七年级数学上册练习题

合集下载

数学七年级上册练习题

数学七年级上册练习题

数学七年级上册练习题一、选择题(每题2分,共20分)1. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 1或-12. 如果一个数的绝对值是3,那么这个数可以是:A. 3B. -3C. 3或-3D. 都不是3. 一个正数的倒数是:A. 0B. 1C. 它本身D. 这个数的倒数4. 以下哪个数是无理数?A. πB. √2C. 0.5D. 1/35. 一个数的相反数是它本身的是:A. 0B. 1C. -1D. 26. 两个数相乘,积为1,这两个数互为:A. 倒数B. 相反数C. 平方根D. 绝对值7. 以下哪个运算是幂的运算?A. 2 + 3B. 2 × 3C. 2^3D. 2 / 38. 一个数的立方等于它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1或09. 以下哪个是完全平方数?A. 2B. 3C. 4D. 510. 一个数的平方根有:A. 1个B. 2个C. 0个D. 无数个二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。

12. 如果a和b互为相反数,那么a+b=______。

13. 一个数的平方根是4,那么这个数是______。

14. 一个数的立方根是3,那么这个数是______。

15. 如果一个数的倒数是1/2,那么这个数是______。

16. 一个数的平方是9,这个数可以是______或______。

17. 一个数的绝对值是它本身,这个数是______或______。

18. 两个数的乘积是16,其中一个数是4,另一个数是______。

19. 一个数的立方是-8,这个数是______。

20. 如果一个数的平方根是它本身,那么这个数是______或______。

三、计算题(每题10分,共30分)21. 计算下列各数的绝对值:-5,3.5,-2π,0。

22. 计算下列各数的倒数:1/2,-3,0。

人教版七年级上册数学整式练习题含答案

人教版七年级上册数学整式练习题含答案

2.1整式一.判断题(1)巴是关于X 的一次两项式.() 3 (2)—3不是单项式.() (3)单项式xy 的系数是0.() (4)x 3+y 3是6次多项式.() (5)多项式是整式.() 二、选择题1 a + b 32 1 .在下列代数式:一ab, ----- , ab 2+b+1, —+ —, X 3+ X 2 — 3中,多项式有()22x yA.2个B.3个C.4个D5个2 .多项式一23m 2一皿是()3 .下列说法正确的是()A. 3 X 2 — 2x+5 的项是 3x 2, 2x, 5B. ——)与 2 X 2 — 2xy - 5 都是多项式3 3C.多项式一2x 2+4xy 的次数是3D. 一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是()B. - + y+ -不是整式2 3 4D.整式2x+1是一次二项式A.二次二项式B.三次二项式C.四次二项式 D 五次二项式A.整式abc 没有系数C.一2不是整式12 .单项式一早的系数与次数分别是( A.—3, 3B.— 1, 3C.— 3 , 2D.2213 .下列说法正确的是(5. 下列多项式中,是二次多项式的是(A 、32 x +1C 、3xy —1 D 、3x — 526. 下列单项式次数为3的是(X3X4 147. 下列代数式中整式有(1 c 一, 2x +y x1 a 2b , 38. 下列整式中, 单项式是(+1—yD.9. 下列各项式中,次数不是3的是(A. xyz + 1B. x z + y+1C. X 2y — xy 2D. x 3 — x z +x-110 .下列说法正确的是(A. x (x + a )是单项式B.上士1不是整式C. 0是单项式兀D.单项式一」x 2y 的系3 11 .在多项式x 3 — xy z + 25中,最高次项是(A. x 3B. X 3, xy 2C. X 3, — xy 2D. 25A. x的指数是0B. x的系数是0C.一10是一次单项式D.—10是单项式14.已知:-2x”3与5町〃是同类项,则代数式m - 2n的值是()A、—6B、—5C、—2D、515.系数为一1且只含有x、丫的二次单项式,可以写出()2A. 1个B. 2个C. 3个D. 4个三.填空题1填一填42.单项式:-3 x2y3的系数是,次数是3. 32005町2是次单项式;4. 4x2 - 3y的一次项系数是,常数项是;5.单项式1 xy z z是次单项式.26.多项式a2— 1 ab2-b2有项,其中一1 ab2的次数是^2 2 -----------------7.整式①1,②3x-y2,③23X2y,④a,⑤n x+1 y,⑥生竺,⑦x+1中单项式 2 2 5有,多项式有8. x+2xy+y是次多项式.9.b的11倍的相反数是;3 -------------------10.设某数为x,10减去某数的2倍的差是;11. 一X4 + 3X3 y _ 6x2 y 2 - 2 y 4 的次数是;12.当x = 2, y= — 1时,代数式I xy I -1 x I的值是;13.当y= 时,代数式3y-2与匕3的值相等; 414.-23ab的系数是,次数是次.15.多项式x3y2-2xy2-等-9是次项式,其中最高次项的系数是, 二次项是,常数项是.16.若-3 x2y3z m与3x2y3z4是同类项,则 m =.1 , . 、117.在x2, — (x + y), — ,-3中,单项式是______________________ ,多项2 九式是,整式是.18.单项式迎S的系数是,次数是^719.多项式X2y + xy — xy2 — 53中的三次项是.20.当a=时,整式X2 + a—1是单项式.21.多项式*丫一1是次项式.22.当x=—3时,多项式一X3 + X2—1的值等于.23.一个n次多项式,它的任何一项的次数都.24.如果3x k y 与一x z y是同类项,那么k二 .四、合并下列多项式中的同类项(1)3x2+4x — 2x2 — x+x2 — 3x—1;(2)—a z b+2a2b(3)a3 — a2b+ab2+a2b- 2ab2+b3;(4)2a2b+3a2b—工a2b2(5)(2x+3y) + (5x — 4y);(6)(8a — 7b) — (4a — 5b)(7)(8x — 3y) — (4x+3y — z) +2z;(8)(2x — 3y) —3 (4x — 2y) (9)3a2+a2 — 2 (2a2 — 2a) + (3a — a?) (10)3b — 2c- [ — 4a+ (c+3b) ]+c五.先去括号,再合并同类项: (1)(2x+3y) + (5x — 4y);(3)(8x — 3y) — (4x+3y — z) +2z (4)(2x — 3y)—3 (4x — 2y)(5) 3a 2+a 2 - 2 (2a 2 — 2a) + (3a-a 2) (6) 3b — 2c- [ — 4a+(c+3b) ]+c 六、求代数式的值1 .当x=-2时,求代数式x 2-3x -1的值。

七年级上册数学练习题(有答案)

七年级上册数学练习题(有答案)

七年级上册数学练习题(有答案)一、单选题1.在一条东西向的跑道上,小亮向东走了8米,记作“+8米”;那么向西走了10米,可记作()A .+2米B .﹣2米C .+10米D .﹣10米2.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a-b+c-d的值为()A .1B .-1C .2或-1D .1或33.下列说法中,正确的是()A . -a一定是负数B .若a是正数,则 -a一定是复苏C .a的倒数是-1a4.A .4B .-4C . 4或-4D .2 或-25、-7的倒数是()A . 7B . - 17C . 17D .-76、把(﹣3)﹣(﹣7)+4﹣(+5)写成省略加号的和的形式是()A .﹣3﹣7+4﹣5B .﹣3+7+4﹣5C .3+7﹣4+5D .﹣3﹣7﹣4﹣57.下列各图中,可以是一个正方体的平面展开图的是()8、有理数a,b在数轴上的对应点如图所示,则下列式子错误的是()A .b<0B .a+b<0C .a<0D .b﹣a<0二、填空题9.若关于x的方程2(x-1)+a=0的解是x=3,则a的值为.三、计算题10、计算:(1)﹣5+7﹣(﹣8)(2)(﹣3)2﹣+|﹣2|.11.计算12.计算13.计算:10-(-16)+(-5)×7四、解答题五、综合题15、用正数或负数填空:(1)小商店平均每天可盈利250元,一个月(按30天计算)的利润是元;(2)小商店每天亏损20元,一周的利润是元;(3)小商店一周的利涧是1400元,平均每天的利润是元;(4)小商店一周共亏损840元,平均每天的利润是元.16、有8筐白菜,以每筐25千克为标准,超过记正数,不足记负数,称后的记录为:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,回答下列问题:(1)这8筐白菜中最接近标准重量的白菜重多少千克?(2)这8筐白菜一共重多少千克?17、某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?。

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。

七年级上数学练习题

七年级上数学练习题

七年级上数学练习题一、有理数1. 计算下列各题:(1) (3) + 7(2) 5 (2)(3) (4) × (6)(4) 15 ÷ (5)2. 化简下列各题:(1) 3 2 + 5 4(2) (2) × (3) + 4 × (5)(3) (8) ÷ 2 5 ÷ (1)二、整式1. 计算下列各题:(1) 2x 3x + 4(2) 5a 3a + 2a(3) 4xy 2xy + 3xy2. 化简下列各题:(1) 3x^2 2x^2 + 4x^2(2) 5ab 3ab + 2ab(3) 7a^2b 4a^2b + a^2b三、一元一次方程1. 解下列方程:(1) 3x 7 = 11(2) 5 2x = 3x + 1(3) 4(x 3) = 2(x + 5)2. 解决实际问题:(1) 某数的3倍减去7等于13,求这个数。

(2) 甲、乙两数的和为20,甲数是乙数的2倍,求甲、乙两数。

四、几何图形初步1. 判断下列说法是否正确:(1) 对顶角相等。

(2) 平行线的性质是同旁内角互补。

(3) 钝角大于直角。

2. 画图并解答:(1) 画出一条直线和直线上的两个点,使这两个点与直线上的另一个点构成等腰三角形。

(2) 画出两条平行线,并在其中一条直线上找到一个点,使这个点到另一条直线的距离等于3cm。

五、数据初步认识1. 填空题:(1) 下列数据中,众数是______。

2, 3, 4, 4, 5, 4, 6, 4(2) 下列数据中,中位数是______。

7, 9, 5, 3, 6, 8, 102. 选择题:A. 平均数B. 中位数C. 众数D. 方差六、平面图形(1) 所有矩形的对角线都相等。

()(2) 两条平行线上的任意一对同位角都相等。

()(3) 等边三角形的三个角都是60度。

()2. 填空题:(1) 一个等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长为______cm。

七年级数学上册《角》练习题

七年级数学上册《角》练习题

七年级数学上册《角》练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100'2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D.5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________. 10.如图,写出图中以A 为顶点的角______.三、解答题A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的11.读句画图如图,点,,图形为准):(1)画图:①画射线AB;①画直线BC;=.①连接AC并延长到点D,使得CD CA∠约为_________°(精确到1︒).(2)测量:ABC12.【观察思考】如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点ABCDE把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE内部有多少个点;若不能,请说明理由.参考答案:1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键. 10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。

人教版七年级数学上册第一章《有理数》课时练习题(含答案)

人教版七年级数学上册第一章《有理数》课时练习题(含答案)

人教版七年级数学上册第一章《有理数》课时练习题(含答案)一、单选题1 )A .BC D .32.实数a 的绝对值是54,a 的值是( ) A .54 B .54- C .45± D .54± 3.如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .34.在2,-4,-3,5中,任选两个数的积最小的是( )A .-12B .-15C .-20D .-65.实数2021的相反数是( )A .2021B .2021-C .12021D .12021- 6.2022的相反数是( )A .2022B .2022-C .12022D .12022- 二、填空题7.如图,点A 在数轴上对应的数为2,若点B 也在数轴上,且线段AB 的长为112,C 为OB 的中点,则点C 在数轴上对应的数为__________.8.数轴上一点A ,在原点左侧,离开原点6个单位长度,点A 表示的数是______.9.已知a 、b 为有理数,下列说法:①若a 、b 互为相反数,则“a b =﹣1;②若|a ﹣b |+a ﹣b =0,则b >a ;③若a +b <0,ab >0,则|3a +4b |=﹣3a ﹣4b ;④若|a |>|b |,则(a +b )•(a ﹣b )是正数,其中正确的序号是 _____. 10.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.三、解答题11.把下列各数:()4-+,3-,0,213-,1.5 (1)分别在数轴上表示出来:(2)将上述的有理数填入图中相应的圈内.12.(1)写出下列各数的绝对值,并分别把它们和它们的绝对值在数轴上表示出来.11,2,,(3),| 3.5|2-----.(2)已知a ,b 互为相反数,c ,d 互为倒数,m 绝对值等于2的数,求22a b m cd a b c++-++的值.13.已知下列有理数:-4,-212,412,-1,2.5,3(1)在给定的数轴上表示这些数:(2)这些数中是否存在互为相反数的两个数?若存在,请指出来,并写出这两个数之间所有的整数;(3)这些数在数轴上表示的点中是否存在两点之间的距离等于7的两个数?若存在,请指出来。

七年级数学上册绝对值专项练习题

七年级数学上册绝对值专项练习题

七年级数学上册绝对值专项练习题1.绝对值为4的数是()A.±4B.4C.﹣4D.2答案:A解析:绝对值为4的数有两个,即±4.2.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2答案:B解析:由题意得,a+b的绝对值为a+b,即a+b的值非负,所以a和b符号相同。

又因为|a|=5,|b|=7,所以a和b的值只能是±5和±7,且符号相同。

又因为a+b的值非负,所以a和b 的值只能是±5和±7中绝对值较大的那个数,即a和b的值分别为±5和±7.所以a﹣b的值为﹣2或﹣12.3.下面说法正确的是()A.绝对值最小的数是0B.绝对值相等的两个数相等C.﹣a一定是负数 D.有理数的绝对值一定是正数答案:B解析:A、C、D说法都是错误的。

B说法正确,因为绝对值相等的两个数要么相等,要么互为相反数。

4.下列式子中,正确的是()A。

B.﹣|﹣5|=5 C.|﹣5|=5 D。

答案:A、B、C解析:A、B、C都正确。

D不正确,因为绝对值只能是非负数。

5.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009B.﹣1008C.﹣2017D.﹣2016答案:B解析:a1=0,a2=﹣1,a3=﹣3,a4=﹣6,a5=﹣10,a6=﹣15…可得an=﹣n(n﹣1)/2,所以a2017=﹣2017×2016/2=﹣1008×2017.6.下列说法正确的个数是()①|a|一定是正数;②﹣a一定是负数;③﹣(﹣a)一定是正数;④一定是分数.A.1个B.2个C.3个D.4个答案:A解析:只有①正确,其他都是错误的。

②中a可能是0,③中a可能是0或正数,④中a可能是整数或0.所以正确的只有一个。

人教版七年级上册数学练习题

人教版七年级上册数学练习题

人教版七年级上册数学练习题人教版七年级上册数学练习题精选篇11.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。

问:甲、乙两班谁将获胜?2.轮船从A城到B城需行3天,而从B城到A城需行4天。

从A城放一个无动力的木筏,它漂到B城需多少天?3.小红和小强同时从家里出发相向而行。

小红每分走52米,小强每分走70米,二人在途中的A处相遇。

若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。

小红和小强两人的家相距多少米?4.小明和小军分别从甲、乙两地同时出发,相向而行。

若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。

甲、乙两地相距多少千米?5.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。

求甲原来的速度。

人教版七年级上册数学练习题精选篇2一、填空:(1)若x5,则|x-5|=______,若|x+2|=1,则x=______(2)如果|a+2|+(b+1)2=0,那么(1/a)+b=_______(3)4080300保留三个有效数字的近似值数是_______(5)在代数式a2、a2+1、(a+1)2、a2+|a|中,一定表示正数的是______(6)(-32)的底数是____,幂是____,结果是____(9)一个三位数,十位数字是a,个位数字比十位数字的2倍小3,百位数字是十位数字的一半,用代数表示这个三位数是_____(10)若多项式(2mx2-x2+3x+1)-(5x2-4y2+3x)的值与x无关,则2m3-[3m2+(4m-5)+m]的值是____二、选择题:(1)已知x0,且|x|=2,那么2x+|x|=( )A、2B、-2C、+2D、0A、x0B、x0C、x0D、x0(3)如果一个有理数的平方根等于-x,那么x是( )A、负数B、正数C、非负数D、不是正数(4)如果|a-3|=3-a,则a的取值范围是( )A、a3B、a3C、a3D、a3三、求值:(4)若代数式2y2+3y+7的值为8,求代数式4y2+6y+9的值(5)试证明当x=-2时,代数式x3+1 的值与代数式(x+1)(x2-x+1) 的值相等四、(1)化简求值:-3[y-(3x2-3xy)]-[y+2(4x2-4xy)],其中x=2, y=1/2(2)当x=-2时ax3+bx-7的值是5,求当x =2 时,ax3+bx-17的值(3)已知多项式2(x2+abx+3b)与2bx2-2abx+3a的和中,只有常数项-3,求a 与b的关系五、选作题:(1)用简便方法指出下列各数的末位数字是几:①2019 ②2135 ③2216 ④2315 ⑤2422 ⑥2527 ⑦2628⑧2716 ⑨2818 ⑩2924答案:一、⑴5-x,-1或-3⑶4.08106⑸a2+1 ⑹3 , 32, -9 ⑺五四 1/3 ⑻3 , 5⑽17二、⑴B⑵B⑶D⑷B三、⑴0.1⑵b=3cm⑶3⑷11 ⑸略四、⑴x2-xy-4y2值为1⑵值为-29⑶a与b互为相反数(a=1,b=-1)五、⑴0.99⑵①0 ②1 ③6 ④7 ⑤6 ⑥5 ⑦6 ⑧1 ⑨4 ⑩1人教版七年级上册数学练习题精选篇3一、填空题(每小题3分,共36分)⑴一个数的相反数是-2.5,则这个数为————。

初一上册数学练习题题目

初一上册数学练习题题目

初一上册数学练习题题目一、填空题:(每空2分,共42分)1、如果运进货物30吨记作+30吨,那么运出50吨记作;2、3的相反数是_____,______的相反数是3、既不是正数也不是负数的数是;4.-2的倒数是,绝对值等于5的数是;5、计算:-3+1=;;;;;6、根据语句列式计算:⑴-6加上-3与2的积,⑵-2与3的和除以-3;7、比较大小:;+||;8、.按某种规律填写适当的数字在横线上1,-,,-,,9、绝对值大于1而小于4的整数有,其和为,积为;10.规定图形表示运算a-b+c,图形表示运算.则+=_______二、选择题(每题3分,共30分)11、已知室内温度为3℃,室外温度为℃,则室内温度比室外温度高()(A)6℃(B)-6℃(C)0℃(D)3℃12、下列各对数中,互为相反数的是()A.与B.与C.与D.与13、下列各图中,是数轴的是()A.B.-1011C.D.-101-10114.对下列各式计算结果的符号判断正确的一个是()A、B、C、D、15.一个数的倒数等于这个数本身,这个数是()(A)1(B)(C)1或(D)016.下列各计算题中,结果是零的是()(A)(B)(C)(D)17.已知a、b互为相反数,则()(A)a–b=0(B)a+b=0(C)a=(D)a-|b|=018.数轴上的两点M、N分别表示-5和-2,那么M、N两点间的距离是()A.-5+(-2)B、-5-(-2)C、|-5+(-2)|D、|-2-(-5)|19.下列说法正确的是()(A)一个数的绝对值一定是正数(B)任何正数一定大于它的倒数(C)-a一定是负数(D)零与任何一个数相乘,其积一定是零20.如图是一个正方形盒的展开图,若在其中的三个正方形A、B、C、内分别填入适当的数,使得它们折成正方形后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()(A)1,-2,0(B)0,-2,1(C)-2,0,1(D)-2,1,021.计算下列各题:(每小题5分,共20分)(1)(2)12—(—18)+(—7)—15(3)(4)-2+|5-8|+24÷(-3)22、(4分)把下列各数填在相应的表示集合的大括号里:(1)正整数集合{…}(2)整数集合{…}(3)正分数集合{…}(4)负分数集合{…}23、在数轴上表示下列各数,再用“<”号把各数连接起来。

人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案考点1【正负数和零】1.一种巧克力的质量标识为“23±0.25千克”则下列哪种巧克力的质量是合格的.()A.23.30千克B.22.70千克C.23.55千克D.22.80千克【答案】D解:∵23+0.25=23.2523-0.25=22.75∴巧克力的重量在23.25与22.75kg之间.∴符合条件的只有D.2.若足球质量与标准质量相比超出部分记作正数不足部分记作负数则在下面4个足球中质量最接近标准的是()A.B.C.D.【答案】A-<+<+<-解:0.70.8 2.1 3.5∴质量最接近标准的是A选项的足球3.我市某天最高气温是12℃最低气温是零下3℃那么当天的日温差是_________ ℃【答案】15.12−(−3)=12+3=15(℃)4.若某次数学考试标准成绩定为85分规定高于标准记为正两位学生的成绩分别记作:+9分和﹣3分则第一位学生的实际得分为______分.5.教师节当天出租车司机小王在东西向的街道上免费接送教师规定向东为正向西为负当天出租车的行程如下(单位:千米):+5 ﹣4 ﹣8 +10 +3 ﹣6 +7 ﹣11﹣﹣1)将最后一名老师送到目的地时小王距出发地多少千米?方位如何?﹣2)若汽车耗油量为0.2升/千米则当天耗油多少升?若汽油价格为5.70元/升则小王共花费了多少元钱?解℃℃1℃+5℃4℃8+10+3℃6+7℃11=℃4℃则距出发地西边4千米;℃2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米则耗油是54×0.2=10.8升花费10.8×5.70=61.56元答:当天耗油10.8升小王共花费了61.56元.考点2【有理数分类】1.在数22715π0.40.30.1010010001... 3.1415中有理数有()A.3个B.4个C.5个D.6个【答案】C数22715π0.40.30.1010010001... 3.1415中有理数有227150.40.3 3.1415共计5个2.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数它不是整数就是分数.A.1个B.2个C.3个D.4个【答案】B℃分数包括正分数、负分数正确;℃正数、负数和0 统称为有理数故错误;℃一个有理数它不是整数就是分数正确3.在3.142π15-00.12个数中是有理数的几个()A.2B.3C.4D.5【答案】C解:有理数为3.1415-00.12共4个4.若a是最小的自然数b是最大的负整数c是绝对值最小的有理数则a-b-c的值为()A.-1B.0C.2D.1【答案】D解:由题意得:a=0b=-1c=0∴a-b-c=0-(﹣1)-0=1.5.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【答案】DA.非负有理数就是正有理数和零故A错误;B.零表示没有是自然数故B错误;C.整正数、零、负整数统称为整数故C错误;D.整数和分数统称有理数故D正确;考点3【数轴】1.在数轴上表示a﹣b两数的点如图所示则下列判断正确的是()A.a+b﹣0B.a+b﹣0C.a﹣|b|D.|a|﹣|b|【答案】B解℃℃b℃0℃a而且a℃|b|℃a+b℃0∴选项A不正确选项B正确;℃a℃|b|∴选项C不正确;℃|a|℃|b|∴选项D不正确.2.数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画出一条长2000厘米的线段AB盖住的整点的个数共有()个.A.1998或1999B.1999或2000C.2000或2001D.2001或2002【答案】C解:依题意得:①当线段AB起点在整点时覆盖2001个数;②当线段AB起点不在整点即在两个整点之间时覆盖2000个数.3.已知点A和点B在同一数轴上点A表示数﹣2又已知点B和点A相距5个单位长度则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C分为两种情况:当B点在A点的左边时B点所表示的数是-2-5=−7;当B点在A点的右边时B点所表示的数是-2+5=3;4.a b ,是有理数 它们在数轴上的对应点的位置如图所示 把a a b b --,,,按照从小到大的顺序排列( )A .b a a b -<<-<B .a b a b -<-<<C .b a a b -<-<<D .b b a a -<<-<【答案】A观察数轴可知:b >0>a 且b 的绝对值大于a 的绝对值.在b 和-a 两个正数中 -a <b ;在a 和-b 两个负数中 绝对值大的反而小 则-b <a . 因此 -b <a <-a <b .5.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm) 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x 则x 的值为( )A .4.2B .4.3C .4.4D .4.5【答案】C利用减法的意义 x -(-3.6)=8 x =4.4.所以选C.6.如图 数轴上四点O A B C 其中O 为原点 且2AC = OA OB = 若点C 表示的数为x 则点B 表示的数为( )A .()2x -+B .()2x --C .2x +D .2x -【答案】B解:∵AC=2 点C 表示的数为x∵OA OB =∴点B 表示的数为:-(x -2)7.点A 在数轴上距原点5个单位长度 将A 点先向左移动2个单位长度 再向右移动6个单位长度 此时A 点所表示的数是( ) A .-1 B .9C .-1或9D .1或9【答案】C解:∵点A 在数轴上距原点5个单位长度 ∴点A 表示的数是−5或5∵A 点先向左移动2个单位长度 再向右移动6个单位长度 ∴−5−2+6=−1或5−2+6=9 ∴此时点A 所表示的数是−1或9.考点4【相反数】1.若a 与1互为相反数 则a +3的值为( ) A .2 B .0C .﹣1D .1【答案】A∵a 与1互为相反数 ∴a =﹣1则a +3的值为:﹣1+3=2.2.下列各对数:()3+-与3- ()3++与+3 ()3--与()3+- ()3-+与()3+-()3-+与()3++ +3与3-中 互为相反数的有( )A .3对B .4对C .5对D .6对解:根据相反数的定义得-(-3)与+(-3)-(+3)与+(+3)+3与-3互为相反数所以有3对.3.如果a+b=0那么a b两个数一定()A.都等于0B.互为相反数C.一正一负D.a>b【答案】B由a+b=0则有=-a b所以a b两个数一定是互为相反数-的相反数是-2那么a是()4.7aA.5B.-3C.2D.1【答案】A解:∵7-a的相反数是-2∴7-a=2解得a=5.5.若a表示有理数则-a是()A.正数B.负数C.a的相反数D.a的倒数【答案】Ca表示有理数则a-表示a的相反数考点5【绝对值】1.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】B解:①∵互为相反数的两个数相加和为0移项后两边加上绝对值是相等的∴互为相反数的两个数绝对值相等故①正确;④∵|2|=|-2| 但2≠-2 ∴④错误2.如果一个有理数的绝对值是正数 那么这个数必定是( ) A .是正数 B .不是0C .是负数D .以上都不对【答案】B由于正数和负数的绝对值都是正数 而0的绝对值是0;所以若一个有理数的绝对值是正数 那么这个数必不为0.3.已知a>0 b<0 c<0且c >a >b 则下列结论错误的是( ) A .a+c<0 B .b -c>0C .c<-b<-aD .-b<a<-c【答案】C解:∵a>0 b<0 c<0且c >a >b在数轴上表示如下:则a+c<0 b -c>0 c<-a<-b -b<a<-c 故C 错误4.若a ab b=- 则下列结论正确的是( ) A .0a < 0b < B .0a > 0b >C .0ab >D .0ab ≤【答案】D解:a ab b=- ∴0ab≤ 即0ab ≤;A.a>0B.a≥0C.a<0D.a≤0【答案】D=-解:∵||a a∴a≤0.-表示的数是( )6.若x为有理数则x xA.正数B.非正数C.负数D.非负数【答案】D【解析】℃1)若x≥0时丨x丨-x=x-x=0℃℃2)若x℃0时丨x丨-x=-x-x=-2x℃0℃由(1℃℃2)可得丨x丨-x表示的数是非负数.考点6【有理数的加减法】1.已知|a|=7|b|=2且a<b求a+b的值.【答案】-5或-9解:∵|a|=7∴a=±7又∵|b|=2∴b=±2又∵a<b∴a=-7b=2或a=-7b=-2当a=-7b=2时a+b=-7+2=-5当a=-7b=-2时a+b=-7+(-2)=-9综上所述a+b的值为-5或-9.2.已知|a| = 3 |b| = 2 且ab < 0 求:a + b的值.解:℃|a|=3 |b|=2 ℃a=±3 b=±2; ℃ab <0 ℃ab 异号.℃当a=3时 b=-2 则a + b=3+(-2)=1; 当a=-3时 b=2 则a + b=-3+2=-1.3.已知5a = 2a b -=且a b a b -=- 求+a b 的值 【答案】8或-12 解:∵|a|=5 ∴a=±5∵2a b -=且a b a b -=- ∴0a b -> 2a b -= ∴2b a =- ∴当a=5 则b= 3 当a=-5 则b= -7 ∴a+b=8或-12;4.已知│a │=4且a<0 b 是绝对值最小的数 c 是最大的负整数 则a+b -c=____. 【答案】﹣3解:因为a =4且a <0 b 是绝对值最小的数 c 是最大的负整数所以a =﹣4 b =0 c =﹣1所以a +b -c =﹣4+0-(﹣1)=﹣4+1=﹣3.5.绝对值大于3且小于5.5的所有整数的和为______________ ;解:∵绝对值大于3而小于5.5的整数为:-4-545∴其和为:-4+(-5)+4+5=0故绝对值大于3且小于5.5的所有整数的和为0.考点7【有理数的乘除法】1.先阅读下面的材料再回答后面的问题:计算:10÷(12-13+16).解法一:原式=10÷12-10÷13+10÷16=10×2-10×3+10×6=50;解法二:原式=10÷(36-26+16)=10÷26=10×3=30;解法三:原式的倒数为(12-13+16)÷10=(12-13+16)×110=12×110-13×110+16×110=130故原式=30.(1)上面得到的结果不同肯定有错误的解法你认为解法是错误的。

人教版初中数学七年级上册全册配套习题

人教版初中数学七年级上册全册配套习题

第一章 有理数测试1 正数和负数学习要求:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题:(正确的在括号内画“√”,错误的画“×”)( ) 1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( ) 2.节约4吨水与浪费4吨水是一对具有相反意义的量. ( ) 3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( ) 4.在小学学过的数前面添上“-”号,得到的就是负数.二、填空题:5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______.8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”).9.整数可以看作分母为1的______,有理数包括____________.10.把下列各数填在相应的大括号内:正数集合{_______________________________________________________________…}负数集合{_______________________________________________________________…}非负数集合{_____________________________________________________________…}有理数集合{_____________________________________________________________…}74,6,0,14.3,5.0,432,14,5.8,51,27----综合、运用、诊断一、填空题:11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处.13.是正数而不是整数的有理数是____________________.14.是整数而不是正数的有理数是____________________.15.既不是正数,也不是负数的有理数是______________.16.既不是真分数,也不是零的有理数是______________.17.在下列数中: 11.11111,95.527,0,+2004,-2 ,1.12122122212222,非负有理数有__________________________________________.二、判断题:(正确的在括号里画“√”,错误的画“×”) ( ) 18.带有正号的数是正数,带有负号的数是负数. ( ) 19.有理数是正数和小数的统称.( ) 20.有最小的正整数,但没有最小的正有理数. ( ) 21.非负数一定是正数. ( ) 22.是负分数.三、解答题:23.-3.782 ( ).(A)是负数,不是分数(B)不是分数,是有理数(C)是负数,也是分数(D)是分数,不是有理数24.下面说法中正确的是( ).(A)正整数和负整数统称整数(B)分数不包括整数(C)正分数,负分数,负整数统称有理数(D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加,31-725.95 ,111-311-工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).12345+0.031+0.017+0.023-0.021-0.015(A)1个(B)2个(C)3个(D)5个测试2 相反数数轴学习要求:掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题:1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a的相反数是______.3.规定了______、______和______的______叫数轴.4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。

七年级数学上全册练习题(含答案)

七年级数学上全册练习题(含答案)

第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。

七年级数学上册正数和负数练习题(含答案解析)

七年级数学上册正数和负数练习题(含答案解析)

七年级数学上册正数和负数练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.对于任何有理数a ,下列各式中一定为负数的是( )A .﹣(﹣3+a )B .﹣a 2﹣1C .﹣|a +1|D .﹣a2.一次社会调查中,某小组了解到某种品牌的薯片包装上注明净含量为605g ±,则下列同类产品中净含量不符合标准的是( )A .56gB .60gC .64gD .68g3.学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明同学从家出发,向北走了50米,接着又向南走了﹣20米,此时小明的位置是( )A .在家B .在书店C .在学校D .在家的北边30米处4.小明同学的微信钱包部分账单明细如图所示,+10.5表示收入10.5元,下列说法正确的是( )A .﹣6.3表示收入6.3元B .﹣6.3表示支出﹣6.3元C .﹣6.3表示支出6.3元D .收支总和为16.8元5.一个物体从起始位置向西移动了5米后,又向东移动了7米,则这个物体最终位置在起始位置的( )A .西边12米B .西边2米C .东边2米D .东边12米6.2022年春季开学后,罗平县遇到天气突然降温,2月22日的最高气温是3℃,最低气温是2-℃,那么这天的温差是( )A .5℃B .5-℃C .1℃D .1-℃7.中老铁路是与中国铁路网直接连通的国际铁路,线路北起中国西南地区的昆明市,南向到达老挝首都万象市,是“一带一路”上最成功的样板工程.从长期看将会使老挝每年的总收入提升21%,若21%+表示提升21%,则10%-表示( )A .提升10%B .提升31%C .下降10%D .下降10%-8.下列说法正确的是( )A.0的倒数是0B.0大于所有正数C.0既不是正数也不是负数D.0没有绝对值二、填空题9.如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作_____.10.如图,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:计算结果保留π)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+3,﹣1,,+4,﹣3,①第3次滚动周后,Q点回到原点.第6次滚动周后,Q点距离原点4π;①当圆片结束运动时,Q点运动的路程共有多少?11.商店售货员小海把“收入100元”记作“+100元”,那么“﹣60元”表示____.12.高斯对______的研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献.他还把数学应用于天文学、大地测量学和磁学的研究.13.一幢大楼地面上有12层,还有地下室2层,如果把地面上的第1层作为基准,记为0,规定向上为正,那么习惯上将第3层记为_____.14.若将数28计为0作为基准,则可将数27计为﹣1,若将数27计为0作为基准,数28应计为___.三、解答题15.把下列各数分类,并填在表示相应集合的大括号里:-2,37+,0.8,12,0,-2.1,375-,17%,0.4.(1)正数集合:{}(2)整数集合:{}(3)分数集合:{}(4)负数集合:{}(5)正整数集合:{}(6)负分数集合:{}16.一口深3.5米的深井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米.问题:小青蛙爬出井了吗?17.2020年,全球受到了“新冠”疫情的严峻考验,我国在这场没有硝烟的战场上取得了阶段性的胜利.某区6所学校计划各采购1000只应急口罩.若某校实际购买了1100只,就记作+100;购买850只,就记作﹣150.现各校的购买记录如下:(1)学校B与学校F的购买量哪个多?相差多少?(2)这6所学校共采购应急口罩多少只?参考答案:1.B【分析】负数一定小于0,可将各项化简,然后再进行判断.【详解】解:A、当﹣3+a≤0时,即a≤3时,﹣(﹣3+a)≥0,原式不是负数,故该选项不符合题意;B、①a2≥0,①﹣a2≤0,①﹣a2﹣1<0,故该选项符合题意;C、当a=﹣1=0时,﹣|a+1|=0,原式不是负数,故该选项不符合题意;D、当a≤0时,﹣a≥0,原式不是负数,故该选项不符合题意;故选:B.【点睛】本题考查正数和负数,非负数的性质,掌握负数的定义以及绝对值的性质是解答此题的关键.2.D【分析】根据净含量为60±5g可得该包装薯片的净含量,再逐项判断即可.【详解】解:①薯片包装上注明净含量为60±5g,①薯片的净含量范围为:55≤净含量≤65,故D不符合标准,故选:D.【点睛】本题主要考查了正负数的定义,计算出净含量的范围是解答此题的关键.3.B【分析】在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.向北走是+50米,向南走-20米就是向北走20米.【详解】解:向南走了-20米,实际是向北走了20米,①此时小明的位置是在家的北边50+20=70米处,即在书店.故选:B.【点睛】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4.C【分析】根据+10.5表示收入10.5元,可以得出“收入”用正数表示,从而“支出”就用负数表示,即可得出答案.【详解】解:根据+10.5表示收入10.5元,“收入”用正数表示,那么“支出”就用负数表示,于是﹣6.3表示支出6.3元,故选:C .【点睛】本题考查了正数,负数的意义,一个量用正数表示,那么与它具有相反意义的量就用负数表示. 5.C【分析】设向东为正,然后列出算式,再根据有理数的加法运算法则进行计算即可得解.【详解】解:设向东为正,则向西为负,根据题意得,7+(-5)=2(米),即这个物体最终位置在起始位置的东边2米处.故选:C .【点睛】本题考查了有理数的加法运算的应用,正负数的意义,设向东为正,然后列出算式是解题的关键. 6.A【分析】用最高气温减去最低气温并求解.【详解】解:()32325--=+=,故选:A .【点睛】此题考查了用有理数的减法解决实际问题的能力,关键是能根据题意准确列式并计算. 7.C【分析】用正负数表示意义相反的两种量:一种记作正,则和它意义相反的就记作负,根据题意求解即可.【详解】解:若正数表示提升,则负数表示下降,21%+表示提升21%,则10%-表示下降10%, 故选:C .【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.8.C【分析】根据0的特殊性质,依次判断各项后即可解答.【详解】A 、0没有倒数,故选项错误,不符合题意;B 、0小于所以正数,故选项错误,不符合题意;C 、0既不是正数也不是负数,故选项正确,符合题意;D 、0的绝对值是0,故选项错误,不符合题意;故选:C.【点睛】本题考查了0的特殊性质,熟知0的特殊性质是解决问题的关键.9.﹣2m【分析】根据负数的意义,可得水位升高记作“+”,则水位下降记作“-”,水位不升不降时,记作0,据此解答即可.【详解】解:如果水位升高2m时,水位变化记作+2m,那么水位下降2m时,水位变化记作-2m,故答案为:-2m.【点睛】本题主要考查了正负数的意义以及应用,要熟练掌握,解答此题的关键是要明确:水位升高记作“+”,则水位下降记作“-”,水位不升不降时,记作0.10.(1)﹣2π;(2)①﹣2,1或﹣3;①28π或32π【分析】(1)圆的周长为2π,滚动的距离=周数×2π,根据距离在原点的位置,确定位置上表示的数的属性;(2)①Q点回到原点即前3次滚动周数的和为0;Q点距离原点4π,由于半径为1,即6次滚动周数的和为2或-2;①先计算出滚动周数的绝对值的和,乘以2π即可.【详解】解:(1)①圆的半径为1,①圆的周长为2π,①把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置需要滚动的距离为2π,①点A在原点的左边,表示一个负数,①点A表示的数是﹣2π;故答案为:﹣2π;(2)①①第3次滚动a周后,Q点回到原点,①+3﹣1+a=0,①a=-2,①第3次滚动﹣2周后,Q点回到原点;①Q点距离原点4π,①第6次滚动b周后的周数的绝对值为4π÷2π=2,①+3-1-2+4-3+b=2或+3-1-2+4-3+b=-2,①b=1或b=-3,①第6次滚动1或﹣3周后,Q点距离原点4π故答案为﹣2,1或﹣3;①根据题意,得:周数的绝对值的和为:3+1+2+4+3+1=14,①滚动距离为:14×2π=28π,周数的绝对值的和为:3+1+2+4+3+3=16,①滚动距离为:16×2π=32π.当圆片结束运动时,Q点运动的路程共有28π或32π.【点睛】本题考查了有理数的加减混合运算,绝对值,数轴,熟练掌握有理数的混合运算是解题的关键.11.支出60元【分析】根据正数和负数表示相反意义的量,可得答案.【详解】“收入100元”记作“+100元”,那么“﹣60元”表示支出60元,故答案为:支出60元.【点睛】本题考查了正数和负数,确定相反意义的量是解题关键.12.数学【分析】根据数学学史及高斯的成就即可求解.【详解】高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一.高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径.高斯在1816年左右就得到非欧几何的原理.他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理.他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来.1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论.高斯的曲面理论后来由黎曼发展.高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来.其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等.故答案为:数学.【点睛】此题主要考查数学学史,解题的关键是熟知高斯对数学的研究及认识.13.+2【分析】由把地面上的第一层作为基准,记为0,规定向上为正,根据“正”和“负”的相对性,即可求得答案.【详解】解:①把地面上的第1层作为基准,记为0,规定向上为正,则向下为负,①2楼表示的是以地面为基准向上2层,所以记为+1,故习惯上将第3层记为:+2.故答案为+2.【点睛】此题考查了正数与负数的意义.此题比较简单,注意理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.14.+1【分析】根据正负数的意义进行解答即可.【详解】解:①27+1=28,①若将数27计为0作为基准,数28应计为+1.故答案为:+1.【点睛】此题考查的是正负数,掌握其意义是解决此题关键.15.(1)37+,0.8,12,17%,0.4(2)-2,12,0(3)37+,0.8,-2.1,375-,17%,0.4(4)-2,-2.1,3 75 -(5)12(6)-2.1,3 75 -【分析】根据有理数的定义及分类解答.(1)解:正数集合:{37+,0.8,12,17%,0.4}(2)整数集合:{-2,12,0}(3)分数集合:{37+,0.8,-2.1,375-,17%,0.4}(4)负数集合:{-2,-2.1,375 -}(5)正整数集合:{12}(6)负分数集合:{ -2.1,375- } 【点睛】本题考查有理数及其分类,是基础考点,掌握相关知识是解题关键.16.没有【分析】根据题意,把向上爬记作正数,向下爬记作负数,计算每天爬行的距离的代数和,如果小于3.5米,那么不能爬出井口;如果大于或等于3.5米,那么能爬出井口.【详解】解:依题意可知,把向上爬记作正数,向下爬记作负数,第一次:0.70.1-+,, 第二次:0.420.15-+,, 第三次: 1.250.2-+,, 第四次:0.750.1-+,, 第五次:0.65+,计算出每次爬行的代数和:0.70.10.420.15 1.250.20.750.10.65 3.22----++++=<3.5,①没有爬出井口,因为五次总共爬出米3.22米,故答案为:没有.【点睛】本题考查了有理数的加减法的混合运算,解题关键是怎样把实际问题转化为正负数的和来解决. 17.(1)学校B 比学校F 购买量多,相差60只(2)6120只【分析】(1)根据题意列式计算求解即可;(2)根据有理数的加法列式计算求解即可.(1)由题意得:-70-(-130)=-70+130=60(只),①学校B 比学校F 购买量多,相差60只;(2)+150+(﹣70)+(﹣30)+200+0+(﹣130)=120(只),6×1000+120=6120(只),答:这6所学校共采购应急口罩6120只.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
创新应用 ★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当 的数,使得它们折成正方体后相对面上的两个数互为相反数.
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数

七年级数学上全册练习题(含答案)

七年级数学上全册练习题(含答案)

第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。

七年级上册数学大练

七年级上册数学大练

七年级上册数学大练以下是一些七年级上册数学练习题:1. 下列各数中,哪些是正数?哪些是负数?-2/3,-1/2,0,2/3,1,-2. 在--5,(-5),--5,-5 中,负数有 _______ 个。

3. 判断下列说法的正确性:(1)若a、b、c为有理数,且a + b + c = 0,则一定有 a + b + c = 0。

(2)若a、b、c为有理数,且a + b + c = 0,则一定有 a = b = c = 0。

4. 下列说法中正确的是 ( )A. 绝对值等于它本身的数是正数B. 互为相反数的两个数和为0C. 绝对值相等的两个数一定相等D. 几个非零有理数相乘,当因数有奇数个时,积为负5. 下列说法中正确的是 ( )A. 若ab > 0,则 a > 0,b > 0B. 若ab = 0,则 a = 0 或 b = 0C. 若ab < 0,则 a < 0,b < 0D. 若a^2 = b^2,则 a = b6. 下列计算中正确的是()A. (-5) - (-3) = -8B. (-9) × (-11) = -108C. (-2)^3 = -6D. (-1/2) - (-3/4) = -1/47. 下列说法中错误的是 ( )A. 不大于π 的角的正弦值大于它的余弦值。

B. 一个角的正弦值等于它的余弦值时,这个角一定是45°。

C. 一个角的余弦值等于它的正弦值时,这个角一定是45°。

D. 一个角的正切值等于它的余切值时,这个角一定是45°。

8. 下列运算中正确的是( )A. (-a^2)^3 = a^6B. a^6 ÷ a^2 = a^3C. a^2 + a^2 = 2a^2D. (a^2)^3 = a^59. 下列运算中正确的是( )A. a^3 × a^4 = a^(3+4) = a^7B. a^3 × b^4 = a^7 × b^4C. (-a)^3 × (-a)^4 = -a^(3+4) = -a^7D. (-a)^3 × (-b)^4 = -a^3 × b^410. 下列各式中正确的是 ( )A. -3 = 3B. -7 = --7C. π - 3 = π - 3D. π = π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册练习题七年级有理数一、境空题(每空2分,共38分)1 21、-的倒数是;1兰的相反数是3 32、比-3小9的数是____ ;最小的正整数是______ .3、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是-7,那么另一个加数是_________ .5、某旅游景点11月5日的最低气温为2,最高气温为8C,那么该景点这天的温差是__________ . C6 计算:(1)100( 1)101_____ .17、平方得21的数是;立方得-64的数是48、+2与2是一对相反数,请赋予它实际的意义:______________________ 。

9、绝对值大于1而小于4的整数有_____________ 其和为 __________ 。

10、若a、b互为相反数,c、d互为倒数,则3 (a + b) 3 cd = _________ 。

11、______________________________________ 若(a 1)2 |b 2 | 0,则a b= 。

12、数轴上表示数5和表示14的两点之间的距离是____________ 。

13、在数5、1、3、5、2中任取三个数相乘,其中最大的积是_____________ 最小的积是14、__________________________________________ 若m n互为相反数,贝U| m-1+ n| = .二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示:则()a b------ * ------- 1-------- 1---- «——: ----1 0 1A.a + b v 0 B . a-+ b > 0; C . a—b 0D.a —b > 016、下列各式中正确的是()A.a2( a)2B . a3(a)3; C . a2 1 a21D .a |a |17、如果a b 0,且ab0,那么()A. a 0,b 0 ;B. a C),b0 ;C. a、b异- 号;D.a、b异号且负数和绝对值较小18、下列代数式中,值一定是正数的是()A. x2B.| —x+1|C.(—X)2+2D. —x2+119、算式(-3 3)X 4可以化为()43 3(A)-3 X 4- 3X 4 (B)-3 X 4+3 (C)-3 X 4+3X 4 (D)-3 X 3-34 420、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是 ......... ()A、90 分B 、75 分C、91 分D 、81 分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价A 、高 12.8 %B 、低 12.8 %C 、高 40%D 、高 28%四、解答题(共46分)25、已知 |a|=7 , |b|=3,求 a+b 的值。

(7 分)27、已知a 、b 互为相反数,m n 互为倒数,x 绝对值为2,求2mn -—C x 的值(7分)m n28、现规定一种运算“ * ”,对于a 、b 两数有:a*b a b 2ab , 试计算(3)*2的值。

(7分)29、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位: km )依先后次序记录如下:+9、 3、 5、+4、 & +6、 3、 6、 4、+10。

(1) 将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向? (2) 若每千米的价格为2.4元,司机一个下午的营业额是多少? (8分)30、某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家, 再向西走150米到青青家,再向西走200米到刚刚家,请问: (1)聪聪家与刚刚家相距多远?⑵如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出他们 三家与学校的大概位置(数轴上一格表示50米).(3) 聪聪家向西210米是体育场,体育场所在点所表示的数是多少 ?()22、计算 (3 (每小题5分, 5 1)亠丄 9 12 • 36共15分)23、|7|亠(2 5)3( 4)224、 12l3 ( 12) 626、若 x>0, y<0,求 x yy x 3的值。

(7分)(4)你认为可用什么办法求数轴上两点之间的距离?(10分)•判断题⑴-1是关于x的一次两项式.()3(2)—3不是单项式.()⑶单项式xy的系数是0.()(4)x 3+ y3是6次多项式.()(5)多项式是整式.()二、选择题1 •在下列代数式:丄ab, -一b,ab+b+1, - +—,x3+ x2—3中,多项式有(2 2 x yA. 2个B . 3个C . 4个D5 个2 .多项式一23m —n2是()A.二次二项式 B .三次二项式C四次二项式D五次二项式3. 下列说法正确的是()A. 3 x2—2x+5 的项是3x2, 2x, 5B. - —y与2 x2—2xy —5都是多项式3 3C. 多项式—2x2+4xy的次数是3D. —个多项式的次数是6,则这个多项式中只有一项的次数是64. 下列说法正确的是()A.整式abc没有系数 B . - +- +-不是整式2 3 4C.—2不是整式 D .整式2x+1是一次二项式5. 下列代数式中,不是整式的是()2 5a 4b 3a 2A、3x2B、C、D—20057 5x6. 下列多项式中,是二次多项式的是()A、32x 1B、3x2C、3xy —1 D 、3x 527. x减去y的平方的差,用代数式表示正确的是()A、(x y)2B x2 y2C、x2 y D、x y28. 某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b米/分,则他的平均速度是()米/分。

A、a b B s C空空2s D2 a b a b s sa b9 .下列单项式次数为3的是()A.3abcB.2 x 3X 4C.丄 x 3yD.52x410.下列代数式中整式有()1-,2 x+y ,x1 o2 x a b ,3y5y4x0.5 , a A.4 个 B.5 个 C.6个D.7个11.下列整式中, 单项式是( )A.3a+1B.2x — yC.0.1D. x 1212.下列各项式中,次数不是 3的是()A. xyz + 1B. x 2+ y + 1C. x 2y — xy 2D. x 3— x 2 + x — 1 13.下列说法正确的是()18. 已知:2x m y 3与5xy n 是同类项,则代数式m 2n 的值是()A 、6 B 、5 C 、 2 D 、519. 系数为一丄且只含有x 、y 的二次单项式,可以写出() 2A. 1个B. 2个C. 3个D. 4个20. 多项式1 x 2 2y 的次数是()A 、1B 、 2C — 1D — 2 三. 填空题1 .当 a = — 1 时,4a 3 =;42 32.单项式: 一 x y 的系数是,次数是;34. 32005xy 2是次单项式;A. x (x + a )是单项式B .1不是整式C . 0是单项式D .单项式—-x 2y 的系数是-33A. xB. x 3 2 ,xyC. x 3,- 2xyD. 25 15.在代数式3x2y , 7(x 1 1) 1 /c ,:(21), y 2 y 1中, 多项式的个数是() 4 8 3 yA. 1B. 2C. 3D. 4 133A.— 3, 3B.—丄,3C. — 3 , 2D.— - , 322217. 下列说法正确的是()A. x 的指数是0B. x 的系数是0 C—10是一次单项式 D.— 10是单项式14 .在多项式x 3 — xy 2 + 25中,最高次项是()低单项式—竽的系数与次数分别是()5. 4x2 3y的一次项系数是,常数项是;6. ______ ______和称整式.7 •单项式1xy2z是次单项式.28•多项式a2- 1ab2-b2有项,其中一1ab2的次数是.2 229•整式①丄,②3x —y2,③23x2y,④a,⑤n x+1y,⑥2■丄,⑦x+1中单项式有,多项式有2 2 510. x+2xy+y是次多项式.11 .比m的一半还少4的数是;12. b的1丄倍的相反数是;313. 设某数为x, 10减去某数的2倍的差是;14. n是整数,用含n的代数式表示两个连续奇数;15. x4 3x3y 6x2 y2 2y4的次数是;16. 当x= 2,y=—1时,代数式| xy | | x |的值是;1 t17. 当t二时,t ——的值等于1;318 .当丫=时,代数式3y—2与口的值相等;419. —23ab的系数是,次数是次.20. 把代数式2a2b2c和a3b2的相同点填在横线上:(1) 都是式;(2)都是次.21. 多项式x3y2—2xy2—他—9是___次—项式,其中最高次项的系数是,二次项是,常数项是.322. 若〔x2y3z m与3x2y3z4是同类项,则m =.323 .在x,—(x + y),—,—3中,单项式是,多项式是,整式是.224.单项式5^建的系数是,次数是725 .多项式x2y + xy —xy2—53中的三次项是___________ .26.当a= ____________ 寸,整式x2+ a—1是单项式.27 .多项式xy —1是___________ 次_____________ 式.28. 当x= —3时,多项式一x3+ x2—1的值等于____________ :29. 如果整式(m—2n)x 2y m+n-5是关于x和y的五次单项式,则m+n30 .一个n次多项式,它的任何一项的次数都______________ :31. 系数是—3,且只含有字母x和y的四次单项式共有个,分别是.32 .组成多项式1 —x2+xy —y2—xy3的单项式分别是.四、列代数式1: 5除以a的商加上3-的和;32. m与n的平方和;3. x与y的和的倒数;4. x与y的差的平方除以a与b的和,商是多少五、求代数式的值1. 当x = —2时,求代数式x2 3x 1的值。

12. 当a丄,b 3时,求代数式|b a|的值。

21 2x2 13. ----------------------------------------- 当x丄时,求代数式的值。

相关文档
最新文档