方波变三角波电路图

合集下载

如何实现正弦波、方波与三角波信号之间的变换

如何实现正弦波、方波与三角波信号之间的变换

内蒙古工业大学信息工程学院《信号发生器的设计与实现》课程设计报告课程名称:模拟电子技术班级:姓名:学号:成绩:指导教师:1.摘要信号发生器是指产生所需参数的电测试信号的仪器。

按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。

随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功或大或小、频率或高或低的振荡器。

函数信号发生器的实现方法通常有以下(1)用分立元件组成的函数发生器:通常是单函数发生器且频率不高,其工作不很稳定,不易调试(2)可以由晶体管、运放IC等通用器件制作,它们的功能较少,精度不高,调节方式也不够灵活(3)利用单片集成芯片的函数发生器:能产生多种波形,达到较高的频率,且易于调试.2.函数信号发生器的设计2.1 设计目的(1)学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。

正弦波 方波 三角波发生电路

正弦波 方波 三角波发生电路

正弦波方波三角波发生电路----9eef9958-7160-11ec-a078-7cb59b590d7d正弦波方波三角波发生电路正弦波&周期;方波&周期;三角波产生电路一、设计目的及要求:1.1. 设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2). 熟悉集成电路:集成运算放大器LM324,掌握其工作原理。

1.2. 设计要求:(1)设计波形产生电路。

(2)信号频率范围:100hz——1000hz。

(3)信号波形:正弦波。

二、实验方案:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。

但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。

如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。

反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。

为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。

选频网络由r、c和l、c等电抗性元件组成。

正弦波振荡器的名称一般由选频网络来命名。

正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。

产生正弦波的条件与负反馈放大电路中产生自激的条件非常相似。

然而,在负反馈放大器电路中,信号频率到达通带的两端,导致足够的附加相移,从而使负反馈变为正反馈。

正反馈加到振荡电路中。

振荡建立后,它只是一个频率的信号,没有额外的相移。

(a)负反馈放大电路(b)正反馈振荡电路图1振荡器的方框图比较图1(a)和(b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。

由于=十、。

由于正负号的变化,正反馈的放大系数为: = 0,因此X振荡电路的输入信号xiif.a,式中a是放大电路的放大倍数,f是反馈网络的放大倍数。

..振荡条件:AF 1.幅度平衡条件:af=1相位平衡条件: AF= a+f=±2n振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求|af| 1..这被称为起始条件。

方波变三角波

方波变三角波

方波变三角波实验报告
20113081
吴芳
要求:做输出为1HZ—10HZ,10HZ—100HZ,100HZ—1000HZ范围内的波形。

实验原理:先采用滞回比较器产生方波,再通过积分电路将方波变成三角波,通过改变积分电路中电容的大小从而可以产生题目要求频率的三角波。

实验步骤:
1.做滞回比较器:要使U+=Uo/2,所以令R1=R2=10k
2.先做输出为1HZ的积分电路
T=1/f=1S,又T=(4R1*R3*C)/R2
令R3=1k,所以C=2.5u
要使输出频率在1HZ到10HZ之间变换,则R3的取值范围为1K到10K,可接入1K的定值电阻,9K的滑动变阻器
3.做输出为10HZ的积分电路
T=1/f=0.1s,又T=(4R1*R3*C)/R2
令R3=1K,则C=0.25u
要使输出频率在10HZ到100HZ之间变换,则R3的取值范围为1K到10K,可接入1K的定值电阻,9K的滑动变阻器
4.做输出为100HZ到1000HZ的积分电路,根据以上得R3的取值范围为1K 到10K,C=0.025u
5.为使输出频率连续可调,可接入三匝开关
实验结论:实验采用滞回比较器的输出端加在积分电路的反向输入端进行积分可以产生方波,并将方波转换为三角波。

实验总结:在仿真中的示波器上,我们可以明显的看出两波的频率相等,
而三角波则比方波减小了一半,在图中可以读出在方波发生跳
变的同时三角波也发生了跳变。

在做该实验时我们要注意理论
R大点,使得 大点上频率的计算,且在该实验中我们应使
4。

模电实验-方波三角波发生电路

模电实验-方波三角波发生电路

方波三角波发生电路一、实验要求:1、振荡频率范围:500HZ-1000HZ2、方波输出电压幅度:Vom=±8v3、三角波峰值调节范围:Vom1=2-4v4、集成运放采用uA7415、双向稳压管用2个D1N4735反接替代二、实验仿真与分析:1、确定参数:取R1=10k,Vom1=4v,则R2=Vom*R1/Vom1=20k,取电容C=1uF,暂时取R和R3为1k.2、设置瞬态分析,应特别注意时间的设置,由于周期为1ms~2ms,可设置终止时间为10ms.时间过大则波形过于密集,时间小则波形越偏离方波。

仿真分析知此时方波电压幅值为6V左右。

设置R3为全局变量,扫描分析使得方波幅值最大,确定R3=100,此时三角波幅值也满足要求:CPARAMETERS:v ar = 1k8.0V4.0V0V-4.0V-8.0V0s1ms2ms3ms4ms5ms6ms7ms8ms9ms10ms V(R2:2)V(R1:1)Time方波幅值为7.02V ,三角波幅值为3.7V ,取两个波谷值测取周期,T=3.7651-1.6182=2.1ms 并不符合要求,故要减小周期,即减小R仿真分析得当R=800时,仿真图像为周期为1.7ms,符合要求。

3、 设置瞬态分析,得到运放的电压传输特性分别为: 方波:三角波:Time0s1ms2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10msV(R2:2)V(R1:1)-8.0V-4.0V0V4.0V8.0VV(R1:1)-4.0V-3.0V -2.0V -1.0V 0.0V 1.0V 2.0V 3.0V 4.0VV(R2:2)-8.0V-4.0V0V4.0V8.0V4.0V2.0V0V-2.0V-4.0V-8.0V-6.0V-4.0V-2.0V0V 2.0V 4.0V 6.0V8.0V V(R1:1)V(R:1)三、实验体会:两个稳压管用来稳定输出方波,理论上是可以通过改变稳压值来调节方波幅值的,但是实验中却发现对方波幅值影响非常小,调不到8v,但是三角波却能够满足要求。

(整理)方波和三角波发生器电路

(整理)方波和三角波发生器电路

方波和三角波发生器电路由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。

如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。

方波和三角波发生器的工作原理A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。

利用叠加定理可得:当Vp>0时A1输出为正,即VO1 = +Vz;当Vp<0时,A1输出为负即VO1 = -VzA2构成反相积分器VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。

假设电源接通时VO1 = -Vz,线性增加。

当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求1、课题的任务和要求。

2、课题的不同方案设计和比较,说明所选方案的理由。

3、电路各部分原理分析和参数计算。

4、测试结果及分析:(1)实测输出频率范围,分析设计值和实测值误差的来源。

(2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值范围,分析输出电压幅值随频率变化的原因。

(3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。

注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动!(4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。

5、课题总结6、参考文献2、方波、三角波发生器(1)按图11-2所示电路及参数接成方波、三角波发生器。

图11-2(2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02(注意标注图形尺寸),并测量Rp及频率值。

表11-3方波V01及三角波V02 波形Rp= (中间) , f=(3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中(记录不失真波形参数)。

表11-4F ( KHz ) Rp ( Ω ) V01P-P(V) V02P-P(V)备注频率最高频率最低(4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。

方波-三角波发生电路实验报告

方波-三角波发生电路实验报告

河西学院物理与机电工程学院综合设计实验方波-三角波产生电路实验报告学院:物理与机电工程学院专业:电子信息科学与技术姓名:侯涛日期:2016年4月26日方波-三角波发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。

指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V一、方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号。

2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。

3、把方波信号通过一个积分器。

转换成三角波。

方案二:1、由滞回比较器和积分器构成方波三角波产生电路。

2、然后通过低通滤波把三角波转换成正弦波信号。

方案三:1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。

二、方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。

当R1=R2、C1=C2。

即f=f0时,F=1/3、Au=3。

然而,起振条件为Au略大于3。

实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。

如果R4/R3大于2时,正弦波信号顶部失真。

调试困难。

RC串、并联选频电路的幅频特性不对称,且选择性较差。

因此放弃方案一。

方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。

比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。

通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。

然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。

因此不满足使用低通滤波的条件。

放弃方案二。

方案三:方波、三角波发生器原理如同方案二。

比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。

方波 三角波--转换电路实验报告册

方波 三角波--转换电路实验报告册

物理与机电工程学院(2015——2016 学年第二学期)综合设计报告方波三角波转换电路专业:电子信息科学与技术学号:2014216041姓名:张腾指导教师:石玉军方波三角波转换电路摘要:一般方波-三角波发生器要用三只运算故大器,而且要用二极管或双向稳压管等有源器件进行限幅,线路较烦琐。

这里介绍一个实用的方波-三角波发生器。

该电路工作稳定、可靠,而且频率、幅度调节方便。

通过在Multisim10虚拟实验环境中对方波一三角波函数发生器电路的设计,阐述Multisim10在电路仿真设计中的应用过程,实现真正意义上的电子设计自动化(DEA)。

关键字:三角波发生器频率方波二极管稳压管有源器件限幅实用振荡电路积分器1.引言:电子电路邻域中的信号波形,除了正弦波之外另一类就是非正弦波。

非正弦波又称为脉冲波,如方波、矩形波、三角波等都是最常见的脉冲波形,当今是科学技术及仪器设备高度智能化飞速发展的信息社会,电子技术的进步,给人们带来了根本性的转变。

现代电子领域中,单片机的应用正在不断的走向深入,这必将导致传统控制与检测技术的日益革新。

单片机构成的仪器具有高可靠性、高性能价格比,在智能仪表系统和办公自动化等诸多领域得以极为广泛的应用,并走入家庭,从洗衣机、微波炉到音响汽车,处处可见其应用。

因此,单片机技术开发和应用水平已逐步成为一个国家工业发展水平的标志之一。

信号发生器作为一种常见的应用电子仪器设备,传统的一般可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。

但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。

在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。

而借用计算机技术和DDS技术直接产生的各种波形频率高,成本高。

2.设计内容和要求:(1).内容:设计一个用集成放大器构成的方波-三角波产生电路,指标要求如下:方波重复频率:500Hz 相对误差<5%;脉冲幅度:6-6.5V三角波重复频率:500Hz 相对误差<5%;脉冲幅度:1.5-2V(2).要求:①根据设计要求和已知条件,确定电路方案,设计并选出各单元电路的原件参数。

方波-三角波变换电路参考设计

方波-三角波变换电路参考设计

量结果填入表2。
表2
三角波
Rw4调至最小值 幅度 波形
(Vopp)
Rw4调至中间某个值 幅度(Vopp) 波形
Rw4调至最大值 幅度(Vopp) 波形
方波
方波的tr(us) 方波的td(us) fo(Hz)测量值 Rw4+ R6(测量) fot(Hz)计算值 (fot- fo)/ fot*100
2、方波-三角波主要参数测试(续)
该电路由一个迟滞比较器和积分器组成。对于±15V双
电源供电方式,方波的幅度为:
,VOM>6V。
(2)方波-三角波变换电路参考设计(续)
三角波的幅度为:
方波的周期T为:
五、基础实验内容及要求
1、 正弦波主要参数测试
参考图5设计RC正弦 波振荡电路,计算出各元 件参数值,R w1、R w2采 用双联可调电位器。
实验六 信号产生与转换电路设计
一、 实验目的
(1)掌握正弦波振荡电路的基本工作原理; (2)掌握RC正弦波振荡电路的基本设计、调试和分析 方法; (3)掌握方波、三角波发生器的基本设计、调试和分析 方法; (4)理解正弦波产生电路和方波、三角波转换电路的相 互转换。
二、实验仪器及器件
(1)双踪示波器; (2)直流稳压电源; (3)数字电路实验箱或实验电路板; (4)数字万用表; (5)uA741集成电路芯片.
2、设计要求
(1)输出波形:正弦波、方波和三角波; (2)输出频率:750HZ--7KHZ可调。 (3)输出峰峰值:正弦波Upp≥5V,方波Upp≥12V,三 角波Upp≥3V。
(4)输出阻抗*不大于100Ω。
(5)方波的占空比可调*。 说明:带(*)的指标要求为扩展内容。

模电课程设计---方波—三角波发生器设计与仿真

模电课程设计---方波—三角波发生器设计与仿真

课程设计任务书学院信息工程学院班级姓名设计起止日期2012年7月9日—7月13日设计题目:方波—三角波发生器设计与仿真设计任务(主要技术参数):1.主要技术参数(已知条件)根据要求设计一个方波—三角波发生电路,频率:100Hz-1000Hz;幅度:≧2V2.利用软件画出电路原理图并仿真3.编写设计说明书指导教师评语:成绩:签字:年月日一、课程设计的目的1.《低频电子线路》是学习理论课程之后的实践教学环节。

目的是通过解决比较简单的实际问题巩固和加深在《低频电子线路》课程中所学的理论知识和实验技能。

训练学生综合运用学过的电子技术基础知识,在教师指导下完成查找资料,选择、论证方案,设计电路,安装调试,分析结果,撰写报告等工作。

使学生初步掌握模拟电子电路设计的一般方法步骤,通过理论联系实际提高和培养学生分析、解决实际问题的能力和创新能力,为后续课程的学习、毕业设计和毕业后的工作打下一定的基础。

2.课程设计的基本要求通过课程设计了解模拟电路基本设计方法,加深对所学理论知识的理解。

完成指定的设计、安装、调试任务,初步掌握测试结果分析和撰写设计报告的方法。

具体要求如下:(1)明确设计任务对设计任务进行具体分析,充分了解性能、指标、内容及要求,明确应完成的任务。

(2)方案选择与论证通过查阅资料对不同的设计方案进行比较论证,根据现有的条件选择合适的设计方案,力争作到合理,可靠,经济,先进,便于实现,绘制出整体框图。

(3)单元电路设计确定各个单元的电路结构,计算元件参数(写出主要计算过程和公式),选择器件。

(4)绘制原理图绘制完整的原理图,在图中标明主要测试点及理想情况下的参数值(或波形),列出元件表。

有条件是应会用protel DXP等EDA设计工具绘制原理图并进行仿真。

(5)制定测试方案根据实验室现有条件选择测试用的实验设备(列出所需设备表),绘制出实际电路连接草图,拟定测试步骤并设计好数据记录表格。

(6)测试验证根据拟定的测试步骤进行测试验证,记录测试结果。

正弦波-方波-三角波发生电路设计

正弦波-方波-三角波发生电路设计

东华理工大学长江学院课程设计报告正弦波-方波-三角波发生电路设计学生姓名:专业:班级:指导教师:正弦波-方波-三角波发生电路设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生正弦波,再将正弦波变成方波-三角波或将方波变成三角波等等。

本课题采用先产生正弦波,再将方波变换成三角波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成正弦波产生电路,比较器输出的方波经积分器得到三角波,目录1、正弦波发生器 (3)2、方波发生器 (4)3、三角波发生器 (7)4、正弦波-方波-三角波发生器 (9)5、总电路图、元器件清单 (10)6、心得体会及参考文献 (11)简述:方波、正弦波、三角波是电子电路中经常用到的信号,设计一个正弦波-方波-三角波发生电路。

具体技术要求如下:(1)正弦波-方波-三角波的频率在100Hz-20KHz范围内连续可调;(2)正弦波和方波的信输出幅度为6V,三角波的输出幅度在0-2V之间连续可调;正弦波的失真度r5%;(4)设计上述电路工作所需的直流稳压电源电路。

使用仪器及测量仪表:选用元器件(1).集成运放F007(a741);(2)稳压及开关二极管;(3)电阻、电容、电位器若干。

测量仪表(1)直流稳压电源;(2)示波器;(3)万用表(4)频率计(5)交流电压表一、正弦波发生器其振荡频率为1kHz。

rc 并联电路实现方波转换为三角波

rc 并联电路实现方波转换为三角波

rc 并联电路实现方波转换为三角波1.介绍方波和三角波是电子技术中常见的波形信号,它们在信号处理、通信和控制系统等领域都有广泛的应用。

在一些特定的应用场合,需要将方波信号转换为三角波信号,以满足系统对波形信号的需求。

本文将介绍如何利用RC并联电路实现方波信号向三角波信号的转换。

2.方波与三角波方波是一种由正负方向的矩形脉冲信号组成的波形信号,其特点是上升沿和下降沿瞬间变化,持续时间等宽。

而三角波是一种具有线性增减特性的波形信号,其波形如同一个等腰直角三角形。

在电路分析和信号处理中,需要将方波信号转换为三角波信号的情况并不少见。

3.RC并联电路RC并联电路是由一个电阻和一个电容并联连接而成的电路,其在信号处理和滤波中具有重要的作用。

当输入一个方波信号时,RC并联电路可以对其进行滤波和处理,从而输出一个类似于三角波的波形信号。

4.电路设计在设计RC并联电路实现方波到三角波的转换时,需要选择合适的电阻和电容数值。

一般来说,选择较大的电阻和较小的电容可以获得较为平缓的三角波信号。

还需要考虑输入方波信号的频率和幅值,以保证电路的稳定性和性能。

5.工作原理当方波信号输入RC并联电路时,电容会通过电压的积分作用产生电压变化,从而使输出信号逐渐呈现出线性增减的波形特性。

通过合理选择电阻和电容数值,可以使得输出信号接近理想的三角波波形。

6.性能分析在实际应用中,RC并联电路实现方波到三角波的转换有一定的性能限制。

输入方波信号的频率越高,电路的响应速度就越慢;电容的充放电时间常数也会影响输出波形的稳定性和频率特性。

在工程应用中需要综合考虑各种因素,以获得满足要求的三角波信号。

7.工程应用RC并联电路实现方波到三角波的转换在工程应用中具有重要的意义。

在波形发生器、频率调制和解调、滤波器设计等领域都有广泛的应用。

在这些应用中,合理设计和优化RC并联电路可以实现对方波信号的有效转换,为系统的正常运行提供必要的信号处理支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档