过去了,他又向上爬了7级,这时屋顶有两块砖掉下来,他又后退了2级,幸好没打着他,他又向上爬了8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?参考答案能力提升1.C 在数轴上,原点及原点右边的点表示的数是0和正数.2.A3.C4.D5.4 -66.27.7 符合条件的点有-3,3,-2,2,-1,1,0,共7个.8.-5或1 画出数轴,找出-2表示的点,与该点距离3个单位长度的点有两个,分别表示-5,1.9.分析:从图中可见墨迹盖住两段,一段是在-8~-3之间,另一段在4~9之间.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.10.解:11.解:(1)点B最小,是-5.(2)点C最大,是3.(3)点B表示的数比点C表示的数大1.创新应用12.解:(1)A表示2,B表示5,C表示-4.(2)实际上,蚂蚁最终是从原点出发向左爬行了4个单位长度.13.解:设梯子正中1级为原点,向上爬的级数为正,后退的级数为负,答案为23级.《1.2.3 相反数》同步练习能力提升1.下列说法:①若a,b互为相反数,则a+b=0;②若a+b=0,则a,b互为相反数;③若a,b互为相反数,则ab =-1;④若ab=-1,则a,b互为相反数.其中正确的结论有( )A.1个B.2个C.3个D.4个2.相反数不大于它本身的数是( )A.正数B.负数C.非正数D.非负数3.一个数在数轴上所对应的点向右移动5个单位长度后得到它的相反数的对应点,则这个数是( )A.-2B.2C.212D.-2124.如图,表示互为相反数的两个数是( )A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.如果a=-a,那么表示数a的点在数轴上的位置是 ( )A.原点左侧B.原点右侧C.原点或原点右侧D.原点6.若a=-2 016,则-a= .7.-(-8)是的相反数,-(+6)是的相反数.8.在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3)与-(-3)中,互为相反数的是.(填序号)9.已知a-4与-1互为相反数,求a的值.★10.在一条东西走向的马路上,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校西边300 m处,商场在学校西边600 m处,医院在学校西边500 m处,若将该马路近似地看作一条直线,向东为正方向,1个单位长度表示100 m.找一个公共场所作为原点,在数轴上表示出这四家公共场所的位置,并使得其中两个公共场所所在位置表示的数互为相反数.创新应用★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数.参考答案能力提升 1.C 2.D3.D 这对相反数在数轴上表示的点之间的距离为5,则这两个数分别为212与-212,由题意知这个数为-212.4.C5.D a=-a,表示一个数的相反数等于它本身,相反数等于它本身的数只有0,故表示数a 的点在数轴上的位置是原点.6.2 0167.-8 6 -(-8)=8,8是-8的相反数;-(+6)=-6,-6是6的相反数. 8.③④9.解:因为1与-1互为相反数,所以a-4=1,所以a=5,即a 的值为5. 10.解:若将青少年宫作为原点,则商场在原点左侧3个单位长度处,医院在原点左侧2个单位长度处,学校在原点右侧3个单位长度处(如图所示).此时商场和学校所在位置表示的数互为相反数.创新应用11.解:A:1,B:-2,C:0,D:-0.5,E:-1,F:3.《1.2.4绝对值》同步练习一.选择题1.−2的绝对值是( )A .−2B .− 12C .12D .22.|−2|的绝对值的相反数是()A.−2 B.2 C.−3 D.33.|−2|=x,则x的值为()A.2 B.−2 C.±2 D.1 24.绝对值等于本身的数有()A.0个 B.1个 C.2个 D.无数个5.数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点C C.点B与点C D.点B与点D 6.若a为有理数,且|a|=−a,那么a是()A.正数 B.负数 C.非负数 D.非正数二.填空题7.−|−5|= .三.解答题11.化简下列各数:(4)−[−(−a)];(5)|−(+7)|;(6)−|−8|;12.计算:(1)|−7|−|+4|;(2)|−7|+|−2009|.答案:1.D 2.A 3.A4.D解析:因为正数的绝对值是本身,0的绝对值为0,所以绝对值等于本身的数有无数个.5.C解析:数轴上点A,B,C,D在数轴上表示的数是;A=−2,B=−1,C=1,D=3.5,∴|B|=1,|C|=1,∴绝对值相等的两个点是点B和点C.6.D解:∵|a|=−a,∴a是负数或0,即非正数.7.−58.±3解析:∵|−3|=3,∴|x|=3,∵|±3|=3,∴x=±3.9.±3解析:因为|3|=3,|−3|=3,所以绝对值是3的数是±3.10.相等或互为相反数解析:∵|a|=|b|,∴a和b的关系为:相等或互为相反数.11.解:(1)−(−5)=5;(2)−(+7)=−7;(4)−[−(−a)]=−a;(5)|−(+7)|=7;(6)−|−8|=−8;(8)−|−a|(a<0)=−(−a)=a.12.解:(1)原式=7−4=3;(2)原式=7+2009=2016.《1.2.5有理数比较大小》同步练习一.选择题1.在−4,0,−1,3这四个数中,最大的数是( ) A .−4 B .0 C .−1 D .32.在−4,2,−1,3这四个数中,比−2小的数是( ) A .−4 B .2 C .−1 D .33.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .−3℃B .15℃C .−10℃D .−1℃4.比0大的数是( ) A .−2 B .−32C .−0.5D .15.a 、b 在数轴上位置如图所示,则a 、b 、−a 、−b 的大小顺序是( )A .−a <b <a <−bB .b <−a <a <−bC .−a <−b <b <aD .b <−a <−b <aA .−25B .0C .25 D .2.5 二.填空题9.比较大小:|−134| −(−1.8)(填“>”、“<”或“=”).10.已知a,b两数在数轴上的表示如图所示,则−a b.(填“>”、“=”或“<”)三.解答题11.利用绝对值比较大小.12.比较下列各组有理数的大小:(1)−(−8)和−8;(2)−(+8)和|−8|;(3)+(−5)和−|−8|;(4)−2.25和−|−2.25|.答案:1.D 2.A 3.C 4.D5.B解析:从数轴上可以看出b<0<a,|b|>|a|,∴−a<0,−a>b,−b >0,−b>a,即b<−a<a<−b.6.A 7.>8.一4<一227<0<0.14<2.7 9.<10.>解析:根据数轴的特征,可得a>0>b,而且|a|<|b|,∴−a>b.(3)−(−725)与>−125.12.解:(1)∵−(−8)=8,∴−(−8)>−8.(2)∵−(+8)=−8,|−8|=8,−8<8,∴−(+8)<|−8|.(3)∵+(−5)=−5,−|−8|=−8,又∵|−5|=5,|−8|=8,∴+(−5)>−|−8|.(4)∵−|−2.25|=−2.25,∴−2.25=−|−2.25|.《1.3.1有理数的加法》同步练习一.选择题1.数轴上的点A表示的数是-1,将点A向左移动5个单位,终点表示的数是()A.4 B.-4 C.6 D.-62.一个点从数轴上的-3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A.3 B.-5 C.-1 D.-93.计算3+(-3)的结果是()A.6 B.-6 C.1 D.04.计算-2+6等于()A.4 B.8 C.-4 D.-85.计算(-3)+(-2)的结果是()A.-6 B.-5 C.6 D.56.如果|a|+|b|=0则a与b的大小关系一定是()A.a=b=0 B.a与b不相等C.a与b互为相反数 D.a与b异号二.填空题8.某地,一天早晨的温度是-6℃,中午较早晨温度上升了9℃,则该中午(2)+(-3)=8;(4)(-3)+ =0.三.解答题11.计算:(3)(−0.25)+(+14);(4)(−312)+(+413).12.已知:|a|=2,|b|=3且a>b,求a+b的值.答案:1.D 2.B 3.D 4.A 5.B6.A解析:∵|a|+|b|=0,∴|a|=0,|b|=0,∴a=0,b=0.7.-2 8.3℃9.4或-8.解析:∵a的相反数是2,∴a=-2,∵|b|=6,∴b=±6,①当a=-2,b=6时,a+b=-2+6=4;②当a=-2,b=-6时,a+b=-2+(-6)=-8.10.(1)-5,(2)11,(3)2,(4)3.(2)原式=3.25-2.5=0.75;(3)原式=-0.25+0.25=0;(4)原式=-72+133=−21+266=56.12.解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵a>b,∴当a=2时,b=-3,则a+b=-1.当a=-2时,b=-3,则a+b=-5.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D .可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a ,b 在数轴上的位置如图,则a+b 的值( ) A.大于0B.小于0C.小于aD.大于b3.若a 与1互为相反数,则|a+1|等于( ) A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则( ) A.三个数一定同号 B.三个数一定都是0 C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x 的相反数是-2,|y|=4,则x+y 的值为 .6.绝对值小于2 016的整数有 个,它们的和是 .7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4); (2)|(-7)+(-2)|+(-3); (3)(-0.6)+0.2+(-11.4)+0.8; (4)(-423)+(-313)+(+614)+(-214).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B 地在A 地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-556+(-923)+(-312)+1734.解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34)=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34] =0+(-54)=-54.(2)上述这种方法叫做拆项法,依照上述方法计算:(-201756)+(-201623)+4 034+(-112).创新应用★11.用[x ]表示不超过x 的整数中最大的整数,如[2.23]=2,[-3.24]=-4. 请计算:(1)[3.5]+[-3]; (2)[-7.25]+[-13].★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升 1.D2.A 从数轴上可知:-1<a<0,b>1,即a ,b 异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6 因为|4|=4,|-4|=4,所以y=±4.又因为x 的相反数为-2, 所以x=2.再将x ,y 的值代入x+y 求值. 6.4 031 07.-1 009 原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9. (2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11. (4)(-423)+(-313)+(+614)+(-214)=[(-423)+(-313)]+[(+614)+(-214)]=(-8)+(+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B 地在A 地的东侧,且两地相距28km .(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L .10.解:(2)原式=[(-2017)+(-56)]+[(-2016)+(-23)]+4034+[(-1)+(-12)]=[(-2017)+(-2016)+(-1)+4034]+[(-56)+(-23)+(-12)] =0+[(-56)+(-46)+(-36)] =-2. 创新应用11.解:(1)原式=3+(-3)=0. (2)原式=-8+(-1)=-9. 12.解:本题答案不唯一,如:1.3.2有理数的减法《第1课时有理数的减法》同步练习能力提升1.某地2019年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的一天是()A.1月1日B.1月2日C.1月3日D.1月4日2.下列计算正确的是()A.(-4)-|-4|=0B.14−12=12C.0-5=5D.(-5)-(-4)=-1★3.下列说法中正确的是() A.两数之差一定小于被减数B.某个数减去一个负数,一定大于这个数减去一个正数C.0减去任何一个数,都得负数D.互为相反数的两个数相减一定等于04.在数轴上,表示a 的点总在表示b 的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或95.小明家冰箱冷冻室的温度为-5 ℃,调低4 ℃后的温度为 .6.-13的绝对值与-212的相反数的差是 . 7.计算:(-14)-(-6)= ; (-8)-( )=-8; 0-(-2.86)= ;-(-5)=-3; (-135)-( )=0.8.已知|x|=5,y=3,则x-y= .9.在某地有记载的最高温度是56.7 ℃(约合134 ℉,℉是华氏度的单位符号),发生在1913年7月10日.有记载的最低温度是-62.2 ℃(约合-80 ℉),是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少? (2)以华氏度为单位,有记录的最高温度和最低温度相差多少?10.某中学九(1)班学生的平均身高是166 cm .(1)下表给出了该班6名同学的身高(单位:cm).试完成下表:(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?11.设a是-4的相反数与-12的绝对值的差,b是比-6大5的数.(1)求a-b与b-a的值;(2)从(1)的结果中,你知道a-b与b-a之间的关系吗?创新应用★12.若|a|=7,|b|=9,且|a+b|=-(a+b),求b-a的值.参考答案能力提升1.D2.D3.B4.D5.-9 ℃(-5)-4=(-5)+(-4)=-9(℃).6.-136|-13|=13,-212的相反数等于212,13-212=13−52=26−156=-136.7.-802.86-8-1358.2或-8由|x|=5,知x=±5,故x-y=5-3=2或x-y=-5-3=-8.9.解:(1)依题意得56.7-(-62.2)=118.9(℃).故以摄氏度为单位,有记录的最高温度和最低温度相差118.9℃;(2)依题意得134-(-80)=214(℉).故以华氏度为单位,有记录的最高温度和最低温度相差214℉.10.解:(1)173158168-6+9(2)小武最高,小华最矮.(3)因为9-(-8)=17(cm),所以最高与最矮的同学身高相差17cm.11.解:由题意知a=-(-4)-|-12|=4-12=4+(-12)=-8,b=-6+5=-1. (1)a-b=-8-(-1)=-8+(+1)=-7,b-a=-1-(-8)=-1+8=7. (2)a-b 和b-a 互为相反数. 创新应用12.解:因为|a|=7,|b|=9,所以a=±7,b=±9.又|a+b|=-(a+b ), 故a+b<0.所以a=±7,b=-9. 因此,当a=7,b=-9时,b-a=-9-7=-16; 当a=-7,b=-9时,b-a=-9-(-7)=-9+7=-2.《第2课时 有理数的加减混合运算》同步练习能力提升1.等式-2-7不能读作( ) A.-2与7的差B.-2与-7的和C.-2与-7的差D.-2减去72.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了( ) A.加法交换律 B.加法结合律 C.分配律D.加法的交换律与结合律★3.在广西壮族自治区柳江县尧村有一眼奇特的报时泉,泉眼在距山脚约100 m 处的半山腰,中国地质科学院广西岩溶所的专家沿洞向上游走了1512 m,又向下游走了1513 m,再向上游走了423 m,这时专家在洞口的( )A.上游1113 m 处B.下游11 m 处C.上游23 m 处 D.上游456 m 处4.“负8、正15、负20、负8、正12的和”用算式表示为 .5.0-2123+(+314)−(-23)−(+14)的值为 . 6.计算:1-2-3+4+5-6-7+8+9-10-11+…+2013-2014-2015+2016= .7.一只跳蚤在某条直线上从点O 开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位……依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是 个单位.8.若|a+2|+|b+4|+|c-4|=0,则a+b-c= . 9.计算:(1)|112-111|+|113-112|+|114-113|; (2)1-[-1-(-37)-5+47]+|-4|; (3)314+(-235)+534+(-825).10.已知a=-312,b=+2.5,c=+3,d=-113,求(a+b)+(c+d)的值.11.下表为某公司股票在本周内每日的涨跌情况:(单位:元)计算这一周内该公司股票每股价格的变化是上涨还是下跌,上涨或下跌了多少元?创新应用★12.如图所示,一口水井,水面比井口低3 m,一只蜗牛从水面沿井壁往井口爬,第一次往上爬0.5 m 后,又往下滑了0.1 m;第二次往上爬了0.47 m 后,又往下滑了0.15 m;第三次往上爬了0.6 m 后,又往下滑了0.15 m,第四次往上爬了0.8 m 后,又往下滑了0.1 m;第五次往上爬了0.55 m 没有下滑.问:它能爬出井口吗?如果不能,那么第六次它至少要往上爬多少?★13.数学活动课上,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a,b,都有a@b=a-b+1.请你根据新运算,计算[2@(-3)]@(-2)的值.参考答案能力提升 1.C 2.D 3.D4.-8+15-20-8+125.-18 原式=-2123+314+23−14=-2123+23+314−14=-21+3=-18.6.07.50 设向右跳为正,向左跳为负,由题意,得1-2+3-4+5-6+…+99-100=(-1)+(-1)+…+(-1)⏟50个=-50. 所以第100次落在点O 左侧50个单位处, 故落点处离点O 的距离是50个单位.8.-10 根据绝对值的非负性和互为相反数的两个数和为0,得a+2=0,b+4=0,c-4=0,解得a=-2,b=-4,c=4,所以a+b-c=(-2)+(-4)-4=-2-4-4=-10.9.解:(1)原式=(111-112)+(112-113)+(113-114)=111−114=3154. (2)原式=1-(-1-5+47+37)+4=1+5+4=10.(3)原式=(314+534)+[(-235)+(-825)]=9+(-11)=-2. 10.解:(a+b)+(c+d)=[(-312)+(+2.5)]+[(+3)+(-113)] =-1+123=23.11.解:(+1.25)+(-1.05)+(-0.25)+(-1.55)+(+1.3) =[(+1.25)+(-0.25)]+[(-1.05)+(-1.55)]+(+1.3) =(+1)+(-2.6)+(+1.3) =[(+1)+(+1.3)]+(-2.6) =(+2.3)+(-2.6) =-0.3.答:本周内该公司股票每股价格下跌了,下跌了0.3元. 创新应用 12.解:因为0.5-0.1+0.47-0.15+0.6-0.15+0.8-0.1+0.55=2.92-0.5=2.42<3, 所以它不能爬出井口,第六次它至少要往上爬3-2.42=0.58(m). 13.解:根据运算法则,得[2@(-3)]@(-2)=[2-(-3)+1]@(-2)=6@(-2)=6-(-2)+1=6+2+1=9.1.4.1 有理数的乘法《第1课时 有理数的乘法》同步练习能力提升1.如图所示,数轴上A,B 两点所表示的两数的 ( )A.和为正数B.和为负数C.积为正数D.积为负数 2.下列计算正确的是( ) A.(-0.25)×(-16)=-14 B.4×(-0.25)=-1 C.(-89)×(-1)=-89 D.(-313)×(-115)=-43.一个有理数和它的相反数的积一定是( ) A.正数B.负数C.非正数D.非负数4.在-7,4,-4,7这四个数中,任取两个数相乘,所得的积最大是( ) A.28B.-28C.49D.-49★5.若a+b<0,且ab<0,则( ) A.a>0,b>0 B.a<0,b<0C.a,b 异号且负数的绝对值大D.a,b 异号且正数的绝对值大 6.-45的倒数的相反数是 .7.若|a|=5,b=-2,且ab>0,则a+b= .8.对任意有理数a,b,规定a*b=ab-b,则0*(-2 016)的值为 . 9.计算:(1)(-214)×(-325);(2)|-14|×(-112).★10.用正负数表示水位的变化量,上升为正,下降为负.某水库的水位每天下降3 cm,那么4天后这个水库水位的变化量是多少?创新应用★11.观察下列各式:-1×12=-1+12;-12×13=-12+13;-13×14=-13+14;…….(1)你发现的规律是-1n ×1n+1= .(n 为正整数) (2)用规律计算:(-1×12)+(-12×13)+(-13×14)+…+(-12014×12015)+(-12015×12016).参考答案能力提升 1.D 2.B3.C 由相反数的定义知,互为相反数的两个数异号或都为0,故它们的乘积是非正数.4.A 这四个数中,任取两个数相乘,所得的积分别为-28,28,-49,-16,28,-28,其中28最大.5.C 由ab<0可知a,b 异号;由a+b<0可知负数的绝对值较大.6.547.-7 由|a|=5知a=±5.因为ab>0,b=-2<0, 所以a=-5.所以a+b=-5+(-2)=-7.8.2 016 由题意,得0*(-2016)=0×(-2016)-(-2016)=0+2016=2016.9.解:(1)原式=94×175=15320.(2)原式=14×(-32)=-14×32=-38. 10.解:下降3cm,记作-3cm. (-3)×4=-12(cm).答:4天后这个水库水位下降了12cm. 创新应用11.解:(1)-1n +1n+1(2)原式=-1+12−12+13−13+…-12014+12015−12015+12016=-1+12016=-20152016.《第2课时 有理数的乘法运算律》同步练习能力提升1.大于-3且小于4的所有整数的积为( ) A.-12B.12C.0D.-1442.3.125×(-23)-3.125×77=3.125×(-23-77)=3.125×(-100)=-312.5,这个运算运用了( )A.加法结合律B.乘法结合律C.分配律D.分配律的逆用3.下列运算过程有错误的个数是( ) ①(3-412)×2=3-412×2②-4×(-7)×(-125)=-(4×125×7) ③91819×15=(10-119)×15=150-1519④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50 A.1B.2C.3D.44.绝对值不大于2 015的所有整数的积是 .5.在-6,-5,-1,3,4,7中任取三个数相乘,所得的积最小是 ,最大是 .6.计算(-8)×(-2)+(-1)×(-8)-(-3)×(-8)的结果为 .7.计算(1-2)×(2-3)×(3-4)×…×(2 014-2 015)×(2 015-2 016)的结果是 .8.计算:(1)(-991516)×8; (2)(-11)×(-25)+(-11)×(+235)+(-11)×(-15).9.计算:(1100-1)×(199-1)×(198-1)×…×(13-1)×(12-1).10.已知|a+1|+|b+2|+|c+3|=0,求(a-1)×(b -2)×(c -3)的值.11.已知|ab cd |称为二阶行列式,规定的运算法则为|a bcd|=ad-bc,例如|3524|=3×4-5×2=2.根据上述内容计算|-79-132-314|的值.★12.观察下列等式(式子中的“!”是一种数学运算符号):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1, (2016)2015!的值.创新应用★13.学习了有理数的运算后,王老师给同学们出了这样一道题: 计算711516×(-8),看谁算得又对又快. 下面是两位同学给出的不同解法:小强:原式=-115116×8=-920816=-57512;小莉:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512. (1)以上两种解法,你认为谁的解法比较简便? (2)你还有其他解法吗?如果有,那么请写出解答过程;(3)你能用简便方法计算-999899×198吗?如果能,那么请写出解答过程.参考答案能力提升1.C 大于-3且小于4的所有整数中有一个为0,故乘积为0.2.D3.A ①错误,3也应乘2;②③④正确.4.0 符合条件的整数中有一个为0,所以它们的积为0.5.-168 2106.0 原式=(-8)×[(-2)+(-1)-(-3)] =(-8)×[(-2)+(-1)+(+3)] =(-8)×0=0.7.-1 原式=(-1)×(-1)×(-1)×…×(-1)⏟2015个(-1)=-1.8.解:(1)原式=(-100+116)×8 =-100×8+116×8 =-800+12 =-79912.(2)原式=(-11)×(-25+235-15) =-11×2=-22.9.解:原式=(-99100)×(-9899)×(-9798)×…×(-23)×(-12)=-99100×9899×9798×…×23×12=-1100.10.解:因为|a+1|+|b+2|+|c+3|=0, 所以a+1=0,b+2=0,c+3=0, 所以a=-1,b=-2,c=-3.所以原式=(-1-1)×(-2-2)×(-3-3)=(-2)×(-4)×(-6)=-48. 11.解:|-79-132-314|=(-79)×(-314)−(-13)×2=16+23=56. 12.解:2016!2015!=2016×2015×2014×…×2×12015×2014×2013×…×2×1=2016.创新应用13.解:(1)小莉的解法比较简便.(2)有,原式=(72-116)×(-8)=72×(-8)-116×(-8)=-57512.(3)能,原式=-(100-199)×198=-100×198+199×198=-19800+2=-19798.1.4.2 有理数的除法《第1课时 有理数的除法》同步练习能力提升1.有下列运算:①(-18)÷(-9)=2;②(-7289)÷8=-(72+89)×18=-919;③0.75÷(-558)=-34×845=-215;④|-9|÷|-111|=9×11=99.其中正确的个数为( )A.1B.2C.3D.42.实数a,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A.ab>0 B.a+b<0C.ba <0D.a-b<03.下列结论错误的是( )A.若a,b 异号,则a·b<0,ab <0 B.若a,b 同号,则a·b>0,ab >0 C.-ab =a-b =-ab D.-a-b =-a b4.若m<0,则m|m |等于( ) A.1 B.±1C.-1D.以上答案都不对5.若一个数的相反数是114,则这个数是 ,这个数的倒数是 .6.计算:16÷(-2.5)= .7.若有理数a 与b(b≠0)互为相反数,则ab = . 8.计算:(-10)÷(-8)÷(-0.25).★9.计算:-123÷24×(16+34-512)÷(-212). 下面是小明和小亮两位同学的计算过程:小明:原式=-53÷(4+18-10)÷(-52)=-53×112×(-25)=118. 小亮:原式=-53×124×(212+912-512)÷(-52)=53×124×12×25=172. 他们的计算结果不一样,谁对谁错呢?错误的原因是什么?★10.已知a=-3,b=-2,c=5,求-b+c -a的值.创新应用★11.若ab≠0,则a|a|+|b|b的值不可能是( )A.0B.3C.2D.-2参考答案能力提升1.D2.C 由数轴知a,b都是负数,且a<b,所以ba>0.3.D4.C 因为m<0,所以|m|=-m,m|m|=m-m=-1,故选C.5.-114-4 56.-11516÷(-2.5)=-16×25=-115.7.-18.解:原式=-10×18×4=-5.9.解:小明的错误,小亮的正确.同级运算的顺序应从左到右依次进行,小明的运算顺序错误.10.解:-b+c-a =-(-2)+5-(-3)=2+53=73.创新应用11.B a和b都是正数时,a|a|+|b|b的值为2;a和b都是负数时,a|a|+|b|b的值为-2;a和b一正一负时,a|a|+|b|b的值为0.《第2课时有理数的混合运算》同步练习能力提升1.下列等式中成立的是( ) A.(-5)÷(1-2)=(-5)÷(-1) B.1÷(-2 015)=(-2 015)÷1 C.(-5)×6÷15=(-5)×15÷6 D.(-7)÷(17-1)=(-7)÷17-7÷(-1)2.在算式4-|-3□5|中的□所在位置,为使计算出来的值最小,应填入的运算符号是( )A.+B.-C.×D.÷3.计算(-6)÷(13-12)的结果是( ) A.6B.-6C.-36D.364.一个容器装有1 L 水,按照如下要求把水倒出:第1次倒出12 L 水,第2次倒出的水量是12 L 的13,第3次倒出的水量是13 L 的14,第4次倒出的水量是14 L 的15,……,按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .1011LB .19LC .110LD .111L5.计算:(-312)÷(-112)×313= .6.已知a=-1,b=23,c=-20,则(a-b )÷c 的值是 .7.已知C 32=3×21×2=3,C 53=5×4×31×2×3=10,C 64=6×5×4×31×2×3×4=15,……,观察上面的计算过程,寻找规律并计算C 106= .8.计算:(1)(213-312+1445)÷(-116); (2)(79-56+718)×18-1.45×6+3.95×6.9.市场销售人员把某一天两种冰箱销售情况制成表格如下:种类 售价/元 盈利/% 甲种冰箱1 50025乙种冰箱 1 500 -25已知这两种冰箱各售出一台,根据以上信息,请你判断商家是盈利还是亏本,盈利,盈了多少?亏本,亏了多少?★10.下面是小明计算-20÷15÷15的解题过程,他的计算正确吗?如果不正确,请改正.-20÷15÷15=-20÷(15÷15)=-20÷1=-20.11.现有四个有理数-1,-3,4,4,将这四个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果为24,请写出这样的一个算式.12.已知有理数a,b,c满足|a|a +|b|b+|c|c=1,求|abc|abc的值.创新应用★13.若定义一种新的运算为a*b=ab1-ab ,计算[(3*2)]*16.参考答案能力提升1.A2.C 根据算式的特点,要使计算出来的值最小,需使|-3□5|的值最大,故只有“×”号.3.D (-6)÷(13-12)=(-6)÷(26-36)=(-6)÷(-16)=(-6)×(-6)=36. 4.D5.709 原式=72×23×103=709.6.112 当a=-1,b=23,c=-20时,(a-b )÷c=[(-1)-23]÷(-20)=(-123)÷(-20)=53×120=112.7.210 由题意可知,C 106=10×9×8×7×6×51×2×3×4×5×6=210.8.解:(1)(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)−72×(-67)+4945×(-67) =-2+3-1415=1-1415=115. (2)(79-56+718)×18-1.45×6+3.95×6=14-15+7-8710+23710=6+15010=21.9.解:1500÷(1+25%)=1200(元), 1500÷(1-25%)=2000(元).1200+2000=3200(元),1500×2=3000(元). 3000-3200=-200(元). 所以亏了,亏了200元. 10.解:小明的计算不正确. 原式=-20×5×5=-500.11.解:本题答案不唯一,如:(4+4)×(-3)÷(-1)=8×(-3)×(-1)=24. 12.解:已知|a |a+|b |b+|c |c=1,则a ,b ,c 必为一负二正,所以|abc |abc=-abc abc=-1.创新应用13.解:因为a*b=ab1-ab ,所以[(3*2)]*16=3×21-3×2∗16=(-65)∗16=-65×161-(-65)×16=-151+15=-16.1.5 有理数的乘方 《1.5.1 乘方》同步练习能力提升1.(-1)2 016的值是( ) A.1 B.-1C.2 016D.-2 0162.下列各式中,一定成立的是( ) A.(-3)2=32 B.(-3)3=33 C.-32=|-32| D.(-3)3=|(-3)3|3.28 cm 接近于( ) A.珠穆朗玛峰的高度 B.三层住宅楼的高度 C.一层住宅楼的高度D.一张纸的厚度4.现规定一种新的运算“*”,a*b=a b -1,如3*2=32-1=8,则(-12)*3等于( )A.-78 B.-118C.-212D.-325.把13×13×13×13×13写成乘方的形式为 ,其底数是 .6. 的平方是164, 的立方是-164.7.若x,y 互为倒数,则(xy)2 015= ;若x,y 互为相反数,则(x+y)2016= .★8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出 根细面条;(2)到第 次捏合后可拉出32根细面条.9.计算:(1)-52+2×(-3)2-7÷(-13)2; (2)(-5)2×(-35)+32÷(-2)3×(-114).创新应用 ★10.为了求1+2+22+23+…+22 015的值,可令S=1+2+22+23+…+22 015,则2S=2+22+23+…+22 016,因此2S-S=22 016-1,所以1+2+22+23+…+22 015=22 016-1.仿照以上推理计算出1+9+92+93+…+92 016的值是( )A.92 016-1B.92 017-1C.92016-18D.92017-18★11.观察下列各组数:①-1,2,-4,8,-16,32,…;②0,3,-3,9,-15,33,…;③-2,4,-8,16,-32,64,….(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)取每组数的第8个数,计算这三个数的和.参考答案能力提升1.A2.A (-3)2为正,32也为正,即(-3)2=32,所以A 一定成立;(-3)3为负,33为正,所以B 不成立;-32为负,|-32|为正,所以C 不成立;(-3)3为负,|(-3)3|为正,所以D不成立.3.C 28cm=256cm=2.56m,所以接近于一层住宅楼的高度.4.B (-12)*3=(-12)3-1=-12×12×12-1=-18-1=-118.5.(13)513 6.±18 -147.1 0 若x,y 互为倒数,则xy=1,所以(xy)2015=12015=1;若x,y 互为相反数,则x+y=0,所以(x+y)2016=02016=0.8.(1)8 (2)5 经过分析,设捏合次数为n,则可拉出的细面条根数为2n .9.解:(1)-70;(2)-10.创新应用10.D 令S=1+9+92+93+…+92016,则9S=9+92+93+…+92017,所以9S-S=92017-1,即S=92017-18.11.解:(1)后面一个数与前面一个数的比值为-2.(2)对比①②③三组中对应位置的数,第②组数比第①组数大1,第③组数是第①组数的2倍.(3)128+129+256=513.《1.5.2 科学记数法》同步练习能力提升1.为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止,某市共有60 000户家庭建立了“低碳节能减排家庭档案”,则60 000这个数用科学记数法表示为( )A.60×104B.6×105C.6×104D.0.6×1062.用科学记数法表示870 000=m×10n ,则m,n 的值分别是( )A.m=87,n=4B.m=8.7,n=4C.m=87,n=5D.m=8.7,n=5。

七年级上册数学练习册答案(共10篇)

七年级上册数学练习册答案(共10篇)

七年级上册数学练习册答案(共10篇)七年级上册数学练习册答案(一): 人教版数学七年级小练习册答案人教版数学七年级上册小练习册答案第16页的:最上面的:-21 4/1 -31.1)-4 2)5 3) -4 4)-7.92.1)-40 2)5又5/1 3) 2/1 4)七年级上册数学练习册答案(二): 7年级上册数学同步练习册答案额.我才五年级我管不住别人的嘴,我只管做好我自己.希望对你能有所帮助.七年级上册数学练习册答案(三): 七年级上册数学练习册第12面的所有答案人教版的.CCD.0 、-2、-87.5、0-10、十二分之一、3又五分之一、50、-0.1、-4应用题算式:24+4+4.5+(-1)=34.5,每股34.5元2.略,(自己做,太简单)3,赚889.54,罐头质量4550千克5.负一又三分之一实践题14 -25 -21 -15 -14是不是这个七年级上册数学练习册答案(四): 人教版七年级上册数学练习册答案第四大四页评估与反思我是初一的七年级上册数学练习册答案(五): 2023年七年级上册数学配套练习册第二章综合练习答案(人教版)【七年级上册数学练习册答案】去书店买.七年级上册数学练习册答案(六): 七年级上册数学配套练习册15页第9题答案七年级上册山东人民出版社数学配套练习册15页第9题答案,谁知道【七年级上册数学练习册答案】(2)-2 七年级上册数学练习册答案(七): 数学七年级上册练习册第26,27页答案上海教育出版社个人心得:菁优网和魔方格是两个很好的学习网站.所有习题及答案均有,菁优网优势在于理科,答案解析清晰.魔方格习题内容广,文理科均有,但答案分析不详细.供参考.七年级上册数学练习册答案(八): 七年级上册人教版数学配套练习册求大神赐小女子答案!题在下面!最好有解答过程!3.已知a、b的关系是a<0,b>0,且丨b丨>丨a丨.请在数轴上表示出数a,b的大致位置.(求图)4.﹣丨﹣2丨的倒数是().A.2 B.1/2 C.-1/2 D.-25.若丨a丨=-a,则a一定是()A.正数 B.负数 C.非正数 D.非负数6.代数式丨x丨+3的最小值是()A.0 B.2 C.3 D.57.若丨a丨=丨b丨,则a与b的关系是().A.a=b B.a=-b C.a=b或a=-bD.不能确定8.下面说法正确的有().①互为相反数的两个数的绝对值相等;②一个数的绝对值是一个正数;③一个数的绝对值的相反数一定是负数;④只有负数的绝对值是它的相反数.A.1 B.2 C.3 D.49.下面说法中错误的有( )个.①一个数的相反数是它本身,这个数一定是0;②绝对值等于本身又等于它的相反数的数一定是0;③丨a丨>丨b丨,则a>b;④两个负数,绝对值大的反而小;⑤任何数的绝对值都不会是负数.A.1 B.2 C.3 D.43、(简单)只要B的倒数比A大就可以.4、A5、C6、C7、C8、A或B 不确定七年级的题都忘得差不多了.9、D七年级上册数学练习册答案(九): 七年级(上)上海教育出版社数学练习册10.1答案1.运动休息2牙齿健康能均很膳食有充分休息3心率相同4较短低5肺活量 2500 大运动时可以交换更多气体6D7休息可以减少人的体能消耗,让人轻松不疲倦.8自己做七年级上册数学练习册答案(十): 七年级数学上册习题3.4答案是这个题吗京泸高速公路全长1262千米,一辆汽车从北京出发,匀速行驶5小时后,提速20千米每小时,又匀速行驶5小时后,减速10千米每时,又匀速行驶5小时后达到上海.(1)求各段时间的车速.(精确到1千米每小时)(2)根据地图推断,出发8小时后汽车在公路的哪一段答案:(1)设第一段车速为x,则第二段车速为x+20 ,第三段车速为x+20-10 每段都用了5小时方程式:[x+(x+20)+(x+20-10)]X5=1262x=74(千米)第一段的速度是74千米/小时,第二段的速度是94千米/小时,第三段速度是84千米/小时(2)根据地图推断.出发8小时后行驶了(5x74+3x94)=625千米在高速的中间路段,在地图上的江苏位置希腊数学家丢番图的墓碑上记载着:他生命的六分之一是幸福的童年,再活了他生命的十二分之一,两颊长起了细细的胡须,他结了婚,又度过了一生的七分之一,再过5年,他有了儿子,感到很幸福,可是儿子只活了他父亲全部年龄的一半,儿子死后,他在极度悲痛中度过了四年,也与世长辞了.根据以上信息,请你算出:(1)丢番图的寿命(2)丢番图当爸爸时的年龄(3)儿子死时丢番图的年龄答案:(1)设:丢番图的寿命为x根据题意可得:(1/6)x+(1/12)x+(1/7)x+5+(1/2)x+4=x 解得:x=84所以丢番图的寿命是84岁(2)丢番图当爸爸时的年龄是38岁解析:[(1/6)+(1/12)+(1/7)]X84+5=38(3)儿子死时丢番图的年龄是80岁解析:84-4=80(儿子死后4年丢番图就去世了)。

人教版七年级上册数学全册单元试卷试卷(word版含答案)

人教版七年级上册数学全册单元试卷试卷(word版含答案)

人教版七年级上册数学全册单元试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点在线段上, .(1)如图1,,两点同时从,出发,分别以,的速度沿直线向左运动;①在还未到达点时,求的值;②当在右侧时(点与不重合),取中点,的中点是,求的值;(2)若是直线上一点,且 .求的值.【答案】(1)解:①AP=AC-PC,CQ=CB-QB,∵BC=2AC,P、Q速度分别为1cm/s、2cm/s,∴QB=2PC,∴CQ=2AC-2PC=2AP,∴②设运动秒,分两种情况A: 在右侧,,分别是,的中点,,∴B: 在左侧,,分别是,的中点,,∴(2)解:∵BC=2AC.设AC=x,则BC=2x,∴AB=3x,①当D在A点左侧时,|AD-BD|=BD-AD=AB= CD,∴CD=6x,∴;②当D在AC之间时,|AD-BD|=BD-AD= CD,∴2x+CD-x+CD= CD,x=- CD(不成立),③当D在BC之间时,|AD-BD|=AD-BD= CD,∴x+CD-2x+CD= CD,CD= x,∴;|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,∴CD=;④当D在B的右侧时,|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,CD=6x,∴ .综上所述,的值为或或或【解析】【分析】(1)由线段的和差关系,以及QB=2PC,BC=2AC,即可求解;(2)设AC=x,则BC=2x,∴AB=3x,D点分四种位置进行讨论,①当D在A点左侧时,②当D在AC之间时,③当D在BC之间时,④当D在B的右侧时求解即可.2.将一副直角三角尺按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B =45°,直角顶点C保持重合).(1)①若∠DCE=45°,则∠ACB的度数为________.②若∠ACB=140°,则∠DCE的度数为________.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)将三角尺BCE绕着点C顺时针转动,当∠ACE<180°,且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(并写明此时哪两条边平行,但不必说明理由);若不存在,请说明理由.【答案】(1)135°;40°(2)∠ACB+∠DCE=180°.理由如下:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+∠ECB=90°+90°=180°.(3)(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,CD∥BE;当∠ACE=165°时,AD∥BE.【解析】【解答】(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°-45°=45°,∴∠ACB=∠ACD+∠DCB=90°+45°=135°.②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°,∴∠DCE=90°-50°=40°.【分析】(1)①根据角的和差,由∠DCB=∠BCE-∠DCE,即可算出∠DCB的度数,进而根据∠ACB=∠ACD+∠DCB即可算出答案;②根据角的和差,由∠DCB=∠ACB-∠ACD算出∠DCB的度数,再根据∠DCE=∠ECB-∠DCB即可算出答案;(2)∠ACB+∠DCE=180°.理由如下:根据角的和差得出∠ACB=∠ACD+∠DCB=90°+∠DCB ,故由∠ACB+∠DCE=90°+∠DCB+∠DCE =90°+∠ECB 即可算出答案;(3)存在.当∠ACE=30°时,根据内错角相等二直线平行得出AD∥BC;当∠ACE=45°时,内错角相等二直线平行得出AC∥BE;当∠ACE=120°时,根据同旁内角互补,二直线平行得出AD∥CE;当∠ACE=135°时,根据内错角相等二直线平行得出CD∥BE;当∠ACE =165°时,根据同旁内角互补,二直线平行得出AD∥BE.3.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上.点P、点Q 是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.(1)当点P、Q分别在线段AC、BC的中点时,线段PQ=________厘米;(2)若AC=6厘米,点P、点Q分别从点C、点B同时出发沿射线BA方向运动,当运动时间为2秒时,求PQ的长;(3)若AC=4厘米,点P、Q分别从点C、点B同时出发在直线AB上运动,则经过多少时间后线段PQ的长为5厘米.【答案】(1)6(2)解:如图2,当t=2时,BQ=2×2=4,则CQ=6-4=2.因为CP=2×1=2,所以PQ=CP+CQ=2+2=4(厘米)(3)解:设运动时间为t秒.①如图3,当点P、Q沿射线BA方向运动,若点Q在点P的后面,得:t+8-2t=5,解得t=3,②如图4,当点P、Q沿射线BA方向运动,若点Q在点P前面,得:2t-8-t=5,解得t=13.③如图5,当点P、Q在直线上相向运动,点P、Q在相遇前,得:t+2t=3,解得t=1.④如图6,当点P、Q在直线上相向运动,点P、Q在相遇后,得:t+2t=13,解得t= .综合可得t=1,3,13, .所以经过1,3,13,秒后PQ的长为5厘米.【解析】【解答】(1)如图1,因为AB=12厘米,点C在线段AB上,所以,当点P、Q分别在线段AC、BC的中点时,线段PQ= AB=6.故答案为:6;【分析】(1)由线段中点的定义可得CP= AC,CQ= CB,所以PQ= AC+ CB= AB,把AB的值代入计算即可求解;(2)由路程=速度时间可求出BQ和CQ、CP的值,则PQ=CP+CQ可求解;(3)由题意可分4种情况求解:① 当点P、Q沿射线BA方向运动,若点Q在点P的后面,由图可列关于时间的方程求解;②当点P、Q沿射线BA方向运动,若点Q在点P前面,由图可列关于时间的方程求解;③当点P、Q在直线上相向运动,点P、Q在相遇前,由图可列关于时间的方程求解;④ 当点P、Q在直线上相向运动,点P、Q在相遇后,由图可列关于时间的方程求解。

人教版初一数学七年级数学上册练习题【附答案】

人教版初一数学七年级数学上册练习题【附答案】

人教版七年级数学上册精品练习题(附答案)有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。

9、绝对值大于1而小于4的整数有____________,其和为_________。

10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。

11、若0|2|)1(2=++-b a ,则b a +=_________。

12、数轴上表示数5-和表示14-的两点之间的距离是__________。

13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。

14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为() (A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………()A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。

人教版七年级上册数学课后习题答案全集

人教版七年级上册数学课后习题答案全集

习题1.1第2题答案(1)0.08 m表示水面高于标准水位0.08 m;-0.2 m表示水面低于标准水位0.2 m(2)水面低于标准水位0.1 m,记作-0.1 m;高于标准水位0.23 m,记作+0.23 m(或0.23 m)习题1.1第3题答案不对O既不是正数,也不是负数习题1.1第4题答案表示向前移动5m,这时物体离它两次移动前的位置为Om,即回到了它两次移动前的位置习题1.1第5题答案这七次测量的平均值为(79.4+80.6+80.8+79.1+80+79.6+80.5)/7=80(m)以平均值为标准,七次测量的数据用正数、负数表示分别为:-0.6 m,+0.6 m,+0.8 m,-0.9 m,Om,-0.4m十0.5m习题1.1第6题答案氢原子中的原子核所带电荷可以用+1表示,氢原子中的电子所带电荷以用-1表示习题1.1第7题答案由题意得7-4-4= -1(℃)习题1.1第8题答案中国、意大利服务出口额增长了;美国、德国、英国、日本服务出日额减少了;意大利增长率最高;日本增长率最低习题1.2第1题答案正数:{15,0. 15,22/5,+20,…)负数:{-3/8,-30,-12.8,-60,…}习题1.2第2题答案如下图所示:习题1.2第3题答案当沿数轴正方向移动4个单位长时,点B表示的数是1当沿数轴反方向移动4个单位长时,点B表示的数是-7习题1.2第4题答案各数的相反数分别为4,-2,1.5,0,-1/3,9/4在数轴上表示如下图所示:习题1.2第5题答案丨-125丨=125,丨+23丨=23,丨-3.5丨=3.5,丨0丨=0,丨2/3丨=2/3,丨-3/2丨=3/2,丨-0.05丨=0.05-125的绝对值最大,0的绝对值最小习题1.2第6题答案-3/2<-2/3<-1/2<-0.25<-0.15<0<0.05<+2.3习题1.2第7题答案各城市某年一月份的平均气温(℃)按从高到低的顺序排列为:13.1;3.8;2.4;-4.6;-19.4习题1.2第8题答案因为丨+5丨=5,丨-3.5丨=3.5,丨+0.7丨=0.7,丨-2.5丨=2.5,丨-0.6丨=0.6所以从左向右数,第五个排球的质量最接近标准习题1.2第9题答案-9.6%最小;增幅是负数说明人均水资源占有量在下降习题1.2第10题答案表示数1的点与表示-2和4的点的距离相等,都是3 习题1.2第11题答案(1)有;如-0.1,-0.12,-0.57,…有;如-0. 15,-0. 42,-0. 48,…(2)有,-2;-1,0,1(3)没有(4)如:-101,-102,-102.5习题1.2第12题答案不一定,x还可能是-2;x=0;x=0习题1.3第1题答案(1)-4(2)8(3)-12(4)-3(5)-3.6(6)-1/5(7)1/15(8)-41/3习题1.3第2题答案(1)3(2)0(3)1.9(4)-1/5(1)-16(2)0(3)16(4)0(5)-6(6)6(7)-31(8)102(9)-10.8(10)0.2习题1.3第4题答案(1)1(2)1/5(3)1/6(4)-5/6(5)-1/2(6)3/4(7)-8/3(8)-8习题1.3第5题答案(1)3.1(2)3/4(3)8(4)0.1(5)-63/4(6)0两处高度相差:8 844.43 -(- 415)=9 259.43(m)习题1.3第7题答案半夜的气温为:-7+11- 9=-5(℃)习题1.3第8题答案解:132-12.5-10.5+127-87+136.5+98=383.5(元)答:一周总的盈亏情况是盈利383.5元习题1.3第9题答案解:25×8+1.5-3+2-0.5+1-2-2-2.5=200-5.5=194. 5(kg) 答:这8筐白菜一共194.5 kg习题1.3第10题答案解:各天的温差如下:星期一:10-2=8(℃)星期二:12-1=11(℃)星期三:11-0 =11(℃)星期四:9-(-1)=10(℃)星期五:7-(-4)=11(℃)星期六:5-(-5)=10(℃)星期日:7-(-5)=12(℃)答:星期日的温差最大,星期一的温差最小习题1.3第11题答案(1)16(2)(-3)(3)18(4)(-12)(5)(-7)(6)7习题1.3第12题答案解:(-2)+(-2)=-4(-2)+(-2)+(-2)=-6(-2)+(-2)+(-2)+(-2)=-8(-2)+(-2)+(-2)+(-2)+(-2)=-10(-2)×2=4,(-2)×3=-6(-2)×4=8,(-2)×5=-10法则:负数乘正数积为负,积的绝对值等于两个数的绝对值的积习题1.3第13题答案解:第一天:0. 3-(-0.2)=0.5(元)第二天:0.2-(-0.1)=0.3(元)第三天:0-(-0.13)=0.13(元)平均值:(0.5+0.3+0.13)÷3=0.31(元)题1.4第1题答案(1)(-8)×(-7)=56(2)12×(-5)=-60(3)2.9×(-0.4)=-1.16(4)-30.5×0.2=-6.1(5)100×(-0.001)=-0.1(6)-4.8×(-1.25)=6习题1.4第2题答案(1)1/4×(-8/9)=-2/9(2)(-5/6)×(-3/10)=1/4(3)-34/15×25=-170/3(4)(-0.3)×(-10/7)=3/7习题1.4第3题答案(1)-1/15(2)-9/5(3)-4(4)100/17(5)4/17(6)-5/27习题1.4第4题答案(1)-91÷13=-7(2)-56÷(-14) =4(3)16÷(-3)=-16/3(4)(-48)÷(-16)=3(5)4/5÷(-1)=-4/5(6)-0.25÷3/8=-2/3习题1.4第5题答案-5,-1/5,-4,6,5,1/5,-6,4习题1.4第6题答案(1)(-21)/7=-3(2)3/(-36)=-1/12(3)(-54)/(-8)=27/4(4)(-6)/(-0.3)=20习题1.4第7题答案(1)-2×3×(-4)=2×3×4=24(2)-6×(-5)×(-7)=-6×5×7=-210(3)(-8/25)×1.25×(-8)=8/25×8×5/4=16/5(4)0.1÷(-0.001)÷(-1)=1/10×1 000×1=100(5)(-3/4)×(-1 1/2)÷(-2 1/4)=-3/4×3/2×4/9=-1/2(6)-6×(-0.25)×11/14=6×1/4×11/14=33/28(7)(7)×(-56)×0÷(-13)=0(8)-9×(-11)÷3÷(-3)=-9×11×1/3×1/3=-11习题1.4第8题答案(1)23×(-5)-(-3)÷3/128=-115+3×128/3=-115+128=13(2)-7×(-3)×(-0.5)+(-12)×(-2.6)=-7×3×0.5+12×2.6=-10.5+31.2=20.7(3)(13/4-7/8-7/12)÷(-7/8)+(-7/8)÷(13/4-7/8-7/12)=(7/4-7/8-7/12)×(-8/7)+(-7/8)÷7/24=7/24×(-8/7)-3=-31/3(4)-丨-2/3丨-丨-1/2×2/3 丨-丨1/3-1/4丨-丨-3丨=-2/3-1/3-1/12-3=-49/12习题1.4第9题答案(1)(-36)×128÷(-74)≈62.27(2) -6.23÷(-0.25)×940=23 424.80(3) -4.325×(-0.012) -2.31÷(-5.315)≈0.49(4)180.65-(-32)×47.8÷(-15.5)≈81.97(1)7 500(2)-140(3)200(4)-120习题1.4第11题答案解:450+20×60-12×120=210(m)答:这时直升机所在高度是210m习题1.4第12题答案(1)<,<(2)<,<(3)>,>(4)=,=习题1.4第13题答案2,1,-2,-1一个非0有理数不一定小于它的2倍,因为一个负数比它的2倍大习题1.4第14题答案(-2+3)a习题1.4第15题答案-2,-2,2(1)(2)均成立,从它们可以总结出:分子、分母以及分数这三者的符号,改变其中两个,分教的值不变复习题1第1题答案如下图所示:-3.5<-2<-1.6<-1/3<0<0.5<2<3.5将整数x的值在数轴上表示如下图所示:复习题1第3题答案a=-2的绝对值、相反数和倒数分别为:2,2,-1/2b=-2/3的绝对值、相反数和倒数分别为:2/3,2/3,-3/2c=5.5的绝对值、相反数和倒数分别为:5.5、-5.5,2/11复习题1第4题答案互为相反数的两数的和是0;互为倒数的两数的积是1复习题1第5题答案(1)100(2)-38(3)-70(4)-11(5)96(6)-9(7)-1/2(8)75/2(9)(-0.02)×(-20)×(-5)×4.5=-0. 02×4.5×20×5=-0.09×100=-9(10)(-6.5)×(-2)÷(-1/3)÷(-5)=6.5×2×3×1/5=7.8(11)6+(-1/5)-2-(-1.5)=6-0.2-2+1.5=5.3(12)-66×4-(-2.5)÷(-0.1)=-264-25=-289(13)(-2)2×5-(-2)3÷4=4×5-(-8)÷4=20-(-2)=22(14) -(3-5) +32×(1-3)=-(-2)+9×(-2)=2+(-18)=-16复习题1第6题答案(1)245.635≈245.6(2)175.65≈176(3)12.004≈12.00(4)6.5378≈6.54复习题1第7题答案(1)100000000=1×108(2)-4500000=-4.5×106(3)692400000000=6.924×1011复习题1第8题答案(1)-2-丨-3 丨=-2-3=-5(2)丨-2-(-3)丨=丨-2+3丨=1复习题1第9题答案(82+83+78+66+95+75+56+93+82+81)÷10=791÷10=79.1复习题1第10题答案C复习题1第11题答案解:星期六的收入情况表示为:458-[-27.8+(-70.3)+200+138.1+(-8)+188]=458-420=38因为38>0所以星期六是盈余的,盈佘了38元复习题1第12题答案解:(60-15)×0.002 =0. 09 (mm)(5-60)×0.002=-0.11(mm)0.09-0.11=-0.02(mm)答:金属丝的长度先伸长了0.09 mm,又缩短了0.11mm,最后的长度比原长度伸长了-0.02mm解:1.4960亿km=1.4960×108km答:1个天文单位是1.4960×108km复习题1第14题答案(1)当a=1/2时,a的平方为1/4,a的立方为1/8,所以a大于a的平方大于a的立方,即a>a2>a3(0<a<1)< p>(2)当b=-1/2时,b的平方为1/4,b的立方为-1/8,所以b的平方大于b的立方大于b,即b2>b3>b(-1<b<o)< p>复习题1第15题答案特例归纳略(1)错,如:0的相反数是0(2)对,因为任何互为相反数的两个数的同—偶数次方符号相同,绝对值相等(3)错,对于一个正数和一个负数来说,正数大于负数,正数的倒数仍大于这个负数的倒数,如2和-3,2>-3,1/2>-1/3复习题1第16题答案1;121;12 321;1 234 321(1)它们有一个共同特点:积的结果各数位上的数字从左到右由1开始依次增大1,当增大到乘式中一个乘数中1的个数后,再依次减小1,直到1(2)12 345 678 987 654 321(1)(t+5)℃(2)3(x-y)km或(3x-3y)km(3)(100-5x)(4)(πR2a-πr2a)cm3习题2.1第3题答案习题2.1第4题答案(1)年数每增加一年,树高增加5cm(2)(100+5n)cm习题2.1第5题答案第2排有(a+1)个座位第3排有(a+2)个座位第n排的座位数为(a+n-1)20+19-1=38(个)习题2.1第6题答案解:V=(1/2a2-πr2)h(cm3)当a=6cm,r=0.5cm,h=0.2cm时V≈(1/2×62-3×0.52)×0.2=3.45(cm3)习题2.1第7题答案(1)2n(2)2n+1或(2n-1)3个球队比赛,总的比赛场数是[3(3-1)]/2=34个球队比赛,总的比赛场数是[4(4-1)]/2=65个球队比赛,总的比赛场数是[5(5-1)]/2=10n个球队比赛,总的比赛场数是[n(n-1)]/2习题2.1第9题答案密码L dp d jlou,破译它的“钥匙”x-3密码的意思是“I am a girl”(注:此题答案不唯一,合理即可)习题2.2第1题答案(1)2x-10.3x=(2-10.3)x=-8.3x(2)3x-x-5x=(3-1-5)x=-3x(3)-b+0.6b-2.6b=(-1+0.6-2.6)b=-3b(4)m-n2+m-n2=(1+1)m+(-1-1)n2=2m-2n2习题2.2第2题答案(1)2(4x-0.5)=8x-1(2)-3(1-1/6x)=-3+1/2x(3)-x+(2x-2)-(3x+5)=-x+2x-2-3x-5=-2x-7(4)3a2+a2-(2a2-2a)+(3a-a2)=3a2+a2-2a2+2a+3a-a2=a2+5a习题2.2第3题答案(1)原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)原式=8xy-x2+y2-x2+ y2-8xy=-2x2+2 y2(3)原式=2x2-1/2+3x-4x+4x2-2=6x2-x-5/2(4)原式=3x2-(7x-4x+3-2x2)=3x2-7x+4x-3+2x2=5x2-3x-3习题2.2第4题答案(-x2+5+4x)+(5x-4+2x2)=-x2+5+4x+5x-4+2x2=x2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13(1)比a的5倍大4的数为5a+4,比a的2倍小3的数是2a-3(5a+4)+(2a-3)=5a+4+2a-3=7a+1(2)比x的7倍大3的数为7x+3,比x的6倍小5的数是6x-5(7x+3)-(6x-5)=7x+3-6x+5=x+8习题2.2第6题答案解:水稻种植面积为3ah m2,玉米种植面积为(a-5)h m23a-(a-5)=3a-a+5=(2a+5)(h m2)习题2.2第7题答案(1)πa2/2+4a2=(π+8)/2a2 (cm2)(2)πa+2a×3=πa+6a=(π+6)a(cm)习题2.2第8题答案3(a+y)+1.5(a-y)=3a+3y+1.5a-1.5y=4.5a+1.5y习题2.2第9题答案17a,20a,…,(3n+2)a习题2.2第10题答案S=3+3(n-2)=3n-3当n=5时,S=3×5-3=12当n=7时,S=3×7-3=18当n=11时,S=3×11-3=30习题2.2第11题答案(1)10b+a(2)10(10b+a)(3)10b+a+10(10b+a)=11(10b+a)这个和是11的倍数,因为它含有11这个因数习题2.2第12题答案36a2;cm2复习题2第1题答案(1)(t+15)°C(2)nc元,(100- nc)元(3)0.8b元,(0. 8b-10)元(4)a/30m,1 500 m,(a/30-1 500)m复习题2第2题答案复习题2第3题答案(1)-2x2y(2)10. 5y2(3)0(4)-1/12mn+7(5)8ab2+4(6)3x3-2x2复习题2第4题答案(1)原式=4a3 b-10b3-3a2 b2 +10b3=4a3 b- 3a22b2(2)原式=4x2 y-5xy2-3x2y+4xy2=x2y-xy2(3)原式=5a2-(a2+5a2-2a-2a2+6a)=5a2-a2-5a2+2a+2a2-6a=a2-4a(4)原式=15+3-3a-1+a+a2+1-a+a2-a3=18-3a+2a2-a3(5)原式=4a2b-3ab-5a2b+2ab=a2b-ab(6)原式=6m2-4m-3+2m2-4m+1=8m2-8m-2(7)原式=5a2+2a-1-12+32a-8a2=-3a2+34a-13(8)原式=3x2-(5x-1/2x+3+2x2)=3x2-5x+1/2x-3-2x2=x2-9/2x-3 复习题2第5题答案解:原式=(5-3-2)x2+(-5+6)x-1=x-1当x=-3时原式=-3-1=-4复习题2第6题答案(1)5/2(2)(x+y)/10复习题2第7题答案(h+20)m(h-30)m(h+20)-(h-30)=h+20-h+30=50(m)复习题2第8题答案S长方形=2x×4=8x(cm2)S梯形=1/2(x+3x)×5=10x(cm2)S梯形>S长方形S梯形-S长方形=10x-8x-2x(cm2)复习题2第9题答案解:2πr×2-(2πr+2π×r/2+2π×r/6+2π×r/3)=0因此所需材料一样多复习题2第10题答案解:a×(1+22%)=1.22a(元)1.22a×85%=1.037a(元)1.037a-a=0.037a(元)答:按成本增加22%定出价格,每件售价1. 22a元;按原价的85%出售,现售价1.037a元;每件还能盈利0.037a元复习题2第11题答案解:10a+b;10b+a;(10b+a)+(10a+b) =11(a+b)答:这个数能被11整除复习题2第12题答案(1)原式=(4+2-1)(0+6)=5(a+b)= 5a+5b(2)原式=(3+8)(z+y)2+(-7+6)·(x+y)=11(x+y)2-(x+y)习题3.1第1题答案(1)a+5=8(2)1/3b=9(3)2x+10=18(4)1/3x-y=6(5)3a+5=4a(6)1/2b-7=a+b习题3.1第2题答案(1)a+b=b+a(2)a·b=b·a(3)a·(b+c)=a.b+a·c(4)(a+b)+c=a+(b+c)习题3.1第3题答案x=3是方程(3)3x-2=4+x的解x=0是方程(1)5x+7=7-2x的解x=-2是方程(2)6x-8=8x-4的解习题3.1第4题答案(1)x=33(2)x=8(3)x=1(4)x=1习题3.1第5题答案解:设七年级1班有男生x人,有女生(4/5x+3)人,则x+(4/5x+3)=48 习题3.1第6题答案解:设获得一等奖的学生有x人,则200x+50(22-x) =1400习题3.1第7题答案解:设去年同期这项收入为x元,则x·(1+8.3%)=5 109习题3.1第8题答案解:设x个月后这辆汽车将行驶20 800 km,则12 000+800x=20 800习题3.1第9题答案解:设内沿小圆的半径为x cm,则102π-πx2=200习题3.1第10题答案解:设每班有x人,则10x=428+22习题3.1第11题答案10x+1-(10+x)=18,x=3习题3.2第1题答案(1)x=2(2)x=3(3)y=-1(4)b=18/5习题3.2第2题答案例如:解方程5x+3=2x,把2x改变符号后移到方程左边,同时把3改变符号后移到方程右边,即5x-2x=-3,移项的根据是等式的性质1习题3.2第3题答案(1)合并同类项,得4x=-16.系数化为1,得x=-4(2)合并同类项,得6y=5.系数化为1,得y=5/6(3)移项,得3x-4x=1-5.合并同类项,得-x=-4.系数化为1,得x=4(4)移项,得-3y-5y=5-9.合并同类项,得-8y=-4.系数化为1,得y=1/2习题3.2第4题答案(1)根据题意,可列方程5x+2=3x-4.移项,得5x-3x=-4-2.合并同类项,得2x=-6.系数化为1,得x=-3(2)根据题意,可列方程-5y=y+5.移项,得-5y-y=5.合并同类项,得-6y=5.系数化为1,得y=-5/6习题3.2第5题答案解:设现在小新的年龄为x.根据题意,得:3x=28+x移项,得2x=28系数化为1,得x=14答:现在小新的年龄是14习题3.2第6题答案解:设计划生产I型洗衣机x台,则计划生产Ⅱ型洗衣机2x台,计划生产Ⅲ型洗衣机14x台.根据题意得:x+2x+14x=25 500合并同类项,得17x=25 500系数化为1,得x=1 500因此2x=3 000,14x=21 000答:这三种型号洗衣机计划分别生产1 500台、3 000台、21 000台习题3.2第7题答案解:设宽为xm,则长为1.5xm根据题意,得2x+2×1.5x=60合并同类项,得5x=60系数化为1,得x=12所以1.5x=18答:长是18m,宽是12m习题3.2第8题答案(1)设第一块实验田用水xt,则第二块实验田用水25%xt,第三块实验田用水15%xt(2)根据(1),并由题意得:x+25 %x+15 %x=420合并同类项,得1.4x= 420系数化为1,得x=300.所以25%x=75,15%x=45答:第一块实验田用水300t,第二块实验田用水75t,第三块实验田用水45t习题3.2第9题答案解:设它前年10月生产再生纸xt,则去年10月生产再生纸(2x+150)t.根据题意得:2x+150=2 050移项,合并同类项,得2x=1 900系数化为1,得x=950答:它前年10月生产再生纸950 t习题3.2第10题答案在距一端35cm处锯开习题3.2第11题答案解:设参与种树的人数是x.根据题意得:10x+6=12x-6移项,得10x-12x=-6-6合并同类项,得-2x=-12系数化为1,得x=6答:参与种树的人数是6习题3.2第12题答案解:设相邻三行里同一列的三个日期数分别为x-7,x,x+7根据题意,假设三个日期数之和能为30,则(x-7)+x+(x+7)=30去括号,合并同类项,得3x=30系数化为1,得x=10x=10符合题意,假设成立x-7=10-7=3,x+7=10+7=17所以相邻三行里同一列的三个日期数之和能为30.这三个数分别是3,10,17习题3.2第13题答案方法1:设这个两位数的个位上的数为x,则十位上的数为(3x+1),这个两位数为:10( 3x+1)+x根据题意,得x+(3x+1)=9解这个方程,得x=23x+1=3×2+1=7这个两位数为10 (3x+1)+x=10×7+2=72答:这个两位数是72方法2:设这个两位数的个位上的数为x,则十位上的数为(9-x),这个两位数为10(9 -x)+x 根据题意,得3x+1=9-x解这个方程,得x=2这个两位数为10(9 - x) +x=10×(9 -2)+2=72答:这个两位数是72习题3.3第1题答案(1)a=-2(2)b-1(3)x=2(4)y=-12习题3.3第2题答案(1)去括号,得2x+16=3x-3.移项、合并同类项,得-x=-19.系数化为1,得x=19(2)去括号,得8x=-2x-8.移项、合并同类项,得10x=-8.系数化为1,得x=-4/5(3)去括号,得2x-2/3x-2=-x+3.移项、合并同类项,得7/3x=5.系数化为1,得x=15/7(4)去括号,得20-y=-1. 5y-2.移项、合并同类项,得0. 5y=-22.系数化为1,得y=-44习题3.3第3题答案(1)去分母,得3(3x+5)=2(2x-1).去括号,得9x+15=4x-2.移项、合并同类项,得5x= -17.系数化为1,得x=-17/5.(2)去分母,得-3(x-3) =3x+4.去括号,得-3x+9=3x+4.移项、合并同类项,得6x=5.系数化为1,得x=5/6.(3)去分母,得3(3y-1)-12=2(5y-7).去括号,得9y-3-12=10y-14.移项、合并同类项,得y=-1.(4)去分母,得4(5y+4)+3(y-1)=24-(5y- 5).去括号,得20y+16+3y-3=24-5y+5.移项、合并同类项,得28 y=16.系数化为1,得y=4/7习题3.3第4题答案(1)根据题意得:1.2 (x+4)=3.6(x-14)去括号得:1.2x+4.8=3.6x-50.4移项,得1. 2x-3.6x=-50.4-4.8合并同类项,得-2.4x= -55.2系数化为1,得x=23(2)根据题意得:1/2(3y+1.5)=1/4(y-1)去分母(方程两边乘4)得:2(3y+1.5)=y-1去括号,得6 y+3=y-1移项,得6y- y= -1-3合并同类项,得5y=-4系数化为1,得y=-4/5习题3.3第5题答案解:设张华登山用了x min,则李明登山所用时间为(x-30)min根据题意得:10x=15(x-30)解得x=90山高10x=10×90=900(m)答:这座山高为900m习题3.3第6题答案解:设乙车的速度为xkm/h,甲车的速度为(x+20) km/h根据题意得:1/2x+1/2(x+20)=84解得x=74x+20=74+20=94答:甲车的速度是94 km/h,乙车的速度是74 km/h习题3.3第7题答案(1)解:设无风时这架飞机在这一航线的平均航速为x km/h,则这架飞机顺风时的航速为(x+24)km/h,这架飞机逆风时的航速为(x-24)km/h根据题意,得2.8(x+24)=3(x-24)解这个方程,得x=696(2)两机场之间的航程为2.8(x+24) km或3(x-24)km所以3(x-24)=3×(696-24)=2 016(km)答:无风时这架飞机在这一航线的平均航速为696 km/h两机场之间的航程是2 016 km习题3.3第8题答案蓝布料买了75m,黑布料买了63m习题3.3第9题答案解:设每个房间需要粉刷的墙面面积为x m2,则(8x-50)/3=(10x+40)/5+10,解得x=52答:每个房间需要刷粉的墙面面积为52m2习题3.3第10题答案解:从10时到12时王力、陈平两人共行驶36+36=72(km),用时2h,所以从8时到10时王力、陈平用时2h也行驶72 km,设A,B两地间的路程为z km,则x-72=36,得x=108答:A,B两地间的路程为108 km解:设两地间的路程为x km,上午10时,两人走的路程为(x-36)km,速度和为(x-36)/2km/h,中午12时,两人走的路程为(x+36) km,速度和为(x+36)/4km/h,根据速度和相等列方程,得(x-36)/2=(x+36)/4,得x=108答:A,B两地之间的路程为108 km习题3.3第11题答案(1)设火车的长度为xm,从车头经过灯下到车尾经过灯下火车所走的路程为xm,这段时间内火车的平均速度为x/10m/s(2)设火车的长度为xm,从车头进入隧道到车尾离开隧道火车所走的路程为(300+x)m,这段时间内火车的平均速度为((300+x)/20)m/s(3)在这个问题中火车的平均速度没有发生变化(4)根据题意,可列x/10=(300+x)/20,解得x= 300,所以这列火车的长度为300m习题3.4第1题答案略习题3.4第2题答案解:设计划用x m3的木材制作桌面,(12-x)m3的木材制作桌腿,才能制作尽可能多的桌子根据题意得:4×20x=400(12-x)解得x=10,12–x=12-10=2答:计划用10m3的木材制作桌面,2m3的木材制作桌腿才能制作尽可能多的桌子习题3.4第3题答案解:设甲种零件应制作x天,乙种零件应削作(30-x)天根据题意得:500x=250(30-x)解得x=10,30-x=30-10=20答:甲种零件应制作10天,乙种零件应制作20天习题3.4第4题答案解:设共需要x h完成,则(1/7.5+1/5)+1/5(x-1)=1解得x=13/3,13/3h=4h 20min答:如果让七、八年级学生一起工作1h,再由八年级学生单独完成剩余部分,共需4h 20min习题3.4第5题答案解:设先由x人做2h,则x/80×2+(x+5)/80×8=3/4解得x=2,x+5=7(人)答:先安排2人做2 h,再由7人做8h,就可以完成这项工作的3/4习题3.4第6题答案解:设这件衣服值x枚银币,则(x+10)/12=(x+2)/7,解得x=9.2答:这件衣服值9.2枚银币习题3.4第7题答案解法1:设每台B型机器一天生产x个产品,则每台A型机器一天生产(x+1)个产品根据题意,得(5(x+1)-4)/8=(7x-1)/11,解得x=19,因此(7×19-1)/11=12(个)答:每箱装12个产品解法2:设每箱装x个产品,根据“每台A型机器一天生产的产品=每台B型机器一天生产的产品+1”根据题意列方程,得(8x+4)/5=(11x+1)/7+1.解得x=12答:每箱装12个产品习题3.4第8题答案(1)由题意知时间增加5min,温度升高15℃,所以每增加1 min,温度升高3℃,则21 min时的温度为10+21X3=73(℃)(2)设时间为x min,列方程3x+10=34,解得x=8习题3.4第9题答案解:设制作大月饼用x kg面粉,制作小月饼用(4 500 - x) kg面粉,才能生产最多的盒装月饼根据题意得:(x/0.05)/2=((4 500-x)/0.02)/4化简,得8x=10(4 500-x)解得x=2 5004 500-x=4 500-2 500=2 000答:制作大月饼应用2 500 kg面粉,制作小月饼用2 000 kg面粉,才能生产最的盒装月饼习题3.4第10题答案解:设相遇时小强行进的路程为x km,小刚行进的路程为(x+24) km,小强行进的速度为x/2km/h,小刚行进的速度为(x+24)/2km/h根据题意得:(x+24)/2×0.5=x解得x=8所以x/2=8/2=4,(x+24)/2=(8+24)/2=16相遇后小强到达A地所用的时间为:(x+24)/4=(8+24)/4=8答:小强行进的速度为4 km/h.小刚行进的速度为16 km/h.相遇后经过8h小强到达A地习题3.4第11题答案解:设销售量要比按原价销售时增加x%.根据题意得:(1-20%)(1+x%)=1解得x=25答:销售量要比按原价销售时增加25%习题3.4第12题答案(1)设此月人均定额是x件,则(4x+20)/4=(6x-20)/5,解得x=45答:此月人均定额是45件(2)设此月人均定额为y件,则(4y+20)/4=(6y-20)/5+2,解得y=35答:此月人均定额是35件(3)设此月人均定额为z件,则(4z+20)/4=(6z-20)/5-2,解得z=55.答:此月人均定额是55件习题3.4第13题答案(1)设丢番图的寿命为x岁,则1/6 x+ 1/12 x+ 1/7 x+5+ 1/2 x+4=x,解得x=84所以丢番图的寿命为84岁(2)1/6x+1/12x+1/7x+5=38(岁),所以丢番图开始当爸爸时的年龄为38岁(3)x-4=80,所以儿子死时丢番图的年龄为80岁复习题3第1题答案(1)t-2/3t=10(2)(n-110)/n×100%=45%或(1-45%)n=110(3)1.1a-10=210(4)60/5-x/5=2复习题3第2题答案(1)移项,得-8x+11/2x=3-4/3.合并同类项,-5/2x= 5/3.系数化为1,得x=-2/3(2)移项,得0.5x+1.3x=6.5+0.7.合并同类项,得1.8x=7.2.系数化为1,得x=4(3)去括号,得1/2x-1=2/5x-3.移项,得1/2x-2/5x=-3+1.合并同类项,得1/10x=-2.系数化为1,得x=-20(4)去分母,得7(1-2x)=3(3x+1)-63.去括号,得7-14x=9x+3-63.移项、合并同类项,得-23x=-67.系数化为1,得x=67/23复习题3第3题答案(1)根据题意得:x-(x-1)/3=7+(x+3)/5去分母得:15x-5(x-1)=105-3(x+3)去括号得:15x- 5x+5=105-3x-9移项、合并同类项,得13x=91系数化为1,得x=7∴当x=7时,x-(x-1)/3的值与7 -(x+3)/5的值相等(2)根据题意得:2/5 x+ (-1)/2=(3(x-1))/2-8/5 x,去分母(方程两边同乘10)得:4x+5 (x-1)=15 (x-1)-16x去括号得:4x+5x-5=15x-15-16x移项得:4x+5x-15x+16x=-15+5合并同类项,得10x=-10系数化为1,得x=-1复习题3第4题答案解:梯形面积公式s=1/2(n+6)h(1)当S=30,a=6,h=4时,30=1/2(6+b)×4去括号,得12十2b=30移项、合并同类项,得2b=18系数化为1,得b=9(2)当S=60,b=4,h=12时,60=1/2(a+4)×12,去括号,得6a+24=60移项、合并同类项,得6a=36系数化为1,得a=6(3)当S=50,a=6,b=5/3a时,b=5/3a=5/3×6=10.50=1/2(6+10)×h去括号,得8h=50系数化为1,得h=25/4复习题3第5题答案解:设快马x天可以追上慢马,根据题意得:240x=150(12+x),解得x=20.答:快马20天可以追上慢马复习题3第6题答案解:设经过x min首次相遇,由题意得:350x+250x=400解得x=2/3答:经过2/3 min首次相遇,又经过2/3min再次相遇复习题3第7题答案解:设有x个鸽笼,原有(6x+3)只鸽子根据题意得:6x+3+5=8x解得x=46x+3=6×4+3=27答:原有27只鸽子和4个鸽笼复习题3第8题答案解:设女儿现在的年龄为x,则父亲现在的年龄为(91-x)根据题意,得2x-1/3(91-x) =91-x-x或2x-(91-x)=1/3(91-x)-x.解得x=28答:女儿现在的年龄是28复习题3第9题答案(1)参赛者F得76分,设他答对了x道题根据题中数据可知,参赛者答错一道题扣6分根据题意,得100-6(20-x)=76去括号,得100-120+6x= 76移项、合并同类项,得6x=96系数化为1,得x=16答:参赛者F得76分,他答对了16道题(2)参赛者G说他得80分,我认为不可能设参赛者G得80分时,他答对了y道题根据题意,得100-6(20-y)=80去括号,得100-120+6y=80移项、合并同类项,得6y=100系数化为1,得y=50/3因为y为正整数所以y=50/3不合题意所以参赛者G说他得80分,我认为不可能复习题3第10题答案解:设去游泳馆为x次,凭会员证去共付y1元,不凭证去共付y2元,所以y1=80+x,y2=3x(1)购会员证与不购会员证付一样的钱,即y1 =y2,即80+x= 3x,解得x= 40答:恰好去40次的情况下,购会员证与不购会员证付一样的钱(2)当所购入场券数大于40对,购会员证合算(3)当所购入场券数小于40时,不购会员证合算复习题3第11题答案解:设这个村今年种植油菜的面积是x h m2,去年种植油菜的面积是( x+3) h m2,则去年种植“丰收1号”油菜的产油量为:2400×40%×(x+3)今年种植“丰收2号”油菜的产油量为(2 400+300)×(40%+10%)x根据题意得:2 400×40%(x+3)=(2 400+300)×(40%+10%)x-3 750化简得:960(x+3)=2 700×0.5x-3 750去括号得:960x+2 880=1 350x-3 750移项、合并同类项得:-390x=-6 630系数化为1,得x=17x+3=17+3=20答:这个村去年种植油菜的面积是20 h m2,今年种植油菜的面积是17h m2习题4.1第1题答案如下图所示:习题4.1第2题答案球、长方体、正方体、圆柱等习题4.1第3题答案三角形、六边形、五边形、圆、正方形、长方形等如下表所示:习题4.1第5题答案A习题4.1第6题答案如下图所示(第一行图形分别用代码①②③④表示,第二行图形分别用代码a,b,c,d表示)习题4.1第7题答案第一行最后一个不是,其余的全是(图略)习题4.1第8题答案含有圆柱、长方体、棱锥等立体图形习题4.1第9题答案从不同的方向看立体图形得到的图形是不同的习题4.1第10题答案D习题4.1第11题答案依次为圆柱、五棱柱、圆锥、三棱柱习题4.1第12题答案如下图所示,取相邻两边BC,CD的中点E,F,沿虚线向同侧折叠,即可折叠出三棱锥习题4.1第13题答案(1)B(2)B、C(3)A略习题4.2第1题答案如笔直的公路可以看成一条直线;手电筒发出的光可以看成一条射线;连接两车站之间笔直的公路可以看成一条线段习题4.2第2题答案如下图所示:习题4.2第3题答案如下图所示,①是线段AB的延长线,②是线段AB的反向延长线习题4.2第4题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题4.2第5题答案提示:画一个边长为已知正方形边长的2倍的正方形即可,图略习题4.2第6题答案AB<ac< p>习题4.2第7题答案要掌握用度量法和圆规截取法比较线段的长短(1)A,B两地间的河道长度变短了(2)能更多地观赏湖面风光.增加了游人在桥上行走的路程,数学原理:两点之间,线段最短习题4.2第9题答案提示:作射线AB,在射线AB上戳取线段AC=a+2b,在线段CA上截取线段CE=C,则线段AE 为求作的线段.图略习题4.2第10题答案当点C在线段AB上时,AC=AB-BC=3-1=2(cm)当点C在线段AB的延长线上时,AC=AB+BC=3+1=4(cm)习题4.2第11题答案解:如下图所示:由于“两点之间,线段最短”,因此,蚂蚁要从顶点A爬行到顶点B,只需沿线段AB爬行即可.同样,如果要爬行到顶点C,有三种情况:若蚂蚁爬行时经过面AD,可将这个正方体展开,在展开图上连接AC,与棱a(或b)交于点D_1(或D_2),蚂蚁沿AD_1→D_1 C (或AD_2→D_2C)爬行,路线最短;类似地,蚂蚁经过面AB和AE爬行到顶点C,也分别有两条最短路线.因此,蚂蚁爬行的最短路线有6条习题4.2第12题答案两条直线相交,有1个交点三条直线相交,最多有3个交点四条直线相交,最多有6个交点规律:n条直线相交,最多有(n(n-1))/2个交点习题4.3第1题答案6h;12h习题4.3第2题答案略(1)116°10\\\\\\\\\\\\\\\'(2)106°25\\\\\\\\\\\\\\\'习题4.3第4题答案=,>习题4.3第5题答案解:因为BD和CE分别是∠ABC和∠ACB的平分线,所以∠ABC=2∠DBC=2×31°=62°,∠ACB=2∠ECB=62°所以∠ABC=∠ACB习题4.3第6题答案(1)∠AOC(2)∠AOD(3)∠BOC(4)∠BOD习题4.3第7题答案延长AO或BO,先量出∠AOB的补角的大小,再计算出∠AOB的大小习题4.3第8题答案(1)如下图所示,射线OA表示北偏西30°(2)如下图所示,射线OB表示南偏东60°(3)如下图所示,射线OC表示北偏东15°(4)如下图所示,射线OD表示西南方向(1)因为OB是∠AOC的平分线,且∠AOB=40°所以∠BOC=∠AOB=40°又因为OD是∠COE的平分线,且∠DOE= 30°所以∠DOC=∠DOE=30°所以∠BOD=∠BOC+∠COD=40°+30°=70°(2)因为∠COD=30°,OD平分∠COE所以∠COE=2∠COD=60°又因为∠AOE=140°所以∠AOC=∠AOE -∠COE=140°-60°-80°又因为OB平分∠AOC所以∠AOB=1/2∠AOC=×80°=40°习题4.3第10题答案解:360°÷15=24°;360°÷22≈16°22\\\\\\\\\\\\\\\'答:齿轮有15个齿时,每相邻两齿中心线间的夹角为24。

七年级上册数学练习册答案人教版

七年级上册数学练习册答案人教版

七年级上册数学练习册答案(人教版)第一单元:有理数一、选择题1. A2. C3. B4. A5. D二、填空题1.-22.83. 54.-35.7三、解答题1.(略,根据具体题目的要求)第二单元:代数式与简单方程一、选择题1. B2. D3. A4. C5. B二、填空题1.142.303.454.3x - 2y5.4x - 7三、解答题1.(略,根据具体题目的要求)第三单元:图形的初步认识一、选择题1. C2. D3. B4. A5. C二、填空题1.直线2.正方形3.180°4.等腰三角形5.360°三、解答题1.(略,根据具体题目的要求)第四单元:相交与平行线一、选择题1. B2. C3. A4. D5. B二、填空题1.60°2.平行线3.2x + 54.135°5.25°三、解答题1.(略,根据具体题目的要求)第五单元:角的计算一、选择题1. A2. D3. B4. C5. A二、填空题1.50°2.40°3.110°4.120°5.30°三、解答题1.(略,根据具体题目的要求)第六单元:一元一次方程一、选择题1. C2. A3. B4. D5. C二、填空题1.82. 43.164. 25. 3三、解答题1.(略,根据具体题目的要求)第七单元:数的运算一、选择题1. B2. A3. C4. D5. B二、填空题1.0.52. 2.53.-34.-4.55.12.5三、解答题1.(略,根据具体题目的要求)第八单元:周长与面积一、选择题1. A2. C3. B4. D5. A二、填空题1.162.133.204.165.36三、解答题1.(略,根据具体题目的要求)第九单元:比例与相似一、选择题1. B2. C3. A4. D5. B二、填空题1.2002. 6.43.244.365.18三、解答题1.(略,根据具体题目的要求)以上是《七年级上册数学练习册答案(人教版)》的部分内容,希望对大家的学习有所帮助。

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册第一章有理数章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.14D14-2.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.160 8×10104.某市一天上午的气温是10 ℃,下午上升了2 ℃,半夜(24时)下降了15 ℃,则半夜的气温是()A.3 ℃B.-3 ℃C.4 ℃D.-2 ℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()图1-1A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.-23-的倒数是()A. 32B.32- C.23 D. 23-7.下列运算错误的是()A.-8×2×6=-96B.(-1)2 014+(-1)2 015=0C.-(-3)2=-9D.2÷ 43× 34=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b<0C.(b-a)(a+1)>0D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____.12.已知有理数a,b,c在数轴上的位置如图1-3,且|a|=1,|b|=2,|c|=4,则a-b+c=_____.图1-313.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是____,最小的积是_____.14.已知a,b互为相反数,且|a-b|=6,则b-1=____.15.已知|x|=4,|y|=12,且xy<0,则xy的值等于_____.16.将640 000精确到十万位为_______,4.10×105精确到了_____位.17.定义一种新的运算“@”的法则为:x@y=xy-1,则(2@3)@4=______.18.计算:1+2-3-4+5+6-7-8+9+10-11-12+……-2007-2008+2009+2010-2011-2012+2013=______.三、解答题(共58分)19.(8分)如图1-4,一个单位长度表示2,解答下列问题:图1-4(1)若点B与点D所表示的数互为相反数,求点D所表示的数;(2)若点A与点D所表示的数互为相反数,求点D所表示的数;(3)若点B与点F所表示的数互为相反数,求点D所表示的数的相反数.20.(8分)计算:(1)1137(3)() 63412+-÷-+-;(2)-23+(-2)2×(-1)-(-2)4÷(-2)3;(3)11311()() 6841248--+-÷-;×(-12).(4)23292421.(10分)如图1-5,观察图形得1+3+5+7+9+11=()2,由此你能推出从1开始的n个连续奇数之和是多少吗?选择几个n的值,用计算器验证一下.图1-522.(10分)规定一种新的运算:a△b=ab-a-b+1,如3△4=3×4-3-4+1=6,试求(-5)△4的值.23.(10分)从图1-6中最小的数开始,由小到大依次用线段连接各数,并指出你所得图形的名称.图1-624.(12分)某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少答案一、1.A 2.A 3.C4.B 解析:根据题意可列算式为10+2-15=12-15=-3 (△).故选B.5.C 解析:(-0.1-0.3+0.2+0.3)+5×4=20.1(kg).故选C.6.B 解析:23-- =23-,23-的倒数为32-.故选B. 7.D 解析:2÷43×34 =2×34×34=98,故D 选项错误.故选D. 8.C 解析:由A ,B 两点在数轴上的位置可知,-1<a <0,b >1,所以ab <0,a +b >0,故A ,B 错误;因为-1<a <0,b >1,所以b -1>0,a +1>0,a -1<0,所以(b -a )(a +1)>0,(b -1)(a -1)<0,故C 正确,D 错误.故选C.9.D 解析:因为|a -1|+(b +3)2=0,所以a -1=0,b +3=0,所以a =1,b =-3,所以ba =(-3)1=-3.故选D.10.B 解析:2*1=2-1+2×1=1+2=3.故选B.二、11. -3 解析:由-1先向右平移6个单位长度到达点A ,再由点A 向左平移8个单位长度到达点B,则此时这个点表示的数是-1+6-8=-3.12. -7 解析:根据a,b,c在数轴上的位置可知b>0,c<0,a<0,再根据|a|=1,|b|=2,|c|=4可求出a,b,c的值,代入a-b+c进行计算即可.13. 75 -30 解析:根据题意知任取的三个数是-5,-3,5时,它们的积最大,是(-5)×(-3)×5=75.任取的三个数是-5,-3,-2时,它们的积最小,是(-5)×(-3)×(-2)=-30.14. 2或-4 解析:由a,b互为相反数,可得a+b=0,得a=-b.由|a-b|=6,得|-b-b|=6,|b|=3,所以b=±3.当b=3时,b-1=2;当b=-3时,b-1=-4.15. -8 解析:先根据xy<0确定xy的符号,再根据绝对值的定义求出x与y的比值即可.16. 6×105千17. 19 解析:根据运算法则x@y=xy-1知,(2@3)@4=(2×3-1)×4-1=19.18. 1 解析:原式=1+(2-3)+(-4+5)+(6-7)+(-8+9)+…+(2 006-2 007)+(-2 008+2 009)+(2 010-2 011)+(-2 012+2 013)=1.三、19.解:(1)因为点B与点D所表示的数互为相反数,且点B与点D之间有4个单位长度,每个单位长度为2,所以可得点D所表示的数为4.(2)因为点A与点D所表示的数互为相反数,且它们之间有5个单位长度,所以点D表示的数为5.(3)因为点B与点F所表示的数互为相反数,且它们之间有6个单位长度,可得C,D中间的点为原点,可得点D表示的数为2,它的相反数为-2.20.解:(1)原式=16+(-3)÷-16=16+3×6=1816.(2)原式=-8+(-4)-16÷(-8)=-8-4+2=-10.(3)原式=-16-18+34-112×(-48)=-16×(-48)-18×(-48)+34×(-48)-112×(-48)=8+6-36+4=-18.(4)原式=30-124×(-12)=30×(-12)-124×(-12)=-360+12=-35912.21.解:6;n2.验证略.22.解:根据题意,得(-5)△4=(-5)×4-(-5)-4+1=-20+5-4+1=-18.23.解:连数顺序为-193→-512→-4.9→-|-4.5|→-4→+(-1)→0→2→|-3|→-(-5)→|-6|→8.所得图形是小轿车.24.解:(1)250-9=241(辆).故本周六生产了241辆摩托车.(2)-5+7-3+4+10-9-25=-21<0,所以本周总产量与计划相比减少了21辆.产量最多的一天为周五,产量最少的一天多生产了35辆.与计划相比减少了21辆.第二章整式的加减章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列式子,不是整式的是( ) A .x y -12 B .37x C .x -11D .02.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .-2xy 2 B .3x 2 C .2xy 3 D .2x 33.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足( ) A .都小于5 B .都大于5 C .都不小于5 D .都不大于54.下列各组单项式,不是同类项的是( ) A .3x 2y 与-2yx 2 B .2ab 2与-ba 2 C .xy3与5xy D .23a 与32a 5.若单项式2x n y m -n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( ) A .3,9 B .9,9 C .9,3 D .3,3 6.-[x -(y -z )]去括号后应得( )A .-x +y -zB .-x -y +zC .-x -y -zD .-x +y +z 7.A ,B 都是五次多项式,则A -B 一定是( ) A .四次多项式 B .五次多项式 C .十次多项式 D .不高于五次的多项式8.已知a ,b 两数在数轴上对应的点的位置如图2-1,则化简式子|a+b |-|a -2|+|b+2|的结果是( )图2-18A .2a +2bB .2b +3C .2a -3D .-19.已知m -n =100,x+y =-1,则式子(n+x )-(m -y )的值是( )A .99B .101C .-99D .-10110.某商家在甲批发市场以每包m 元的价格购进了40包茶叶,又在乙批发市场以每包n 元(m >n )的价格购进了同样的茶叶60包,如果商家以每包m n +2元的价格卖出这种茶叶,那么卖完后,该商家( ) A .盈利了 B .亏损了 C .不盈不亏 D .盈亏不能确定 二、填空题(每小题4分,共32分)11.在多项式3x 2+πxy 2+9中,次数最高的项的系数是 .12.观察下列单项式:3a 2,5a 5,7a 10,9a 17,11a 26,…,它们是按一定规律排列的,那么这列式子的第n 个单项式是 .13.若多项式x 2-3kxy -3y 2+6xy -8不含xy 项,则k = . 14.写出一个只含有字母x ,y15.如果单项式-xy b +1与a x y -231216.在等式的括号内填上恰当的项,x 2-y 2+8y -4=x 2-( ). 17.已知P =2xy -5x +3,Q=x -3xy -2 且3P +2Q=5恒成立,则x = .18.如图2-2是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a+b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b )米,则王明家楼梯的竖直高度(即BC 的长度)为 米.图2-2三、解答题(共58分)19.(8分)计算:(1)-x+2(x-2)-(3x+5);(2)3a2b-2[ab2-2(a2b-2ab2)].xy△z△时,不小心把字母y,z的指数用墨水污染了,20.(8分)王佳在抄写单项式-23他只知道这个单项式的次数是5,你能帮助王佳确定这个单项式吗?21.(10分)已知-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,求a2-2a+1的值.22.(10分)化简求值:(1)把a-2b看作一个“字母”,化简多项式-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3,并求当a-2b=-1时的值.(2)已知|x-2|+(y-1)2=0,求x2+(2xy-3y2)-2(x2+xy-2y2)的值.23.(10分)已知成婷的年龄是m岁,乔豆的年龄比成婷的年龄的2倍少4岁,张华的年龄比乔豆的年龄的1还多1岁,求这三位同学的年龄的和.224.(12分)某超市在春节期间实行打折促销活动,规定如下表:一次性购物促销方法少于200元不打折低于500元但不低于200元打九折500元或超过500元其中500元部分打九折,超过500元部分打八折(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a <300),用含a的式子表示两次购物王老师实际付款多少元?答案一、1.C 解析:A.是多项式,故A 不符合题意;B.是单项式,故B 不符合题意;C.不是整式,故C 符合题意;D.是单项式,故D 不符合题意.故选C.2.D 解析:A.-2xy 2的系数是-2,不符合题意;B.3x 2的系数是3,次数是2,不符合题意;C.2xy 3的系数是2,次数是4,不符合题意;D.2x 3的系数是2,次数是3,符合题意.故选D.3.D 解析:因为多项式里次数最高项的次数,就是这个多项式的次数,该多项式的次数是5,所以这个多项式次数最高项的次数是5,所以这个多项式的任何一项的次数满足都不大于5.故选D.4.B 解析:字母相同且相同字母的指数也相同,故A ,C ,D 不符合题意;相同字母的指数不同,不是同类项,故B 符合题意.故选B.5.C 解析:由题意,得n =3,m -n =2n ,所以m =9,n =3.故选C.6.A 解析:-[x -(y -z )]=-(x -y +z )=-x +y -z .故选A.7.D 解析:若五次项是同类项,且系数相等,则A -B 的次数低于五次;否则A -B 的次数一定是五次.故选D.8.A 解析:由图可得-2<b <-1<1<a <2,且|a |>|b |,则|a +b |-|a -2|+|b +2|=a +b +(a -2)+b +2=a +b +a -2+b +2=2a +2b .故选A.9.D 解析:因为m -n =100,x +y =-1,所以原式=n +x -m +y =-(m -n )+(x +y )=-100-1=-101.故选D.10.A 解析:根据题意,得该商家在甲批发市场购进的茶叶的利润为40()m n m +-2=20(m +n )-40m =20n -20m (元);在乙批发市场购进的茶叶的利润为60m +n 2-n =30(m +n )-60n =30m -30n (元).所以该商家的总利润为20n-20m+30m-30n=10m-10n=10(m-n)(元).因为m>n,所以m-n>0,即10(m-n)>0,所以该商家盈利了.故选A.二、11.π 解析:在多项式3x2+πxy2+9中,次数最高的项是πxy2,其系数是π.12.(2n+1)a n2+1 解析:3a2=(2×1+1)a12+1,5a5=(2×2+1)a22+1,7a10=(2×3+1)a32+1,…,所以第n个单项式是(2n+1)a n2+1.13. 2 解析:原式=x2+(-3k+6)xy-3y2-8.因为该多项式不含xy项,所以-3k+6=0,所以k=2.14.x2+2xy+1(答案不唯一)15. 1 解析:由同类项的概念可知a-2=1,b+1=3,所以a=3,b=2,所以(a-b)2 017=(3-2)2 017=1.16.y2-8y+4 解析:括号内的项为x2-(x2-y2+8y-4)=y2-8y+4.17. 0 解析:因为P=2xy-5x+3,Q=x-3xy-2,所以3P+2Q=6xy-15x+9+2x-6xy-4=-13x+5.因为3P+2Q=5恒成立,所以-13x+5=5,解得x=0.即x=0时,3P+2Q=5恒成立.18.(a-2b)解析:根据题意可得,(3a-b)-(2a+b)=3a-b-2a-b=a-2b.故王明家楼梯的竖直高度(即BC的长度)为(a-2b)米.三、19.解:(1)原式=-x+2x-4-3x-5=-2x-9.(2)原式=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:由题意知,x的指数是1,则y,z的指数的和是4.当y的指数是1时,z的指数是3;当y的指数是2时,z的指数是2;当y的指数是3时,z的指数是1.所以这个单项式是-23xyz3或-23xy2z2或-23xy3z.21.解:因为-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,所以3+|a|=7,a-4≠0,所以a=-4.故a2-2a+1=(-4)2-2×(-4)+1=25.22.解:(1)-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3=(a-2b)5(-3a+6b)+5(a-2b)3=-3(a-2b)6+5(a-2b)3.当a-2b=-1时,原式=-3×(-1)6+5×(-1)3=-3×1+5×(-1)=-8.(2)原式=x2+2xy-3y2-2x2-2xy+4y2=-x2+y2.因为|x-2|+(y-1)2=0,所以x-2=0,y-1=0,即x=2,y=1,则原式=-4+1=-3.23.解:由题意可知,乔豆的年龄为(2m-4)岁,张华的年龄为12(2m-4)+1岁,则这三位同学的年龄的和为m+(2m-4)+12(2m-4)+1=m+2m-4+(m-2+1)=4m-5(岁).答:这三位同学的年龄的和是(4m-5)岁.24.分析:(1)500元部分按9折付款,剩下的100元按8折付款.(2)当200≤x<500时,他实际付款0.9x元;当x≥500时,他实际付款500×0.9+0.8×(x-500)=0.8x+50 (元).(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款-第一次购物款-500)×8折,把相关数值代入即可求解.解:(1)530.500×0.9+(600-500)×0.8=530(元).(2)0.9x 0.8x +50.(3)因为200<a <300,所以第一次实际付款为0.9a 元,第二次付款超过500元,超过500元部分为(820-a -500)元,所以两次购物王老师实际付款为0.9a +0.8(820-a -500)+450=0.1a +706(元).第三章 一元一次方程 章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.在方程①3x -y =2,②x +1x -2=0 ,④ x 2-2x -3=0中一元一次方程的个数为( )A .1B .2C .3D .42.已知x =1是方程x +2a =-1的解,那么a 的值是( )A .-1B .0C .1D .23.方程|x -3|=6的解是( )A .9B .±9C .3D .9或-34.运用等式的性质变形,正确的是( )A .如果a =b ,那么a +c=b -cB .如果 =a b c c ,那么a =bC .如果a =b ,那么 =a b c cD .如果a =3,那么a 2=3a 2 5.解方程 21101136++-=x x 时,去分母、去括号后,正确的结果是( )A .4x +1-10x +1=1B .4x +2-10x -1=1C .4x +2-10x -1=6D .4x +2-10x +1=66.若4x -5与 212-x 的值相等,则x 的值是( )A .1B .32C .23D .27.马强在计算“41+x ”时,误将“+”看成“-”,结果得12,则41+x 的值应为( )A .29B .53C .67D .708.为了参加全校文艺演出,某年级组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队的人数的3倍.设从舞蹈队中抽调了x 人参加合唱队,可得正确的方程是( )A .3(46-x )=30+xB .46+x =3(30-x )C .46-3x =30+xD .46-x =3(30-x )9.当x =1时,式子ax 3+bx +1的值是2,则方程 123244+-+=ax bx x 的解是() A .x =13 B .x =-13C .x =1D .x =-1 10.某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,而按原价的九折出售,将赚20元,那么这种商品的原价是( )A .500元B .400元C .300元D .200元二、填空题(每小题4分,共32分)11.若关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,则k =______.12.若a -5=b -5,则a =b ,这是根据______.13.在方程3a -5=2a +6的两边同时减去一个多项式可以得到方程的解为a =11,则这个多项式是________.14.已知a ,b 互为相反数,且ab ≠0,则方程ax +b =0的解为________.15.如果2(x +3)的值与3(1-x )的值互为相反数,那么x 等于________.16.在有理数范围内定义运算“△”,其规则为a △b =ab +1,则方程(3△4)△x =2的解为x =________.17.张强在做作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是x + 13=13x +△,怎么办呢?张强想了想,便翻看了书后的答案,此方程的解是x =-3,张强很快补好了这个常数,并迅速完成了作业,这个常数是______.18.请你阅读下面的诗句:“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的树为______棵.三、解答题(共58分)19.(8分)解下列方程:(1)3x (7-x )=18-x (3x -15);(2) 0.170.210.70.03--=x x . 20.(8分)下面是马小哈同学做的一道题:解方程: 212134-+=-x x . 解:①去分母,得4(2x -1)=1-3(x +2).②去括号,得8x -4=1-3x -6.③移项,得8x +3x =1-6+4.④合并同类项,得11x =-1.⑤系数化为1,得x =- 111.(1)上面的解题过程中最早出现错误的步骤(填序号)是________.(2)请正确的解方程: 12224-+-=-x x x . 21.(10分)已知|a -3|+(b +1)2=0,式子22-+b a m 的值比 12b -a +m 的值多1,求m 的值. 22.(10分)当m 为何值时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.(10分)已知a 是非零整数,关于x 的方程ax |a |-bx 2+x -2=0是一元一次方程,求a +b 的值与方程的解.24.(12分)一艘载重480 t 的船,容积是1 050 m 3,现有甲种货物450 m 3,乙种货物350 t ,而甲种货物每吨的体积为2.5 m 3,乙种货物每立方米0.5 t .问:(1)甲、乙两种货物是否都能装上船?如果不能,请说明理由.(2)为了最大限度地利用船的载质量和容积,两种货物应各装多少吨? 答案一、1.A 解析:①含有两个未知数,不是一元一次方程;②方程左边不是整式,不是一元一次方程;③符合一元一次方程的概念;④未知数的最高次数是2,不是一元一次方程.故选A.2.A 解析:把x =1代入方程,得1+2a =-1,解得a =-1.故选A.3.D 解析:因为|x -3|=6,所以x -3=6或x -3=-6.①x -3=6,解得x =9;②x -3=-6,解得x =-3.故选D.4.B 解析:A.利用等式的性质1,两边都加c ,得到a +c=b +c ,所以A 不正确;B.利用等式的性质2,两边都乘c ,得到a =b ,所以B 正确;C.因为c 可能为0,所以C 不正确;D.因为a 2=9,3a 2=27,所以a 2≠3a 2,所以D 不正确.故选B.5.C 解析:去分母,得2(2x +1)-(10x +1)=6.去括号,得4x +2-10x -1=6.故选C.6.B 解析:根据题意,得4x -5=212-x .去分母,得8x -10=2x -1,解得x =32.故选B. 7.D 解析:根据题意,得41-x =12,解得x =29.所以41+x =41+29=70.故选D.8.B 解析:由题意可知,46+x =3(30-x ).故选B.9.C 解析:把x =1代入ax 3+bx +1=2,得a +b +1=2,即a +b =1.去分母,得2ax +2+2bx -3=x ,整理,得(2a +2b -1)x =1,即[2(a +b )-1]x =1.把a +b =1代入,得x =1.故选C.10.C 解析:设这种商品的原价是x 元.根据题意,得75%x +25=90%x -20,解得x =300.故选C.二、 11. 0 解析:由关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,得|k -1|=1且k -2≠0,解得k =0.12.等式的性质1 解析:在等式的两边同时加5就可以得到a =b .这是根据等式的性质1.13. 2a -5 解析:方程两边都减2a -5,得a =11.14.x =1 解析:因为a ,b 互为相反数,且ab ≠0,所以b a=-1.方程ax +b =0的解为x =-b a=1. 15. 9 解析:根据题意,得2(x +3)+3(1-x )=0.去括号,得2x +6+3-3x =0.移项,合并同类项,得-x =-9,解得x =9. 16.113 解析:根据题中的新定义,得3△4=12+1=13.代入方程(3△4)△x =2,得13△x =2,即13x +1=2,解得x =113. 17.53- 解析:设这个常数是a .把x =-3代入方程,得-3+13=13×(-3)+a ,解得a =53-.故这个常数是53-. 18. 5 解析:设诗句中谈到的树为x 棵,则鸦有(3x +5)只.根据题意,得5(x -1)=3x +5,解得x =5.所以诗句中谈到的树为5棵.三、19.解:(1)去括号,得21x -3x 2=18-3x 2+15x .移项、合并同类项,得6x =18,解得x =3.(2)将分母转化为整数,得=101720173--xx 方程两边同乘21,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 20.分析:(1)根据等式的性质,解一元一次方程的步骤即可判断;(2)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解. 解:(1)①.(2)去分母,得4x -2(x -1)=8-(x +2).去括号,得4x -2x +2=8-x -2.移项,得4x -2x +x =8-2-2.合并同类项,得3x =4.系数化为1,得x =43. 21.分析:先根据|a -3|+(b +1)2=0求出a ,b 的值,再根据式子22-+ba m 的值比12b -a +m 的值多1列出方程 22-+b a m =12b -a +m ,把a ,b 的值分别代入求出m 的值.解:因为|a -3|≥0,(b +1)2≥0,且|a -3|+(b +1)2=0,所以a -3=0且b +1=0,解得a =3,b =-1. 由题意,得22-+ba m =12b -a +m +1, 即131252-=--+++m m , 解得m =0.所以m 的值为0.22.分析:先分别解两个方程求得方程的解,再根据关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2,即可列方程求得m 的值.解:由4x -m =2x +5,得x =52+m . 由2(x -m )=3(x -2)-1,得x =-2m +7.因为关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2, 所以52+m +2=-2m +7, 解得m =1.故当m =1时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.分析:分情况讨论,(1)a =b ,|a |=2;(2)b =0,|a |=1.首先根据一元一次方程的概念求得a ,b 的值,然后将其代入a +b 并求值,最后将a ,b 的值代入原方程,由一元一次方程的解法解方程.解:(1)a =b ,|a |=2,当a =2时,b =2,此时a +b =4,方程的解为x =2;当a =-2时,b =-2,此时a +b =-4,方程的解为x =2.(2)|a |=1,b =0,解得a =±1,b =0.当a=1时,原方程为x+x-2=0,解得x=1,a+b=1+0=1;当a=-1时,原方程为-x+x-2=0,不存在.24.分析:求出甲种货物和乙种货物的吨数,与载质量进行比较即可作出判断;设装甲种货物x t,乙种货物(480-x)t,通过理解题意可知本题存在等量关系:甲种货物所占的总体积+乙种货物所占的总体积=1 050 m3,根据这个等量关系列出方程求解即可.解:(1)不能.=180(t),理由:甲种货物重4502.5180+350=530>480,所以甲、乙两种货物不能都装上船.x=1 050,(2)设装甲种货物x t,则装乙种货物(480-x)t.依题意有2.5x+4800.5解得x=180.480-x=300.答:为了最大限度地利用船的载质量和容积,应装甲种货物180 t,乙种货物300 t.第四章几何图形初步章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1. 下列第一行的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如,由a,b组成的图形记作a⊙b,那么由此可知,下列选项的图形,可以记作a⊙d的是()2. 如图4-1,该几何体从正面看得到的平面图形是()图4-13. 对于直线AB、线段CD、射线EF,其中能相交的图是()4. 下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象是()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)5. 如图4-2,AB=12,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则线段DB的长度为()图4-2A.4B.6C.8D.106. 已知线段AB和点P,如果PA+PB=AB,那么()A.P为AB的中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7. 学校、书店、邮局在平面图上的标点分别是A,B,C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25°B.65°C.115°D.155°8. 若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对图4-39. 如图4-3,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°C.∠BOE=2∠CODD.∠AOD=1∠EOC210. 如图4-4,OD⊥AB于点O,OC⊥OE,图中与∠AOC互补的角有()图4-4A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)11.夏天,快速转动的电扇叶片,给我们一个完整的平面的感觉,说明_____.12.如图4-5,C,D是线段AB上的两点,若AC=4,CD=5,DB=3则图中所有线段长度的和是_____.图4-513.已知∠A=100°,那么∠A的补角是_____.14.时钟上3点40分时分针与时针夹角的度数为____.15.如图4-6,O在直线AB上,∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.图4-616.已知∠AOC和∠BOD都是直角,如果∠AOB=150°,那么∠COD的度数为_____.17.如图4-7,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为_____.图4-718.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出的直线有_____.三、解答题(共58分)19.(8分)计算:(1)22°18′×5;(2)90°-57°23′27″.20.(8分)把图4-8的展开图和它们的立体图形连起来.图4-821.(10分)如图4-9,已知线段a,b,c,用圆规和直尺画图.(不用写作法,保留画图痕迹)(1)画线段AB,使得AB=a+b-c;(2)在直线AB外任取一点K,画射线AK和直线BK;(3)反向延长AK至点P,使AP=KA,画线段PB,比较所画图形中线段PA与BK长度的和与线段AB长度的大小.图4-922.(10分)如图4-10,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10 cm,求线段AB,CD的长度.图4-1023.(10分)如图4-11(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图4-11(2),4-11(3),4-11(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)图4-1124.(12分)如图4-12,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.图4-12答案一、1.A 解析:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合.故选A.2. A3. B 解析:A.直线AB与线段CD不能相交,故此选项不符合题意;B.直线AB 与射线EF能相交,故此选项符合题意;C.射线EF与线段CD不能相交,故此选项不符合题意;D.直线AB与射线EF不能相交,故此选项不符合题意.故选B.4. B 解析:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间,线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间,线段最短.故选B.5. D 解析:因为C为AB的中点,AB=12,所以AC=BC=12AB=12×12=6.因为AD∶CB=1∶3,所以AD=2,所以DB=AB-AD=12-2=10.故选D.6. B 解析:如图D4-1.因为PA+PB=AB,所以点P在线段AB上.故选B.图D4-17. C 解析:如图D4-2.由图可知,∠CAB=∠1+∠2=25°+90°=115°.故选C.图D4-28. B 解析:因为∠1=40.4°=40°24′,∠2=40°4′,所以∠1>∠2.故选B.9. B 解析:因为OD,OE分别是∠AOC,∠BOC的平分线,所以∠AOD=∠COD,∠EOC=∠BOE.又因为∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,所以∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选B.10. B 解析:根据题意,得(1)因为∠AOC+∠BOC=180°,所以∠BOC与∠AOC 互补.(2)因为OD⊥AB,OC⊥OE,所以∠EOD+∠DOC=∠BOC+∠DOC=90°,所以∠EOD=∠BOC,所以∠AOC+∠EOD=180°,所以∠EOD与∠AOC互补,所以图中与∠AOC互补的角有2个.故选B.二、11.线动成面12. 41 解析:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故题图中所有线段长度的和为AC+AD+AB+CD+CB+DB=41.13. 80°14. 130°解析:3点40分时分针与时针夹角的度数为30°×4+1=130°.315. 2 解析:因为∠AOD=90°,所以∠AOC+∠COD=90°.因为∠COE=90°,所以∠COD+∠DOE=90°,所以∠AOC=∠DOE.因为∠BOD=180°-∠AOD=90°,所以∠DOE+∠BOE=90°,所以∠BOE=∠COD.故图中相等的锐角有2对.16. 30°或150°解析:如图D4-3(1),因为∠BOD=90°,∠AOB=150°,所以∠AOD=60°.又因为∠AOC=90°,所以∠COD=30°.如图D4-3(2),因为∠BOD=90°,∠AOC=90°,∠AOB=150°,所以∠AOD=60°,所以∠COD=150°.综上所述,∠COD的度数为30°或150°.图D4-317. 51 解析:因为正方体的表面展开图,相对的面一定相隔一个正方形,所以6若不是最小的数,则6与9是相对面.因为6与9相邻,所以6是最小的数,所以这6个整数的和为6+7+8+9+10+11=51.18. 1条、4条或6条解析:如果A,B,C,D四点在同一直线上,那么只能确定一条直线,如图D4-4(1);如果4个点中有3个点(不妨设点A,B,C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图D4-4(2);如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B,C,D确定3条直线,点B分别与点C,D确定2条直线,最后点C,D确定一条直线,这样共确定6条直线,如图D4-4(3).综上所述,过其中每2个点可以画1条、4条或6条直线.(1)(2)(3)图D4-4三、19.解:(1)22°18′×5=110°90′=111°30′.(2)90°-57°23′27″=32°36′33″.20. 解:如图D4-5.图D4-521. 分析:(1)首先作射线CE在射线CE上截取CD=a,BD=b,再在CB上截取AC=c,则可得出AB=a+b-c;(2)根据射线和直线的概念过点K即可作出;(3)根据AP=AK,利用两点之间线段最短即可得出答案.解:(1)如图D4-6(1).(2)如图D4-6(2).(1)(2)(3)图D4-6(3)如图D4-6(3).因为AP=KA,所以线段PA与BK长度的和大于线段AB的长度.22.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm.因为E,F分别为线段AB,CD的中点,所以AE=12AB=1.5x(cm),CF=12CD=2x(cm).所以EF=AC-AE-CF=6x-1.5x-2x=2.5x(cm).因为EF=10 cm,所以2.5x=10,解得x=4.所以AB=12 cm,CD=16 cm.23. 解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5=485π.24. 解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.。

人教版七年级数学上册各章节测试题含答案全

人教版七年级数学上册各章节测试题含答案全

第一章 丰富的图形世界一、精心选一选,慧眼识金!(每小题4分,共10小题,共40分) 1. 如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种形状图都是同一种几何图形,则另一个几何体是 ( ) A .长方体 B .圆柱体C .球体D .三棱柱2. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是 ( )A.文B.明C.奥D.运3. 如图所示的几何体的从上面看到的形状图是( )4.下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是 ( )5. 将如左下图所示的绕直角边旋转一周,所得几何体的从正面看到的形状图是 ( )6. 如图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )7. 某几何体的三种形状图如下所示,则该几何体可以是 ( )第1题图 第5题图第2题图 第3题图 A B C D第6题图从正面看 从左面看 从上面看8. 一个无盖的正方体盒子的平面展开图可以是下列图形中的 ( )9.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是 ( )10.如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为 ( )(每小题4分,共5小题,共20分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是 .12.把边长为lcm 的正方体表面展开要剪开 条棱,展开成的平面图形的周长为cm.13.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为 .14.一个n 边形,从一个顶点出发的对角线有 条,这些对角线将n 边形分成了________个三角形.15.如图,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了802cm ,那么这根木料本来的体积是 3cm .A B C D 第10题图 3 1 1 2 2 4 第15题图1.6米三、用心做一做,马到成功!(每小题12分,共5小题,共60分) 16.将图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?说出所有可能的情况.17.由一些大小相同的小正方体组成的简单几何体的从正面、从上面看到的形状图(如图):⑴若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值为 . ⑵请你画出这个几何体所有可能的从左面看到的形状图.18.如图是一个几何体的两种形状图,求该几何体的体积(л取3.14).19. 如图所示的几何体是由若干个相同的小正方体搭建而成的(第一层,1个;第二层3个;第3层,6个),小正方体的一个侧面的面积为1cm.今要用红颜色给这个几何体的表面着色(但底部不着色),要着色的面积是多少?20.若已知两点之间的所有连线中,线段最短,那么你能否试着解决下面的问题呢?问题:已知正方体的顶点A 处有一只蜘蛛,B 处有一只小虫,如图所示,请你在图上作出一种由A 到B 的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子.第16题图 1 5 4 62 3 7 第18题图20cm32cm 40cm 30cm30cm 25cmBA 第20题图第19题图单元测试题1.C2.A3.D4.C5.A6.B7.A8.D9.C 10.C 11.球体 12.7,6 13.30 cm 14.n-3,n-2 15.32 16.1号、2号 17.⑴8或9 ⑵图略 18.40048cm 319.18cm 220.略第二章 有理数及其运算一、耐心填一填:(每题3分,共30分)1、52-的绝对值是 ,52-的相反数是 ,52-的倒数是 . 2、某水库的水位下降1米,记作 -1米,那么 +1.2米表示 . 3、数轴上表示有理数-3.5与4.5两点的距离是 .4、已知|a -3|+24)(+b =0,则2003)(b a += .5、已知p 是数轴上的一点4-,把p 点向左移动3个单位后再向右移1个单位长度,那么p 点表示的数是______________。

人教版七年级数学(上册)全册课时练习及答案

人教版七年级数学(上册)全册课时练习及答案

人教版七年级数学(上册)全册课时练习及答案第一章有理数1.1正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( ) A.-4米 B.+16米 C.-6米 D.+6米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.2.3相反数1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4绝对值 第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3有理数的加减法1.3.1有理数的加法 第1课时有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2有理数的减法 第1课时有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4有理数的乘除法1.4.1有理数的乘法 第1课时有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2有理数的除法 第1课时有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5有理数的乘方1.5.1乘方 第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1整式第1课时用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( ) A.(m +0.8n)元 B.0.8n 元 C.(m +n +0.8)元 D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1从算式到方程3.1.1一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD 的长.4.3角4.3.1角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数 1.1正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法 第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)283 2.B 3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。

(人教版)初中数学七年级上册 全册测试卷一(附答案)

(人教版)初中数学七年级上册 全册测试卷一(附答案)

(人教版)初中数学七年级上册全册测试卷一(附答案)第一章综合测试一、选择题(每小题4分,共28分) 1.(舟山中考)6-的绝对值是( ) A.6B.6-C.16D.16-2.(台州中考)在12,0,1,2-这四个数中,最小的数是( )A.12B.0C.1D.2-3.下列各数:0.8-,123-,8.2--(), 2.7+-(),17-+(), 2 012+-.其中负数的个数是( ) A.6B.5C.4D.34.下列运算结果等于1的是( ) A.33-+-()() B.33---()() C.33-⨯-()D.33-÷-()()5.(福州中考)2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.105.1810⨯ B.951.810⨯ C.110.51810⨯D.851810⨯6.(吉林中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )ABCD7.(舟山中考)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,被截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )A.2 010B.2 011C.2 012D.2 013二、填空题(每小题5分,共25分) 8.3-的倒数是_______.9.(河南中考)计算:212-+-=()_______.10.用“<”“>”或“=”填空: (1)0.02-_______1;(2)45-_______56-;(3)34⎛⎫-- ⎪⎝⎭_______[(0.75)]-+-.11.绝对值大于1而小于4的整数有_______,其和为_______. 12.若a ,b 互为相反数,x ,y 互为倒数,则()xa b xy y+-=_______ 三、解答题(共47分)13.(14分)(1)2432232(2)(4)5⨯-÷---⨯;(2)2531324524864⎡⎛⎫⎤-+-⨯÷ ⎪⎢⎥⎣⎝⎭⎦.14.(10分)“十一”黄金周期间,某商场家电部大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:(1)黄金周内营业额最低的是哪一天?那天的营业额是多少?(直接回答,不必写过程) (2)黄金周内平均每天的营业额是多少?15.(11分)有一出租车在一条南北走向直的公路上进行出租运营服务,如果规定向北为正,向南为负,出租车运营8次的行车里程如下(单位:千米):13+,7-,11+,10-,5-,9+,12-,8+.(1)将最后一位乘客送到目的地时,该出租车在出发点的什么方向?距离出发点多远? (2)若出租车耗油量为a 升/千米,则以上8次出租运营服务共耗油多少升?16.(12分)(中山中考)阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯+⋯+⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_______; (3)123234345789⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯=_______.第一章综合测试答案解析一、 1.【答案】A 2.【答案】【解析】正数大于0,负数小于0,正数大于负数,所以上述四个数中最小的数是2-. 3.【答案】C 4.【答案】D【解析】因为336-+-=-()(); 330---=()(); 339-⨯-=();331÷-=(-)().5.【答案】A6.【答案】C7.【答案】D 二、8.【答案】13- 9.【答案】5 10.【答案】(1)< (2)> (3)=【解析】(1)因为负数小于正数,所以0.02-<1.(2)因为40.85-=,50.836-≈,又因为5465-->,所以4556-->.(3)因为330.7544⎛⎫--== ⎪⎝⎭,[(0.75)]0.75-+-=, 所以3[(0.75)]4⎛⎫--=-+- ⎪⎝⎭.11.【答案】23±±, 0 12.【答案】1- 三、13.【答案】(1)原式2916(8)165=⨯-÷--⨯18280=+- 60=-(2)原式253131242424248645⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭= 2519418245⎛⎫=--+⨯ ⎪⎝⎭ 2515245⎛⎫=+⨯ ⎪⎝⎭25115551124552424=⨯+⨯=+=.14.【答案】(1)10月7日的营业额最低,营业额是26万元.(2)30333535343126732++++++÷=(),即黄金周内每天的平均营业额是32万元. 15.【答案】(1)137111059128+-+--+-+ 131198710512=++++----()()4134=- 7=(千米).答:将最后一位乘客送到目的地时,该出租车在出发点向北方向,距离出发点有7千米. (2)()1371111059128175a a ++-+++-+-+++-++⨯=(升). 答:以上8次出租运营服务共耗油75a 升. 16.【答案】(1)1223341011⨯+⨯+⨯+⋯+⨯111(123012)(23412 3) (10111291011)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯L 11011124403=⨯⨯⨯=. (2)1(1)(2)3n n n ++(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯L1111(23451234)(12340123)(789106789)444=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯L 178910 1 2604=⨯⨯⨯⨯=.第二章综合测试一、选择题(每小题4分,共28分) 1.下列说法正确的是( ) A.x 的指数是0B.x 的系数是0C.3-是一次单项式D.23ab -的系数是23-2.下列式子中,整式的个数为( )1x a +,abc ,225b ab -,πy x+,2xy -,5- A.3B.4C.5D.63.若A 是3次多项式,B 也是3次多项式,则A B +一定是( ) A.6次多项式B.次数不低于3次的多项式C.次数不高于3次的整式D.以上答案都不正确4.单项式233πxy z -的系数和次数分别是( )A.π-,5B.1-,6C.3x -,6D.3-,7 5.四个连续偶数中,最小的一个为22n -(),则最大的一个是( ) A.2(2)3n -+ B.2(1)n + C.23n +D.2(2)n +6.()223422x x x x --+=-,括号内应填( )A.2532x x --B.23x x -+C.232x x -++D.232x x -+-7.(衢州中考)如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形一边长为3,则另一边长是( )A.23m +B.26m +C.3m +D.6m +二、填空题(每小题5分,共25分)8.已知单项式312n a b +与223m a b --是同类项,则23m n +=______. 9.254143a b ab --+是______次______项式,常数项为______. 10.若40.5m x y -与36m x y 的次数相同,则m =______. 11.(绥化中考)若2345x x --的值为7,则2453x x --的值为______. 12.如图所示,它是一个程序计算器,用字母及符号把它的程序表达出来为______,如果输入3m =,那么输出______.三、解答题(共47分)13.(10分)试说明把一个两位数的十位上的数字与个位上的数字互换位置后所得的新两位数与原两位数之和可被11整除。

【新】人教版初中数学七年级上册全册测试卷(含答案)

【新】人教版初中数学七年级上册全册测试卷(含答案)

第一章单元测试卷(满分:100分时间:60分钟)姓名:得分:一、选择题(每小题3分,共30分)1.如果表示增加,那么表示()A.增加B.增加C.减少D.减少2.有理数在数轴上表示的点如图所示,则的大小关系是()A.B.C.D.3.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.44.(2021·江西中考)下列四个数中,最小的数是()A.1-2B.0C.-2D.25.有理数、在数轴上对应的位置如图所示,则()A.<0 B.>0 C.-0 D.->06.在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是()A.-212 B.-101C .-0.01 D.-57.(2021•福州中考)地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯1068.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)9.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分10.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,七年级数学(上)(人教版)第5题图⋯,则!98!100的值为() A.4950 B. C. D.二、填空题(每小题3分,共24分)11.31-的倒数是____;321的相反数是____.12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是.13.若0<<1,则a ,2a ,1a 的大小关系是.14.+5.7的相反数与-7.1的绝对值的和是.15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.16.-9、6、-3这三个数的和比它们绝对值的和小.17.一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑台.18.规定﹡,则(-4)﹡6的值为.三、解答题(共46分)19.(6分)计算下列各题:(1)10⨯31⨯0.1⨯6;(2)()216141-+⨯12;(3)[(-4)2-(1-32)⨯2]÷22.20.(8分)比较下列各对数的大小:(1)54-与43-;(2)54+-与54+-;(3)25与52;(4)232⨯与2)32(⨯.21.(6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?22.(6分)若,求32---+-x y y x 的值.23.(6分)小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm):.问:(1)小虫是否回到出发点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1cm奖励一粒芝麻,则小虫共可得到多少粒芝麻?24.(6分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数,使得=7,这样的整数是_____.25.(8分)一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后向西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.第25题图(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?第一章参考答案1.C 解析:在一对具有相反意义的量中,把其中的一个量规定为“正”的,那么与它意义相反的量就是“负”的.“正”和“负”相对,所以如果表示增加,那么表示减少.2.D 解析:由数轴可知,所以其在数轴上的对应点如图所示,3.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.4.C 解析:依据“正数大于0,0大于负数,正数大于负数”可知,这四个数中,最小的一定是负数,再根据“两个负数,绝对值大的反而小”可得-2<1-2 5.A 解析:是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.7.B 解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.表示时关键要正确确定a 的值以及n 的值,110000=1.1⨯105.8.C解析:C 应该是0.050.9.C 解析:小明第四次测验的成绩是故选C.10.C解析:根据题意可得:100!=100×99×98×97× ×1,98!=98×97× ×1,∴1××97×981××98×99×100!98!100 ==100×99=9900,故选C .11.解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是13解析:当0<<1时,14.1.4解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12解析:51÷4=12 3.所以51只轮胎至多能装配12辆汽车.16.24解析:,,所以.17.50解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9解析:根据﹡,得(-4)﹡6.19.分析:(1)根据乘法交换律先交换位置,再利用乘法法则计算即可;(2)利用乘法分配律(a +b +c )m =am +bm +cm 计算即可;(3)根据运算顺序,有括号先算括号里面的(先算括号里面的乘方,再算乘除,最后算加减),最后就能算出结果.=2.20.解:(1)所以(2)=1,=9,所以<.(3)(4)21.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.解:∵∴与标准质量相比较,这10袋小麦总计少了2kg.10袋小麦的总质量是1500-2=1498(kg ).每袋小麦的平均质量是22.解:当所以原式=-1.23.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到出发点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数.解:(1)∵,∴小虫最后回到出发点O .(2)12㎝.(3)5+3-+10++8-+6-+12++10-=54,∴小虫可得到54粒芝麻.24.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要求的整数值可以进行分段计算,令或时,分为3段进行计算,最后确定的值.解:(1)7.(2)令或,则或.当时,,∴,∴.当时,,∴,,∴.当2时,,∴,,∴.∴综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.25.(1)根据已知,以超市为原点,以向东为正方向,用1个单位长度表示1千米.一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后向西走了10千米,到达小华家,最后又向东走了6千米结束行程,则小明家、小兵家和小华家在数轴上的位置如图所示.(2)这辆货车一共行走的路程,实际上就是1+3+10+6=20(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.解:(1)小明家、小兵家和小华家在数轴上的位置如图所示.第25题答图(2)由题意得(+1)+(+3)+(-10)+(+6)=0,因而货车回到了超市.(3)由题意得,1+3+10+6=20,货车从出发到结束行程共耗油0.25×20=5(升).答:(1)参见上图;(2)货车最后回到了超市;(3)货车从出发到结束行程共耗油5升.第二章单元测试卷(满分:100分时间:60分钟)姓名:得分:七年级数学(上)(人教版)参考答案期中测试卷(满分:120分时间:120分钟)姓名:得分:一、选择题(本大题共8小题,每小题4分,共32分)1.在-1,-2,0,1四个数中最小的数是()A .-1B .-2C .0D .12.有下列各式:231122,,2,,,,2235x x y a m x x +---,其中单项式有()A .5个B .4个C .3个D .2个3.某县12月份某一天的天气预报为气温-2~5℃,该天的温差为()A .-3℃B .-7℃C .3℃D .7℃4.作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A .80.2110⨯B .62110⨯C .62.110⨯D .72.110⨯5.用四舍五入法按需求对0.05019分别取近似值,其中错误的是()A .0.1(精确到0.1)B .0.05(精确到千分位)C .0.05(精确到百分位)D .0.0502(精确到0.0001)6.下列计算正确的是()A .651a a -=B .2323a a a +=C .()ab a b --=-+D .2()2a b a b+=+7.已知0a b +<,且0ab >,则下列成立的是()A .0,0a b ><B .0,0a b >>C .0,0a b <>D .0,0a b <<8.一个点在数轴上距原点3个单位长度,先把这个点向右移动4个单位长度,再向左移动1个单位长度,此时这个点表示的数是()A .0或6B .0C .-6或0D .6二、填空题(本大题共6小题,每小题3分,共18分)七年级数学(上)(人教版)9.把(5)(6)(5)(4)---+---写成省略括号和加号的形式为___________________.10.比较大小:0__________-1;12-_________13-(填“>”或“<”).11.若单项式23x y 与2212b x y -是同类项,则b 的值为___________.12.图1是一个简单的数值运算程序,当输入x 的值为-3时,输出的数值为________.13.有三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队的树的一半少6棵,三个小队共植树_________棵.14.已知“!”是一种数学运算符号,并且规定:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,计算100!98!=____________.三、解答题(共70分)15.(6分)在数轴上表示下列各数,并用“>”连接起来。

人教版七年级数学上册全册同步测试题及答案参考

人教版七年级数学上册全册同步测试题及答案参考

这篇⼈教版七年级数学上册全册同步测试题及答案参考的⽂章,是特地为⼤家整理的,希望对⼤家有所帮助!第⼀章有理数1.1 正数和负数基础检测1. 中,正数有,负数有。

2.如果⽔位升⾼5m时⽔位变化记作+5m,那么⽔位下降3m时⽔位变化记作 m,⽔位不升不降时⽔位变化记作 m。

3.在同⼀个问题中,分别⽤正数与负数表⽰的量具有的意义。

4.2010年我国全年平均降⽔量⽐上年减少24㎜.2009年⽐上年增长8㎜.2008年⽐上年减少20㎜。

⽤正数和负数表⽰这三年我国全年平均降⽔量⽐上年的增长量。

拓展提⾼5.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数⼀定是负数,不是负数的数⼀定是正数6.向东⾏进-30⽶表⽰的意义是()A.向东⾏进30⽶B.向东⾏进-30⽶C.向西⾏进30⽶D.向西⾏进-30⽶7.甲、⼄两⼈同时从A地出发,如果向南⾛48m,记作+48m,则⼄向北⾛32m,记为这时甲⼄两⼈相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在℃⾄℃范围内保存才合适。

9.如果把⼀个物体向右移动5m记作移动-5m,那么这个物体⼜移动+5m是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为⾮负数;______和______统称为⾮正数;______和______统称为⾮正整数;______和______统称为⾮负整数.2、下列不是正有理数的是()A、-3.14B、0C、D、33、既是分数⼜是正数的是()A、+2B、-C、0D、2.3拓展提⾼4、下列说法正确的是()A、正数、0、负数统称为有理数B、分数和整数统称为有理数C、正有理数、负有理数统称为有理数 D 、以上都不对5、-a⼀定是()A、正数B、负数C、正数或负数D、正数或零或负数6、下列说法中,错误的有()①是负分数;②1.5不是整数;③⾮负有理数不包括0;④整数和分数统称为有理数;⑤0是最⼩的有理数;⑥-1是最⼩的负整数。

【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.2.1 有理数)

【新人教版七年级数学上册同步训练及答案全套40份】【第1套,共4套】(1.2.1 有理数)

1.2 有理数1.2.1 有理数5分钟训练(预习类训练,可用于课前)1.如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?(1)+4千米;(2)-3.5千米;(3)0千米.思路解析:根据具有相反意义的量的含义简述它的实际意义.答案:(1)+4千米表示向东走4千米;(2)-35千米表示向西走35千米;(3)02.___________既不是正数,也不是分数,但它是整数.思路解析:0是中性数,是正、负数的分界点答案:03.有限小数和无限循环小数都可以化成________数,因此,它们都是__________数.思路解析:能用分数表示的数是有理数答案:分有理10分钟训练(强化类训练,可用于课中)1.正整数、正分数构成________集合;负整数、负分数构成________集合;________,________,_______构成整数集合,__________,__________构成分数集合.思路解析:根据数的分类来判别.答案:正数负数正整数(自然数) 0 负整数正分数负分数2.任意写出6个符合要求的数,分别把它填在相应的大括号里.正数集合{_____________…};负数集合{____________…};整数集合{____________…};正分数集合{_____________…};负分数集合{____________…};分数集合{___________…};有理数集合{_____________…}.思路解析:这是一道开放性题,根据数的分类来作.答案:略3.(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?思路解析:重点区别有理数、整数、正整数概念.答案:(1)是,不是,不是(2)是,是,是(3)是,是,是4.把下列各数填入相应的集合中:+3,-413,-(+1.9),3.14∙∙51,0,-1998,+123.正数集合{__________________________…};负数集合{__________________________…};整数集合{__________________________…};分数集合{__________________________…};有理数集合{___________________________…}.思路解析:(1)把一些数看成一个整体,那么这个整体就叫做这些数的集合.其中每一个数叫做这个集合的一个元素.(2)要分清有理数的不同的分类标准.答案:正数集合{+3,3.1415,+123,…};负数集合{-413,-(+19),-1998,…};整数集合{+3,0,-1998,+123,…};分数集合{-413,-(+1.9),3.1415,…};有理数集合{+3,-413,-(+1.9),3.1415,0,-1998,+123,…}快乐时光作文课,老师要求同学们每人写篇介绍某种家用电器使用方法的小文章,看谁写得又快又好.同学们正在思考怎样写的时候,平平举手说他已写好了.老师惊奇地对平平说:“请你读一下你的文章.”平平大声读:“你想知道电视机的使用方法吗?请你认真、仔细地看一看说明书,那上面写清楚了使用方法.”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)整数又叫自然数;()(2)正数和负数统称为有理数;()(3)向东走-20米,就是向西走20米;()(4)非负数就是正数,非正数就是负数. ()思路解析:由数的分类及相反意义的量来判断.答案:(1)×(2)×(3)√(4)×2.填空:整数和分数统称为__________;整数包括_________、__________和零,分数包括________和__________.思路解析:正、负数的出现,整数和分数的分类有了区别.答案:有理数正整数负整数正分数负分数3.-100不是()A.有理数B.自然数C.整数D.负有理数思路解析:根据数的分类及有关概念的区别来判断.答案:B答案:5.1.8,-42,+0.01,-512,0,-3.1415926,1112,1 整数集合{_________________…};分数集合{_________________…}; 正数集合{_________________…}; 负数集合{_________________…}; 自然数集合{___________________…}; 非负数集合{___________________…}思路解析:利用集合的意义来判别数的分类. 答案:整数集合{-42,0,1,…};分数集合{1.8,+0.01,-512,-3.1415926,1112,…}; 正数集合{1.8,+0.01,1112,1,…};负数集合{-42,-512,-3.1415926,…};自然数集合{0,1,…};非负数集合{1.8,+0.01,0,1112,1,…} 6.计算:13+16+110+115+121+128+136+145.思路解析:若通分相加,本题难以计算,仔细观察各分母,可发现能写成13+123⨯+125⨯+111113537474959++++⨯⨯⨯⨯⨯,而每两个顺次相加可得11111111111(1)()()()32523734945+++++++,进一步可得1111261220+++,又可分成1111111(1)()()()2233445-+++-+-,最后算出结果.解:(1)1111111136101521283645+++++++=11111111323253537474959+++++++⨯⨯⨯⨯⨯⨯⨯=131517193256712920⨯⨯⨯⨯⨯+⨯ =1111261220+++=1111 12233445 +++⨯⨯⨯⨯=1111111 (1)()()()2233445 -+-+-+-=14155-=如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

新人教版数学七年级上册同步练习(分章节全册)含答案

新人教版数学七年级上册同步练习(分章节全册)含答案

1.1 正数和负数知识点 1 正数和负数的概念 1.下列各数中,是负数的是( ) A .2B.12C .0D .-0.22.在-2,-3,0,1四个数中,既不是正数也不是负数的是( ) A .-3 B .-2C .0D .13.在数-1,0,0.2,17,3中,正数一共有________个.知识点 2 用正数和负数描述相反意义的量 4.2018·绍兴 若向东走2 m 记为+2 m ,则向西走3 m 可记为( ) A .+3 m B .+2 m C .-3 mD .-2 m5.2017·太和县一模 中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果盈利50元记作+50元,那么亏损30元记作( )A .-30元B .-50元C .+50元D .+30元6.在下列横线上填上适当的词,使前后构成具有相反意义的量: (1)收入1500元,________5000元; (2)________60 米,下降24米; (3)减少60 kg ,________80 kg.7.如果运进大米40千克记为+40千克,那么-45千克表示__________________.8.用正数和负数表示下列问题中的数据:(1)节约水10 m3,浪费水0.5 m3;(2)向油罐车里注入汽油4 t,放出汽油1.8 t;(3)赤道地区的年平均气温是零上32 °C,南极大陆中部某地的年平均气温是零下56 °C.9.在体育课的跳远比赛中,以4.00米为标准,若小明跳出了4.22米,可记作+0.22米,则小东跳出了3.85米,记作()A.-0.15米B.+0.22米C.+0.15米D.-0.22米10.如图1-1-1是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()图1-1-1A.45.02B.C.44.98D.45.0111.下表是某年5月的11—20日我国50个城市主要食品平均价格变动情况:12.体育课上,某学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的个数记为正,不足的个数记为负,其中8名男生的成绩(单位:个)如下:2,-1,0,3,-2,-3,1,0.(1)求这8名男生引体向上测试成绩的达标率;(2)他们共做了多少个引体向上?详解详析1.D 2.C3.3 [解析] 正数有0.2,17,3,共3个.4.C 5.A6.(1)支出 (2)上升 (3)增加 7.运出大米45千克8.解:(1)若节约为正,浪费为负,则节约水10 m 3记作+10 m 3,浪费水0.5 m 3记作-0.5 m 3.(2)若注入为正,放出为负,则注入汽油4 t 记作+4 t ,放出汽油1.8 t 记作-1.8 t. (3)若零上为正,零下为负,则零上32 ℃记作+32 ℃,零下56 °C 记作-56 °C. 9.A [解析] 根据高于标准记为正,可得低于标准记为负,以4.00米为标准,若小明跳出了4.22米,可记作+0.22米,则小东跳出了3.85米,记作-0.15米.10.B [解析] 因为45+0.03=45.03(mm),45-0.04=44.96(mm), 所以零件的直径的合格范围是44.96 mm ≤零件的直径≤45.03 mm. 因为44.9 mm 不在该范围之内,所以不合格的是B.11.解:大米平均价格与上期相比没有变化;面粉平均价格比上期跌了0.2%;豆制品平均价格比上期涨了0.3%;花生油平均价格比上期跌了0.4%.12.解:(1)因为8名男生中有5名引体向上的成绩为正数或0,所以达标率为58×100%=62.5%.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个), 所以他们共做了56个引体向上.1.2.1 有理数知识点 1 有理数的有关概念1.下列各数中,不是有理数的是( ) A .-3.14B .0C.73D .π2.下列既是分数又是负数的是( ) A .-3.1B .-13C .0D .2.43.有下列各数:3,-5,-12,0,2,0.97,-0.21,-6,9,23,85,1,其中正数有________个,负数有________个,正分数有________个,负分数有________个.4.在适当的空格里打上“√”号.5.下列说法错误的是( ) A .负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数6.给出一个有理数-1.2及下列判断:(1)这个数不是分数,但是有理数;(2)这个数是负数,也是分数;(3)这个数与π一样,不是有理数;(4)这个数是一个负小数,也是负分数.其中正确的个数是()A.1 B.2 C.3 D.47.已知数:-13,0.2·51·,260,-2019,56,-53%,0.将它们填到下面相应的集合圈内.(1)图1-2-1(2)图1-2-2(3)图1-2-38.请用两种不同的分类标准将下列各数分类: -15,+6,-2,-0.9,1,35,0,314,0.63,-4.95.9.将一串有理数按下列规律排列,回答下列问题:图1-2-4(1)在A 位置的数是正数还是负数? (2)A ,B ,C ,D 中哪个位置的数是负数?(3)第50个数是正数还是负数?排在对应A ,B ,C ,D 中的哪个位置?详解详析1.D [解析] 有理数是指分数和整数,π既不是整数,也不能化成分数,所以π不是有理数.2.A3.7 4 2 2 [解析] 根据有理数的有关概念进行判断,其中3,2,0.97,9,23,85,1是正数,共7个;-5,-12,-0.21,-6是负数,共4个;0.97,23是正分数,共2个;-12,-0.21是负分数,共2个. 4.为正有理数、0和负有理数.C 中缺少了0,所以C 的说法是错误的.6.B 7.解:(1)(2)(3)8.解:分类一:⎩⎪⎨⎪⎧整数:-15,+6,-2,1,0;分数:-0.9,35,314,0.63,-4.95. 分类二:⎩⎪⎨⎪⎧正数:+6,1,35,314,0.63;0;负数:-15,-2,-0.9,-4.95.说明:若按其他分类标准分类,只要分类正确也可. 9.解:(1)在A 位置的数是正数. (2)B 和D 位置的数是负数. (3)第50个数是正数,排在C 位置.1.2.2数轴知识点 1数轴的概念及画法1.关于数轴,下列说法最准确的是()A.是一条直线B.是有原点、正方向的一条直线C.是有单位长度的一条直线D.是规定了原点、正方向、单位长度的一条直线2.下列各语句中,正确的是()A.数轴上的单位长度可以不一样长B.数轴的单位长度必须是1厘米C.数轴的正方向必须向右D.数轴上原点的位置可以是任意的3.图1-2-5中,所画数轴正确的是()图1-2-5知识点 2读出数轴上表示的数4.如图1-2-6,数轴上点M表示的数可能是()图1-2-6 A.-4.5 B.-2.5 C.-3.5 D.3.55.有理数a ,b ,c 在数轴上对应的点的位置如图1-2-7所示,则下列说法正确的是( )图1-2-7A .a ,b ,c 是负数B .a ,b ,c 是正数C .a ,b 是负数,c 是正数D .a 是负数,b ,c 是正数6.指出如图1-2-8所示的数轴上A ,B ,C ,D ,O 各点分别表示什么数.图1-2-8知识点 3 在数轴上表示数7.(1)数轴上表示4的点在原点的________边,与原点的距离是________个单位长度; (2)数轴上表示-4的点在原点的________边,与原点的距离是________个单位长度; (3)与原点的距离是4个单位长度的点有______个,它们分别表示数________和________.8.如图1-2-9,在数轴上表示-2的点是( )图1-2-9A .点AB .点BC .点CD .点D9.在数轴上表示数-2,0,6.3,15的点中,在原点右边的点有( )A. 0个B. 1个C. 2个D. 3个10.数轴上,在原点的左侧,距原点6个单位长度的点表示的数为________. 11.如图1-2-10,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P′,则点P′表示的数是________.图1-2-1012.在数轴上画出表示下列各数的点: -2,212,3.5,0,-0.5,+74.图1-2-1113.下列说法中正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上两个不同的点可以表示同一个有理数C .有的有理数不能表示在数轴上,如-0.00005D .任何一个有理数都可以在数轴上找到和它对应的唯一的一个点14.如图1-2-12,数轴上有A ,B ,C 三个点,若点C 表示的数是2,点B 表示的数是4,则点A 表示的数是________.图1-2-1215.已知点A在数轴上的位置如图1-2-13所示,点B也在数轴上,且A,B两点之间的距离是2,则点B表示的数是________.图1-2-1316.如图1-2-14,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为________.图1-2-1417.A,B,C,D四名同学的家和学校在同一条街上,以学校为原点,四名同学的家与学校之间的位置分别记作210米,-700米,300米,-450米.(1)画一条数轴,并把四名同学家的位置标在数轴上;(2)指出谁家离学校最近,谁家离学校最远.18.超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店在书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.19.(1)借助数轴,回答下列问题:①从-1到1有3个整数,分别是________________________________________________________________________;②从-2到2有5个整数,分别是________________________________________________________________________;③从-3到3有7个整数,分别是________________________________________________________________________;④从-200到200有________个整数;⑤从-n到n有________个整数(n≥1,且n为整数).(2)根据以上规律,直接写出从-2.9到2.9有________个整数,从-10.1到10.1有________个整数.(3)在单位长度是1 cm的数轴上随意画一条长为1000 cm的线段AB,则线段AB盖住的整数点有____________个.20.2017·吴兴区期中操作探究:已知在纸面上有一条数轴(如图1-2-15所示).操作一:(1)折叠纸面,使表示数1的点与表示数-1的点重合,则表示数-3的点与表示数________的点重合.操作二:(2)折叠纸面,使表示数-1的点与表示数3的点重合,回答以下问题:①表示数5的点与表示数________的点重合;②若数轴上A,B两点之间的距离为11(点A在点B的左侧),且A,B两点经折叠后重合,求A,B两点表示的数分别是多少.图1-2-15详解详析1.D 2.D3.D [解析] A 选项没有指明正方向,所以不正确;B 选项漏掉了原点,所以不正确;C 选项负数排列错误,所以不正确;D 选项正确.4.C 5.D6.解:点A 表示的数为-2.5,点B 表示的数为-0.5,点C 表示的数为2,点D 表示的数为2.5,点O 表示的数为0.7.(1)右 4 (2)左 4 (3)2 4 -4 8.A9.C [解析] 原点右边的点表示的数是正数,在-2,0,6.3,15中,6.3和15是正数.10.-6 [解析] 在原点的左侧,说明这个点表示的数是一个负数,距原点6个单位长度,则这样的点表示的数为-6.11.212.解:如图所示:13.D [解析] 所有的有理数都可以在数轴上找到唯一的一个点与之对应,在同一条数轴上,不同的点不能表示同一个有理数.14.-2 [解析] 因为点C 表示的数是2,点B 表示的数是4,所以数轴上每两个相邻刻度线之间的线段长为一个单位长度.因为点C 往左两个单位长度处是原点,而点A 距点C 四个单位长度,所以点A 表示的数是-2.15.-5或-116.5 [解析] 刻度尺上的8 cm 到数轴上原点的距离是5,所以x 的值是5. 17.解:(1)画数轴如下:(2)A同学的家离学校最近,B同学的家离学校最远.18.[解析] 以向东为正方向,书店为原点画数轴,规定1个单位长度代表10米长,然后根据数轴表示数的方法在数轴上分别表示出超市、书店、玩具店和小明最后的位置.解:(数轴画法不唯一)以向东为正方向,书店为原点画数轴,规定1个单位长度代表10米长.由于小明从书店出来沿街向东走了50米,接着又向东走了-80米,则小明最后的位置在书店西边30米处,如图所示.19.(1)①-1,0,1②-2,-1,0,1,2③-3,-2,-1,0,1,2,3④401⑤(2n+1)(2)521(3)1000或100120.解:(1)因为表示数1的点与表示数-1的点重合,所以折痕过原点.所以表示数-3的点与表示数3的点重合.故答案为3.(2)①因为表示数-1的点与表示数3的点重合,所以折痕过表示数1的点.所以表示数5的点与表示数-3的点重合.故答案为-3.②由题意可得A,B两点到折痕所在直线的距离均为11÷2=5.5.因为折痕过表示数1的点,所以A ,B 两点表示的数分别是-4.5,6.5.1.2.3 相反数知识点 1 相反数的意义1.如图1-2-16,数轴上表示3的点是点________,表示-3的点是点________,它们到原点O 的距离________(填“相等”或“不相等”),所以3与-3互为__________.图1-2-162.2018·绥化 -32的相反数是( )A .1.5B.23C .-1.5D .-233.一个数a 的相反数是5,则a 的值为( ) A.15B .5C .-15D .-54.2017·贵阳 在1,-1,3,-2这四个数中,互为相反数的是( ) A .1与-1 B .1与-2 C .3与-2D .-1与-25.如图1-2-17,数轴上表示数-2的相反数的点是( )图1-2-17A .点PB .点QC .点MD .点N6.如图1-2-18,表示互为相反数的两个数在数轴上的对应点是____________.图1-2-187.写出下列各数的相反数: 11.2,9,0,-58,423.8.写出5,4,-3的相反数,并在如图1-2-19所示的数轴上表示出各数及它们的相反数.图1-2-19知识点 2 利用相反数的意义化简符号9.-(+5)表示________的相反数,即-(+5)=________;-(-5)表示________的相反数,即-(-5)=________.10.化简-(-6)的结果为( )A .6B .-6C.16 D .-1611.下列各式中,化简正确的是( ) A .+(-7)=7B .+(+7)=-7C .-(+7)=-7D .-(-7)=-712.下列四组数中,互为相反数的一组是( ) A .+2与-3B .-8与+8C .-(-2)与2D .+(-1)与-(+1)13.化简:(1)-(+8); (2)-(+2.7);(3)-(-3); (4)-⎝⎛⎭⎫-34.14.若一个数的相反数不是正数,则这个数一定是( ) A .正数 B .正数或零 C .负数 D .负数或零 15.下列说法正确的有( )①-x 一定是负数;②任何一个有理数都有相反数;③只有正数和负数才能互为相反数;④互为相反数的数是指两个不同的数;⑤符号不同的两个数互为相反数.A .1个B .2个C .3个D .4个16.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6个单位长度,那么这个数是()A.6或-6 B.3或-3C.6或-3 D.-6或317.如图1-2-20,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反数的是()图1-2-20A.-2 B.3 C.-3 D.218. 若x-1与-5互为相反数,则x的值为________.19.化简下列各式的符号,并回答问题:-[-(-4)]=________;-[-(+3.5)]=________;-{-[-(-5)]}=________;-{-[-(+5)]}=________.(1)当+5前面有2020个负号时,化简后的结果是多少?(2)当-5前面有2019个负号时,化简后的结果是多少?你能总结出什么规律?20.在数轴上点A表示7,点B,C表示的数互为相反数,且点C与点A的距离为2,求点B,C表示的数分别是什么.21.小李在做题时,画一条数轴,数轴上原有一点A,其表示的数是-3,由于一时粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置.想一想:要把这条数轴画正确,原点应向哪个方向移动几个单位长度?22.已知表示数a的点在数轴上的位置如图1-2-21所示.图1-2-21(1)在数轴上标出表示数a的相反数的点的位置;(2)若表示数a的点与表示其相反数的点相距20个单位长度,则a是多少?(3)在(2)的条件下,若表示数b的点与表示数a的相反数的点相距5个单位长度,求b 是多少.详解详析1.A B相等相反数2.A3.D[解析] -5的相反数是5,故a=-5.故选D.4.A5.A[解析] 因为-2的相反数是2,数2在数轴上的对应点为点P.故选A. 6.点B和点C7.解:11.2的相反数是-11.2,9的相反数是-9,0的相反数是0,-58的相反数是58,423的相反数是-423.8.解:5,4,-3的相反数分别是-5,-4,3.在数轴上表示如图所示.9.5-5-5 510.A11.C[解析] 看数字前面负号的个数,若有偶数个,则结果为正;若有奇数个,则结果为负.12.B[解析] 根据相反数的定义:A项,+2的相反数是-2,错误;B项,-8的相反数是+8,正确;C项,-(-2)的相反数是-2,错误;D项,+(-1)的相反数是1,错误.13.解:(1)因为+8的相反数是-8,所以-(+8)=-8.(2)类似地,-(+2.7)=-2.7.(3)因为-3的相反数是3,所以-(-3)=3. (4)类似地,-⎝⎛⎭⎫-34=34. 14.B [解析] 一个数的相反数不是正数,则这个数的相反数是负数或零,故这个数一定是正数或零.15.A [解析] 当x 是一个负数时,-x 就是正数,①错;0的相反数是0,③④错;只有符号不同,其余完全相同的两个数才互为相反数,⑤错.16.B [解析] 因为这两个互为相反数的数对应的点之间的距离为6个单位长度,并且它们到原点的距离相等,故这两个数为3和-3.17.D [解析] 点C 表示的数是1,向左移动5个单位长度到点B ,则点B 表示的数是-4,点B 向右移动2个单位长度到点A ,则点A 表示的数是-2,-2的相反数是2.18.6 [解析] 因为x -1与-5互为相反数,又-5的相反数是5,所以x -1=5,解得x =6.19.解:-4 3.5 5 -5(1)当+5前面有2020个负号时,化简后的结果是5. (2)当-5前面有2019个负号时,化简后的结果是5.规律:在一个数的前面有偶数个负号,化简结果是其本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.20.解:因为数轴上点A 表示7,点C 与点A 的距离为2,所以数轴上点C 表示5或9.因为点B ,C 表示的数互为相反数,所以数轴上点B 表示-5或-9. 所以点B ,C 表示的数分别是-5,5或-9,9.21.解:要把这条数轴画正确,原点应向右移动6个单位长度. 22.解:(1)如图:(2)a 是-10.(3)由(2)知-a =10.当表示数b 的点在表示数-a 的点的右边时,b =10+5=15; 当表示数b 的点在表示数-a 的点的左边时,b =10-5=5. 综上可得,b 是5或15.1.2.4 第1课时 绝对值知识点 1 绝对值的意义1.数轴上表示2的点到原点的距离是________,所以|2|=________;数轴上表示-2的点到原点的距离是________,所以|-2|=________;数轴上表示0的点到原点的距离是________,所以|0|=________.2.2017·株洲 如图1-2-22,数轴上点A 所表示的数的绝对值为( )图1-2-22A .2B .-2C .±2D .以上均不对3.|-2020|的意义是数轴上表示数________的点到原点的距离. 知识点 2 绝对值的性质 4.-2的绝对值是( ) A .-2 B .-12C.12D .25.⎪⎪⎪⎪-15等于( ) A .-15 B.15C .5D .-56.一个数的绝对值等于3,则这个数是( ) A .3B .-3C .±3D.137.下列说法正确的是( ) A .绝对值等于它本身的数只有0 B .绝对值等于它本身的数是正数 C .绝对值等于它本身的数有0和正数 D .绝对值等于它本身的数的相反数是负数 8.任何一个有理数的绝对值一定( ) A .大于0B .小于0C .不大于0D .不小于09.求-2,-13,7.2,0,8的绝对值.10.已知x =8,y =-2,求|x |-4|y |的值.知识点 3绝对值的应用11.某家企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.0021升的误差,现抽查6瓶食用调和油.超过规定净含量的部分记作正数,不足规定净含量的部分记作负数,结果如下(单位:升):+0.0019,-0.0022,+0.0021,-0.0015,+0.0024,-0.0009.请用绝对值的知识说明这6瓶食用调和油中有几瓶符合要求.12.已知零件的标准直径是100 mm,超过标准直径的数量(mm)记作正数,不足标准直径的数量(mm)记作负数,检验员某次抽查了五件样品,检查结果如下:(1)(2)如果规定误差的绝对值在0.18 mm之内的是优品,误差的绝对值在0.18 mm~0.22 mm之间(包括0.18 mm和0.22 mm)的是次品,误差的绝对值超过0.22 mm的是废品,那么这五件样品分别属于哪类产品?13.⎪⎪⎪⎪-13的相反数是( ) A.13B .-13C .3D .-314.如图1-2-23,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )图1-2-23A .-4B .-2C .0D .415.一个数a 在数轴上的对应点在原点左边,且|a |=4,则a 的值为( ) A .4或-4B. 4C .-4D .以上都不对16.(1)-3的绝对值的相反数是________;(2)若一个数的相反数的绝对值是3,则这个数是________. 17.计算:(1)|-35|+|+21|+|-27|;(2)|-345|-|-45|+|-312|;(3)|-49|×|-21 7|.18.已知|x+2|+|y-3|=0.(1)求x,y的值;(2)求|x|+|y|的值.19.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午的行驶情况(单位:千米)如下:+15,-3,+14,-11,+10.若出租车耗油量为0.06升/千米,则这天下午出租车共耗油多少升?20.数学老师出了如下一道计算题,孙良看了看说:“这么多数怎么算啊?”请聪明的你来帮他解决吧!写出你的解题过程.计算:⎪⎪⎪⎪1-12+⎪⎪⎪⎪12-13+⎪⎪⎪⎪13-14+|14-15|+…+⎪⎪⎪⎪12017-12018+⎪⎪⎪⎪12018-12019.详解详析1.2 2 2 2 0 0 2.A 3.-2020 4.D 5.B6.C [解析] 因为||a =3,所以a =±3.故选C. 7.C 8.D9.解:|-2|=2,⎪⎪⎪⎪-13=13,|7.2|=7.2,|0|=0,|8|=8. 10.解:当x =8,y =-2时,|x|-4|y|=|8|-4×|-2|=8-4×2=0. 11.解:因为|+0.0019|=0.0019<0.0021, |-0.0022|=0.0022>0.0021, |+0.0021|=0.0021, |-0.0015|=0.0015<0.0021, |+0.0024|=0.0024>0.0021, |-0.0009|=0.0009<0.0021,绝对值小于或等于0.0021的是符合要求的,所以这6瓶食用调和油中有4瓶符合要求. 12.解:(1)因为|0.1|=0.1,|-0.15|=0.15,|-0.2|=0.2,|-0.05|=0.05,|-0.25|=0.25,且0.05<0.1<0.15<0.2<0.25, 所以第4件样品的大小最接近标准.(2)因为|0.1|=0.1<0.18,|-0.15|=0.15<0.18,|-0.05|=0.05<0.18,所以第1,2,4件样品是优品;因为|-0.2|=0.2,0.18<0.2<0.22,所以第3件样品是次品; 因为|-0.25|=0.25>0.22,所以第5件样品是废品.13.B [解析] 因为⎪⎪⎪⎪-13=13,13的相反数是-13,所以⎪⎪⎪⎪-13的相反数是-13.故选B. 14.B 15.C16.(1)-3 (2)±317.[解析] 先根据绝对值的意义化去绝对值符号,再计算. 解:(1)原式=35+21+27=83. (2)原式=345-45+312=612.(3)原式=49×157=105.18.解:(1)由题意,得x +2=0,y -3=0, 解得x =-2,y =3.(2)|x|+|y|=|-2|+|3|=2+3=5.19.解:出租车共行驶:|+15|+|-3|+|+14|+|-11|+|+10|=15+3+14+11+10=53(千米),所以共耗油:53×0.06=3.18(升). 答:这天下午出租车共耗油3.18升.20.解:原式=1-12+12-13+13-14+14-15+…+12017-12018+12018-12019=1-12019=20182019.1.2.4 第2课时 有理数的大小比较知识点 1借助数轴比较有理数的大小1.冬季某天,我国三个城市的最高气温分别是-9 °C,1 °C,-4 °C,通过观察温度计,可以把它们从低到高排列为________________;若是在数轴上表示-9,1,-4这三个数,通过观察数轴,可以发现它们从左到右排列为________.由此我们发现,在数轴上左边的数总是________右边的数.2.已知有理数a,b,c在数轴上对应的点的位置如图1-2-24所示,则下列关系正确的是()A.a>b>c>0 B.b>c>0>aC.b>0>c>a D.b>0>a>c1-2-243.如图1-2-25,下列各点表示的数中,比1大的数对应的点是()1-2-25A.A B.B C.C D.D4.画出数轴,把下列各数在数轴上表示出来,并用“<”号把各数连接起来:-2.5,1,0,-2,3,-4,1.5.知识点 2运用法则比较有理数的大小5.2018·广东在有理数0,13,-3.14,2中,最小的数是()A .0B.13C .-3.14D .26.下列各数中,比-2小的数是( ) A .-3B .-1C .0D .17.2017·咸宁 下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )A.C .隐水洞D .三湖连江8.比较-12,-13,14的大小,结果正确的是( )A .-12<-13<14B .-12<14<-13C.14<-13<-12D .-13<-12<149.比较下列各组数的大小: (1)3与-7; (2)-5.3与-5.4;(3)-38与-58.10.下列有理数的大小关系正确的是( ) A .-0.2>-0.02 B .|-36|<0 C .-|10|>|-5| D .-⎝⎛⎭⎫-12>-⎪⎪⎪⎪-13 11.2018·攀枝花 如图1-2-26,有理数-3,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最小的数对应的点是( )图1-2-26A .MB .NC .PD .Q12.2017·红桥区一模 有理数a ,b 在数轴上的对应点的位置如图1-2-27所示,则a ,b ,-a ,|b |的大小关系正确的是( )图1-2-27A .|b |>a >-a >bB .|b |>b >a >-aC .a >|b |>b >-aD .a >|b |>-a >b13.下面各数的大小排列正确的是( ) A .0<-⎝⎛⎭⎫-12<-⎪⎪⎪⎪-34<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12B .-⎪⎪⎪⎪-34<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12<0<-⎝⎛⎭⎫-12C .-⎝⎛⎭⎫-12<-⎪⎪⎪⎪-34<0<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12D .-⎝⎛⎭⎫+12<+⎝⎛⎭⎫-23<-⎪⎪⎪⎪-34<0<-⎝⎛⎭⎫-12 14.绝对值小于4的整数有________个,它们是________________.15.最大的负整数是______,绝对值最小的数是______,绝对值最小的正整数是______,绝对值最小的负整数是______.16.比较大小:(1)-(-2.75)与-(-2.67);(2)-(+3)与0;(3)-π与-|3.14|;(4)-(-5)与-|+6|.17.画一条数轴,在数轴上表示下列各数:3.5和它的相反数,-12,绝对值等于3的数,最大的负整数,并把这些数由大到小用“>”号连接起来.18.动物王国里举行了一场乌龟与兔子的竞走比赛,所走路线及方向如图1-2-28所示,在同一时间内,兔子向西走了20 m ,乌龟向东走了1 m ,狐狸宣布乌龟获胜,其理由是向西为负,向东为正,根据正数大于一切负数的原理,+1>-20,表明同一时间里乌龟走的路程大于兔子走的路程.你认为这样公平吗?图1-2-286 23,-417,-311,-1247的大小.19.比较-详解详析1.-9 °C ,-4 °C ,1 °C -9,-4,1 小于 2.D 3.D4.解:将各数在数轴上表示略.-4<-2.5<-2<0<1<1.5<3. 5.C 6.A7.C [解析] 因为-2<-1<0<2,所以隐水洞的气温最低.故选C.8.A [解析] 在-12,-13,14这三个数中,14是正数,-12和-13是负数,正数大于负数,所以14最大,⎪⎪⎪⎪-12>⎪⎪⎪⎪-13,所以-12<-13,所以选A. 9.解:(1)3>-7.(2)-5.3>-5.4. (3)-38>-58.10.D [解析] 因为|-0.2|=0.2,|-0.02|=0.02,而0.2>0.02,根据两个负数,绝对值大的反而小,所以-0.2<-0.02,故A 错误;因为|-36|=36>0,故B 错误;因为-|10|=-10,|-5|=5,根据负数小于正数,所以-|10|<|-5|,故C 错误;因为-⎝⎛⎭⎫-12=12,-⎪⎪⎪⎪-13=-13,根据正数大于负数,得12>-13,所以-⎝⎛⎭⎫-12>-⎪⎪⎪⎪-13,故D 正确.11.B [解析] 绝对值最小的数对应的点应该离原点的距离最近,在M ,N ,P ,Q 四个点中,点N 离原点的距离最近.故选B.12.A [解析] 因为a 是大于1的数,b 是负数,且|b|>|a|,所以|b|>a >-a >b.故选A. 13.B14.7 0,±1,±2,±3 15.-1 0 1 -116.解:(1)-(-2.75)>-(-2.67).(2)-(+3)<0. (3)-π<-|3.14|. (4)-(-5)>-|+6|.17.[解析] 在数轴上,原点左侧的点表示的数为负数,右侧的点表示的数为正数,表示3.5的点在原点右侧,表示-3.5的点在原点左侧,表示-12的点在原点左侧,绝对值为3的数有3和-3,表示3的点在原点右侧,表示-3的点在原点左侧,最大的负整数为-1,表示-1的点在原点左侧.解:如图所示:由大到小排列:3.5>3>-12>-1>-3>-3.5.18.解:不公平.因为路程为非负数,故应比较绝对值的大小,|+1|<|-20|,所以乌龟走的路程小于兔子走的路程.19.解:因为⎪⎪⎪⎪-623=623=1246,⎪⎪⎪⎪-417=417=1251,⎪⎪⎪⎪-311=311=1244,⎪⎪⎪⎪-1247=1247, 1244>1246>1247>1251, 所以-311<-623<-1247<-417.1.3.1 第1课时 有理数的加法法则知识点 1 有理数的加法法则1.计算:(1)(+3)+(+2)=+(|+3|________|+2|)=5,(-3)+(-2)=________(|-3|+|-2|)=________;(2)3+(-2)=________(|3|-|-2|)=________,(-3)+(+2)=-(|-3|________|+2|)=________.2.下列各式中,计算结果为正的是( ) A .4.1+(-5.5) B .(-6)+2 C .(-3)+5D .0+(-1)3.2017·颍州区校级月考 下面的数中,与-5的和为0的数是( ) A.15B .-15C .5D .-54.计算(-3)+(-9)的结果是( ) A .-12 B .-6C .+6D .125.下列各式中正确的是( ) A .-5+(-4)=9B .(-5)+6=-11C.⎝⎛⎭⎫-16+0=-16 D .3.6+()-5.6=-1.6 6.计算:(1)(-12)+12=________;(2)(-5)+0=________. 7.计算下列各题: (1)(-18)+(-7);(2)6.5+(-6.5);(3)⎝⎛⎭⎫-314+⎝⎛⎭⎫+213;(4)⎝⎛⎭⎫-514+(-3.5);(5)(-32.8)+(+51.76).8.列式计算:(1)比-18大-30的数;(2)75与-24的和.知识点 2有理数加法的应用9.2018·武汉温度由-4 ℃上升7 ℃后是()A.3 ℃B.-3 ℃C.11 ℃D.-11 ℃10.已知飞机的飞行高度为10000 m,上升-5000 m后,飞机的飞行高度是________m.11.篮球比赛分上半场、下半场进行,规定赢分记为“+”,输分记为“-”,不输不赢记为“0”. 下面是某校篮球队六场比赛的得分情况,请填表:12.-7的相反数加上-3,结果是()A.10 B.-10 C.4 D.-413.如果两个数的和为正数,那么这两个数()A.都是正数B.都是负数C.一正一负D.至少有一个是正数14.2017·滨州计算-(-1)+|-1|,其结果为()A.-2 B.2 C.0 D.-115.有理数a,b在数轴上的对应点的位置如图1-3-1所示,则a+b的值()图1-3-1A.大于0B.小于0C.大于a D.小于b16.在1,-1,-2这三个数中,任意两个数的和的最大值是()A.1 B.0 C.-1 D.-317.已知||a=15,||b=14,且a>b,则a+b的值为()A.29或1 B.-29或1C.-29或-1 D.29或-118.比-312大而比213小的所有整数的和为________.19.某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负):(1)(2)产量最多的一天比产量最少的一天多生产多少辆?20.已知|x |=3,|y |=2. (1)x +y 的值为__________; (2)若|x +y |≠x +y ,求x +y 的值.21.将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入图1-3-2中的方格中,使得横、竖、斜对角的3个数相加都得0.图1-3-2详解详析1.(1)+--5(2)+1--12.C 3.C 4.A5.C[解析] -5+(-4)=-9,(-5)+6=1,3.6+()-5.6=-2.故选C. 6.(1)0(2)-57.(1)-25(2)0(3)-1112(4)-8.75(5)18.968.解:(1)(-18)+(-30)=-48.(2)75+(-24)=51.9.A[解析] (-4)+7=3(℃).故选A.10.5000[解析] 根据题意,得10000+(-5000)=5000(m).11.解:二:赢12分(+18)+(-6)=+12三:不输不赢(+18)+(-18)=0四:输4分(+10)+(-14)=-4五:输23分(-12)+(-11)=-23六:输13分(-13)+0=-1312.C[解析] 根据题意,得-(-7)+(-3)=7-3=4.13.D[解析] 根据有理数的加法法则进行逐一分析即可.A.不一定,例如:-1+2=1,错误.B.错误,两负数相加和必为负数.C.不一定,例如:2与6的和8为正数,但是2与6都是正数,并不是一正一负,错误.D.正确.故选D.14.B15.B16.B[解析] 1+(-1)=0,1+(-2)=-1,(-1)+(-2)=-3,故最大值为0.17.A[解析] 因为||a=15,||b=14,所以a=±15,b=±14.由于a>b,所以a=15,b=±14.所以a +b 的值为29或1.18.-3 [解析] 比-312大而比213小的整数有-3,-2,-1,0,1,2,-3+(-2)+(-1)+0+1+2=-3.19.解:(1)根据记录可知,前三天生产自行车的数量分别为:200+(+5)=205(辆); 200+(-2)=198(辆); 200+(-4)=196(辆).答:前三天生产的自行车依次为205辆,198辆,196辆.(2)产量最多的一天是星期六,生产自行车的数量为200+(+16)=216(辆); 产量最少的一天是星期五,生产自行车的数量为200+(-15)=185(辆). 216-185=31(辆).答:产量最多的一天比产量最少的一天多生产31辆. 20.解:(1)由题意知x =±3,y =±2. 当x =3,y =2时,x +y =5;当x =3,y =-2时,x +y =3+(-2)=1; 当x =-3,y =2时,x +y =-3+2=-1; 当x =-3,y =-2时,x +y =(-3)+(-2)=-5. 故答案为±5或±1. (2)因为|x|=3,|y|=2, 所以x =±3,y =±2.当x =3,y =2时,|x +y|=x +y ,不合题意; 当x =3,y =-2时,|x +y|=x +y ,不合题意; 当x =-3,y =2时,|x +y|≠x +y , 此时x +y =-3+2=-1;当x=-3,y=-2时,|x+y|≠x+y,此时x+y=-3+(-2)=-5.综上可得,x+y的值为-1或-5.21.解:如图所示(答案不唯一):1.3.1第2课时有理数的加法运算律知识点 1利用运算律简化计算1.(1)3+(-2)=________+3,即a+b=________;(2)(-5)+(-31)+(+31)=(-5)+[______+____],即(a+b)+c=__________. 2.在答题线上填上这一步所依据的运算律.(+7)+(-22)+(-7)=(-22)+(+7)+(-7)________________=(-22)+[(+7)+(-7)]________________=(-22)+0=-22.3.小磊解题时,将式子(-15)+4+(-45)变成4+[(-15)+(-45)]再计算结果,则小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断4.下列变形,运用加法运算律正确的是( ) A .3+(-2)=2+3B .4+(-6)+3=(-6)+4+3C .[5+(-2)]+4=[5+(-4)]+2 D.16+(-1)+⎝⎛⎭⎫+56=⎝⎛⎭⎫16+56+(+1) 5.计算:(1)(-23)+(+58)+(-17);(2)(-2.8)+(-3.6)+3.6;(3)16+⎝⎛⎭⎫-27+⎝⎛⎭⎫-56+⎝⎛⎭⎫+57.。

最新人教版七年级数学上册全册课时小练习(含答案)

最新人教版七年级数学上册全册课时小练习(含答案)

最新人教版七年级数学上册全册课时小练习班级:姓名:目录第一章有理数 (1)1.1 正数和负数 (1)1.2 有理数 (2)1.3 有理数的加减法 (7)1.4 有理数的乘除法 (11)1.5 有理数的乘方 (17)第二章整式的加减 (21)2.1 整式 (21)2.2 整式的加减 (24)第三章一元一次方程 (27)3.1 从算式到方程 (27)3.2 解一元一次方程(一)——合并同类项与移项 (29)3.3 解一元一次方程(二)——去括号与去分母 (31)3.4 实际问题与一元一次方程 (33)第四章几何图形初步 (38)4.1 几何图形 (38)4.2 直线、射线、线段 (42)4.3 角 (44)4.4 课题学习——设计制作长方体形状的包装纸盒 (47)答案 (48)第一章有理数 (48)1.1正数和负数 (48)1.2有理数 (48)1.3有理数的加减法 (49)1.4有理数的乘除法 (50)1.5有理数的乘方 (52)第二章整式的加减 (53)2.1整式 (53)2.2整式的加减 (53)第三章一元一次方程 (54)3.1从算式到方程 (54)3.2解一元一次方程(一)——合并同类项与移项 (54)3.3解一元一次方程(二)——去括号与去分母 (55)3.4实际问题与一元一次方程 (55)第四章几何图形初步 (57)4.1几何图形 (57)4.2直线、射线、线段 (58)4.3角 (58)4.4课题学习——设计制作长方体形状的包装纸盒 (59)第一章 有理数1.1 正数和负数1.下列各数是负数的是( )A.23B.-4C.0D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米3.下列说法正确的是( )A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480. 正数有 ;负数有 ;既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( ) A.1 B.2C.3D.42.下列各数中是负分数的是( )A.-12B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( )A.是负数,但不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95. 正整数集合:{ …};负整数集合:{ …};正分数集合:{ …};负分数集合:{ …};非负有理数集合:{ …};非正有理数集合:{ …}.1.下列所画数轴中正确的是()2.如图,点M 表示的数可能是()A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是()A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( )A.-3B.3C.-13D.132.下列各组数中互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12D.0和0 3.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ;(2)-(-3)= ;(3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值第1课时 绝对值1.-14的绝对值是( ) A.4 B.-4C.14D.-142.化简-|-5|的结果是( )A.5B.-5C.0D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()4.若一个负有理数的绝对值是310,则这个数是 . 5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( ) A.3 B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则()A.a >2B.a >-2C.a <0D.-1>a3.比较大小:(1)0 -0.5;(2)-5 -2;(3)-12 -23. 4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则1.计算(-5)+3的结果是( )A.-8B.-2C.2D.82.计算(-2)+(-3)的结果是( )A.-1B.-5C.-6D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( )A.-1℃B.1℃C.-9℃D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律)=[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律)=( )+( )= .3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( )A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是.5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是()A.5个B.4个C.3个D.2个2.多项式3x 2-2x -1的各项分别是( ) A.3x 2,2x,1 B.3x 2,-2x,1 C.-3x 2,2x ,-1 D.3x 2,-2x ,-1 3.多项式1+2xy -3xy 2的次数是( ) A.1 B.2 C.3 D.44.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .5.写出一个关于x ,y 的三次二项式,你写的是 (写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a 千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A.2x +2y B.2y C.2x D.02.已知A =5a -3b ,B =-6a +4b ,则A -B 为( ) A.-a +b B.11a +b C.11a -7b D.-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是()4.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A.(3a +b) B.(2a +2b) C.(a +b) D.(a +3b)5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是()2.方程x +3=-1的解是( ) A.x =2 B.x =-4 C.x =4 D.x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是( ) A.-8 B.0 C.8 D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .5.商店出售一种文具,单价3.5元,若用100元买了x 件,找零30元,则依题意可列方程为 .6.七(2)班有50名学生,男生人数是女生人数的 倍.若设女生人数为x 名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a =b ,则下列变形一定正确的是()2.下列变形符合等式的基本性质的是( ) A.若2x -3=7,则2x =7-3 B.若3x -2=x +1,则3x -x =1-2 C.若-2x =5,则x =5+2 D.3.解方程- x =12时,应在方程两边( ) A.同时乘- B.同时乘4 C.同时除以 D.同时除以-4.由2x -16=5得2x =5+16,此变形是根据等式的性质在原方程的两边同时加上了 .5.利用等式的性质解下列方程: (1)x +1=6; (2)3-x =7;(3)-3x =21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时 立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是()2.下列图形不是立体图形的是( ) A.球 B.圆柱 C.圆锥 D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个 4.将下列几何体分类:其中柱体有 ,锥体有 ,球体有 (填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形 个,圆 个.6.把下列图形与对应的名称用线连起来:圆柱 四棱锥 正方体 三角形 圆第2课时 从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是()2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是()3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是()4.下面图形中是正方体的展开图的是()5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是()A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( ) A.1个 B.2个 C.3个 D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( ) A.点动成线 B.线动成面 C.面动成体 D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识. (1)飞机穿过云朵后留下痕迹表明 ; (2)用棉线“切”豆腐表明 ;(3)旋转壹元硬币时看到“小球”表明 . 4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是()A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时 线段的长短比较与运算1.如图所示的两条线段的关系是( ) A.a =b B.a <b C.a >b D.无法确定第1题图 第2题图2.如图,已知点B 在线段AC 上,则下列等式一定成立的是( ) A.AB +BC >AC B.AB +BC =AC C.AB +BC <AC D.AB -BC =BC3.如图,已知D 是线段AB 的延长线上一点,C 为线段BD 的中点,则下列等式一定成立的是()A.AB +2BC =ADB.AB +BC =ADC.AD -AC =BDD.AD -BD =CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是 .5.如图,已知线段AB =20,C 是线段AB 上一点,D 为线段AC 的中点.若BC =AD +8,求AD 的长.4.3 角4.3.1 角1.图中∠AOC 的表示正确的还有( ) A.∠O B.∠1 C.∠AOB D.∠BOC第1题图 第2题图2.如图,直线AB ,CD 交于点O ,则以O 为顶点的角(只计算180°以内的)的个数是( ) A.1个 B.2个 C.3个 D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是 °.4.把下列角度大小用度分秒表示: (1)50.7°; (2)15.37°.5.把下列角度大小用度表示: (1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( ) A.∠AOC B.∠BOD C.∠AOD D.∠COB第1题图 第2题图2.如图,OC 为∠AOB 内的一条射线,且∠AOB =70°,∠BOC =30°,则∠AOC 的度数为 °.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC 为∠AOB 内的一条射线,OM ,ON 分别平分∠AOC ,∠COB.若∠AOM =30°,∠NOB =35°,求∠AOB 的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是()2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为()A.14B.10C.8D.73.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).答案第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上册数学课本练习题答案(人教版)P108 3题某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满7个月就决定不再继续干了,结账时,给了他一件衣服和2枚银币。

这件衣服价值多少枚银币?分析:一年的报酬是年终给他一件衣服和10枚银币,干满7个月,给了他一件衣服和2枚银币。

说明还差5个月就少了10-2=8枚银币,每个月8/5银币,7个月应该7*8/5枚银币,等于一件衣服和2枚银币的钱。

设:这件衣服值x枚银币.x+2=7*(10-2)/(12-7)x+2=56/5x=11.2-2x=9.24题某种商品每件进价为250元,按标价的九折出售时,利润率为15.2%,这种商品每件标价是多少解:设这种商品标价为X元。

90%X=250×(1+15.2%)X=3205题已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩设每箱有x个产品5台A型机器装:8x+47台B型机器装:11x+1因为(8x+4)/5=(11x+1)/7+1所以:x=12所以每箱有12个产品6题一辆大汽车原来的行驶速度是30千米/时,现在开始均匀加速,每小时提速20千米/时;一辆小汽车原来的行驶速度是90千米/时,现在开始均匀减速,每小时减速10千米/时.经过多长时间两辆车的速度相等?这时车速是多少?30+x.20=90-x.10x=22小时车速30+2.20=707题甲组的四名工人3月份完成的总工作量比此月人均定额的四倍多二十件乙组的五名工人三月份完成的总工作量比此1、如果两组工人实际完成的此月人均110页一种商品售价2.2元/件,如果买100件以上,超过100件部分售价为2元.某人买这种商品共花了N元,讨论下列问题:一种商品售价2.2元/件,如果买100件以上,超过100件部分售价为2元.某人买这种商品共花了N元,讨论下列问题:(1)这个人买了这种商品多少件?设3月份人均定额是X件根据题意:(1)(4X+20)/4=(6X-20)/5 解得X=45 (2)(4X+20)/4=2+(6X-20)/5 解得X=35 (3)4X+20)/4=-2+(6X-20)/5 X=55 答:(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是45件8题京沪高速公路全长1262千米,一辆汽车从北京出发,匀速行使5小时后,提速20千米/时又匀速行使5小时后,减速10千米/时,又匀速行使5小时后,到达上海,问(1)求各段时间的车速(精确到1千米/时)分析一下设第一段匀速度行的5小时速度是x那么提速20千米/时后速度是x+20.行使5小时后,减速10千米/时的速度是x+20-10=x+10列方程:5x+5(x+20)+5(x+10)=12625x+5x+100+5x+50=126215x=1112x=74.13333(循环)x约等于7474+20=94千米/每时74+20-10=84千米/每时答:各段时间的车速分别为74千米/每时,94千米/每时,84千米/每时。

9题希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:他生命的六分之一是幸福的童年;再活了他生命的十二分之颊上长出细细须。

又过了生命的七分之一才结婚。

再过5年他感到很幸福,得了一个儿子。

可是这孩子光辉灿烂的生命只有他父亲的一半。

儿子死后,老人在悲痛中活了4年,结束了尘世的生涯。

你知道丢番图去世时的年龄分别是多少吗?丢番图开始当爸爸时的年龄和儿子死时丢番图的年龄墓志铭可以用方程来解:设丢番图活了x岁。

与其有关的问题:1.丢番图的寿命:解:x=1/6x+1/12x+1/7x+5+1/2x+4x=25/28x+9x-25/28=93/28x=9x=9*3/28x=84答:由此可知丢番图活了84岁。

第二种解法:12×7=84解答: 答案就是“12”、“6”、“7”中最大互质因子的乘积——“12×7=84”2.丢番图开始当爸爸的年龄:84×(1/6+1/12+1/7)+5=38(岁)答:丢番图开始当爸爸的年龄为38岁。

3.儿子死时丢番图的年龄:84-4=80(岁)答:儿子死时丢番图的年龄为80岁。

110页活动1一种商品售价2.2元/件,如果买100件以上,超过100件部分售价为2元.某人买这种商品共花了N元,讨论下列问题:一种商品售价2.2元/件,如果买100件以上,超过100件部分售价为2元.某人买这种商品共花了N元,讨论下列问题:(1)这个人买了这种商品多少件?1)100/2.2约等于45余10,因此由2.2乘以45=99 2.2乘以46=101.2(元)所以这个人买的前46件的单价是2.2元.a.当N<=100时,此人买的商品数为N/2.2的整数部分b.当N>100时,商品数为(N-101.2)/2+46 (结果取整数)(2)因为0.48<2,所以第二问无解活动2,根据国家统计局资料报告,2006年我国农村居民人均纯收入3578元,比上年增长10.2%,扣除价格因素,实际增长7.4%。

根据上面的数据,使用一元一次方程求:(1)2005年我国农村居民人均收入(精确到1元)设2005年我国农村居民人均收入X元(1+10.2%)X=3578110.2%X=3578X约为3246(2)扣除价格因素,2006年与2005年相比,我国农村居民人均收入实际增长量(精确到1元)。

设我国农村居民人均收入实际增长量X元X=3578*(1+7.4%)-3246X=247111页活动三用一根质地均匀度直尺和一些棋子,做如下实验:1.把直尺的中点放在一个支点上,使直尺左右两边平衡;2.在直尺两端各放一颗棋子,看看左右两边是否保持平衡;3.支点不动,在直尺一端的棋子加放一枚棋子,然后把这两枚摞在一起的棋子向支点移动,使左右两边保持平衡,记录支点到左右两边棋子中心位置的距离a和b;4.在两枚摞在一起的棋子上再加放一枚棋子,然后把这三枚摞在一起的棋子向支点移动,使左右两边保持平衡,记录支点到左右两边棋子中心位置的距离a和b;5.在一摞棋子上继续加放棋子,并重复以上操作和记录。

如图,在直尺的左端点放一枚棋子,支点右边放N枚棋子,并使两边平衡,设直尺长为L,棋子半径为R,支点到右边棋子中心位置的距离为X,吧N ,L,R作为已知数,列出关于X的一元一次方程·=-=解X*n=(L/2-r)不妨设一枚棋子的重量为1(也可以为Z,反正约掉了)右边放n枚棋子时,杠杆平衡(不考虑尺子自身的力矩,因为支点始终在中间,自身始终是平衡的):右边力臂为X,力矩为X*n;左边力臂为(L/2-r),力矩为(L/2-r)*1,两边平衡,二者相等,即列出一次方程。

X*n=(L/2-r)113页综合运用4题物体从高处自由落下时,经过的距里s与时间t之间有s=2/1gt的平方的关系问题补充:,这里g是一个常数。

当t=2时,s=19.6,求t=3时s的值(t的单位是秒,s的单位是米)提示:先求出常数g的值。

把t=2,s=19.6代入s=0.5gt^2中得:19.6=0.5g*4g=19.6/2=9.8因此当t=3时,s=0.5*9.8*3^2=44.15题跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马设快马追上需要的天数为X方程如下240*X=150*(X+12)X=20右上角的*是乘号啊,方程就是:240乘以X等于150乘以(X加12)的和6题运动场的跑道一圈长400m,甲练习骑自行车,平均每分骑350m:乙练习跑步,平均每分跑250m,两人同时同向出发,经过多少时间首次相遇?解:设经过x分钟相遇350x=250x+400100x=400x=4甲比乙快,要相遇肯定要超过乙一圈,所以乙走过的路程加400就是甲走的路程7题一家游泳馆每年6-8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭入场券每张3元,讨论并回答:(1)什么情况下,购会员证与不购会员证付的钱一样多?(2)什么情况下,购会员证比不购会员证更合算?(3)什么情况下,不购会员证比购会员证更合算?解6、7、8一共三个月也就是30+31+31=92天[1]假设去A次会员和非会员付一样的钱--那么:会员付的钱等于:80+1A非会员付的钱是:3A也就是80+A=3A,解得A=40次[1]去游泳40次(包括40次),购会员证与不购会员证付一样的钱。

既然这样,那么[2]、[3]答案就明显了:[2]当你6-8月去游泳的次数大于等于41次,购会员证比不购会员证就合算。

[3]当你6-8月去游泳的次数小于等于39次,不购会员证比购会员证就合算了。

8题你能利用一元一次方程解决下面的问题吗?在3时和4时之间的哪个时刻,钟的时针与分针:(1)重合(2)成平角(3)成直角(提示:分针转动的速度是时针的12倍,3:00分针与时针成直角)时针走一圈(360度)要12小时,即速度为360度/12小时=360度/(12*60)分钟=0.5度/分钟, 分针走一圈(360度)要1小时,即速度为360度/1小时=360度/60分钟=6度/分钟,钟面(360度)被平均分成了12等份,所以每份(相邻两个数字之间)是30度,所以X分钟后,时针走过的角度为0.5X度,分针走过的角度为6X度,(1)设3点X分的时刻,时针与分针重合,则有6X=90+0.5X,(说明:时针是从数字3开始走的,前面从数字12到数字3是90度)所以5.5X=90,所以X=180/11,即3点180/11分的时刻,时针与分针重合;(2)设3点Y分的时刻,时针与分针成平角,则有6X-(90+0.5X)=180,所以5.5X=270,所以X=540/11,即3点540/11分的时刻,时针与分针成平角;(3)设3点Z分的时刻,时针与分针成直角,则有6Z-(90+0.5Z)=90,所以5.5Z=180,所以Z=360/11,即3点360/11分的时刻,时针与分针成直角93页7题某造纸厂为节约木材,大力扩大再生纸的生产,这家工厂去年10月生产再生纸2050吨,这比前年10月产量的2倍还多150吨,它前年10月生产再生纸多少吨?解:设它前年10月生产再生纸X吨。

2X+150=20502X=1900X=950答:它前年10月生产再生纸950吨.8题某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%,今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多解:设这个乡去年农民人均收入为X元.(1+20%)x=1.5x-12001.2x=1.5x-12000.3x=1200x=4000答:这个乡去年农民人均收入4000元。

9题把一根长100cm的木棍锯成两段,使其中一段的长比另一段的长的2倍少5cm,应该在木棍的那个位置锯?设:短的那一段木头为X cm2x=100-x+5x=35答:应该在木棍的35cm位置锯.10题某服装店出售一种优惠购物卡花200元买这种卡后凭卡可在这家按8折购物什么情况下买卡购物最划算设买X元时用卡合适。

相关文档
最新文档