化工原理重要概念和公式
化工原理重要概念和公式
《化工原理》重要概念第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同。
主要操作费溶剂再生费用,溶剂损失费用。
解吸方法升温、减压、吹气。
选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小。
相平衡常数及影响因素m 、 E 、 H 均随温度上升而增大, E 、 H 与总压无关, m 反比于总压。
漂流因子P/P Bm 表示了主体流动对传质的贡献。
( 气、液 ) 扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关。
传质机理分子扩散、对流传质。
气液相际物质传递步骤气相对流,相界面溶解,液相对流。
有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结果为k ∝ D ,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k ∝ D 0.5 。
传质速率方程式传质速率为浓度差推动力与传质系数的乘积。
因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应。
传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力。
当 mky<<kx 时,为气相阻力控制;当 mky>>kx 时,为液相阻力控制。
低浓度气体吸收特点① G 、 L 为常量,② 等温过程,③ 传质系数沿塔高不变。
建立操作线方程的依据塔段的物料衡算。
返混少量流体自身由下游返回至上游的现象。
最小液气比完成指定分离任务所需塔高为无穷大时的液气比。
NOG 的计算方法对数平均推动力法,吸收因数法,数值积分法。
第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据 ( 原理 ) 是液体中各组分挥发度的不同。
主要操作费用塔釜的加热和塔顶的冷却。
双组份汽液平衡自由度自由度为 2(P 一定, t ~ x 或 y ; t 一定, P ~ x 或 y) ; P 一定后,自由度为 1 。
泡点泡点指液相混合物加热至出现第一个汽泡时的温度。
化工原理公式
化工原理公式
1. 质量守恒公式:
在化学反应中,质量守恒是一个基本的原理。
它可以用如下公式表示:
质量物质的总量 = 当前的质量物质的总量 + 生成的物质的质量 - 消失的物质的质量
2. 摩尔质量计算公式:
摩尔质量是指一个物质的摩尔质量与其质量之间的关系。
它可以用如下公式表示:
摩尔质量 = 质量 / 物质的摩尔数
3. 反应物比例公式:
反应物比例可以通过计算摩尔比来确定。
反应物比例为生成物比例的化学计量关系。
它可以用如下公式表示:
摩尔比 = 摩尔数 / 最小摩尔数
4. 摩尔分数公式:
摩尔分数是指一个化合物在混合物中所占的比例。
它可以用如下公式表示:
摩尔分数 = 摩尔数 / 总摩尔数
5. 离子浓度公式:
离子浓度可以用来描述溶液中离子的浓度。
它可以用如下公式表示:
离子浓度 = 离子的摩尔数 / 溶液的体积
请注意,这些公式仅为化工原理中的一部分,还有很多其他的公式和原理没有包括在内。
同时,这些公式可能会依赖于具体的实验条件和问题的要求,因此在使用时需谨慎。
化工原理公式
化工原理公式化工原理是化学工程专业的基础课程之一,它涉及到化工过程中的物质平衡、能量平衡、动量平衡等方面的知识。
在化工原理的学习过程中,掌握相关的公式是非常重要的。
本文将介绍化工原理中常用的公式,帮助大家更好地理解和应用化工原理的知识。
1. 物质平衡公式。
在化工过程中,物质平衡是非常重要的,它描述了物质在化工过程中的流动和转化情况。
物质平衡公式可以用来描述化工过程中物质的输入、输出和转化关系,通常表示为:输入物质 = 输出物质 + 产生物质消耗物质。
这个公式可以帮助工程师分析化工过程中物质的流动情况,从而优化生产过程,提高生产效率。
2. 能量平衡公式。
能量平衡是化工过程中另一个重要的方面,它描述了能量在化工过程中的转化和传递情况。
能量平衡公式可以用来描述化工过程中能量的输入、输出和转化关系,通常表示为:输入能量 = 输出能量 + 产生能量消耗能量。
这个公式可以帮助工程师分析化工过程中能量的流动情况,从而设计和优化能源利用系统,提高能源利用效率。
3. 动量平衡公式。
在一些流体力学的化工过程中,动量平衡也是非常重要的。
动量平衡公式可以用来描述流体在化工过程中的流动情况,通常表示为:输入动量 = 输出动量 + 产生动量消耗动量。
这个公式可以帮助工程师分析化工过程中流体的流动情况,从而设计和优化管道系统,提高流体传输效率。
除了以上提到的物质平衡、能量平衡和动量平衡公式外,化工原理中还涉及到许多其他重要的公式,如反应速率公式、传质公式、传热公式等。
这些公式在化工工程中都有着重要的应用,工程师们需要深入理解这些公式,并灵活运用于实际工程中。
总之,化工原理中的公式是化工工程师们设计、优化和控制化工过程的重要工具,掌握这些公式对于工程师们来说是非常重要的。
希望本文介绍的化工原理公式能够帮助大家更好地理解和应用化工原理的知识,为化工工程的发展贡献自己的力量。
通过以上对化工原理公式的介绍,相信大家对化工原理中的公式有了更深入的了解。
化工原理概念公式集
化工原理概念公式集化工原理是一门重要的学科,主要研究物质的分子结构及其相互作用,以及在化学变化中的能量转化和反应动力学规律。
下面是一些化工原理中常用的概念和公式集。
1.化学反应化学反应的速率可以用反应速率常数k来描述,反应速率与反应物浓度之间的关系可以用速率方程表示。
速率方程:v=k[A]^p[B]^q其中,v表示反应速率,[A]和[B]分别表示反应物A和B的浓度,p和q称为反应的反应级数。
2.物质平衡在化工过程中,物质平衡是非常重要的概念,它描述了系统中物质的总量不变。
物质平衡方程:输入物质的总量=输出物质的总量+产生物质的总量-消耗物质的总量3.能量平衡能量平衡是指在化工过程中,系统中能量的总量保持不变。
根据能量守恒定律,能量平衡可以表示为:输入能量的总量=输出能量的总量+生成能量的总量-消耗能量的总量4.热力学热力学是研究能量转化和转移的科学。
常用的热力学公式包括:一般能量收支表达式:ΔU=q+w其中,ΔU表示系统内能的变化,q表示传递给系统的热量,w表示对外做的功。
5.流体力学流体力学是研究流体静力学和流体动力学的学科。
常用的流体力学公式包括:Bernaoulli方程:P + 1/2ρv^2 + ρgh = 常数其中,P表示流体的压力,ρ表示流体的密度,v表示流速,h表示流体的位置高度。
6.反应动力学反应动力学研究化学反应速率与反应条件之间的关系。
常用的反应动力学公式包括:反应速率常数k与温度T的关系:k = A * exp(-Ea/RT)其中,A为频率因子,Ea为活化能,R为气体常数,T为反应温度。
7.质量传递质量传递研究物质从一个相中传递到另一个相的过程。
常用的质量传递公式包括:弗里克定律:J=-D*(∂C/∂x)其中,J表示质量传递通量,D表示质量传递系数,C表示浓度,x表示位置坐标。
8.界面现象界面现象研究两相或多相界面上的液体、固体或气体相的相互作用。
常用的界面现象公式包括:表面张力:γ=∂F/∂l其中,γ表示表面张力,F表示液体表面所受的力,l表示液体表面的长度。
化工原理公式和重点概念
化工原理公式和重点概念化工原理是指研究化学工程中的基本原理和概念的科学分支。
它涵盖了化学工程的各个方面,包括化学反应、传质、传热、流体力学、过程控制和反应工程等。
下面将介绍化工原理中的几个重点概念和公式。
1.质量守恒定律(质量守恒方程):质量守恒定律是化工流程中最基本的定律之一,它表达了物质在过程中的质量不能被创造或消失。
质量守恒定律可以用以下方程表示:进料质量=出料质量+蓄积质量2.能量守恒定律(能量守恒方程):能量守恒定律是化工过程中另一个基本的定律,它表达了能量在过程中的转移和转化,但不能被创造或消失。
能量守恒定律可以用以下方程表示:进料能量=出料能量+蓄积能量3.质量平衡定律(质量平衡方程):质量平衡定律是研究化工反应过程中物质的传递和转化的重要原理。
它可以用以下方程表示:进料物质的流速×浓度=出料物质的流速×浓度+反应速率×反应时间4.能量平衡定律(能量平衡方程):能量平衡定律是研究化工过程中能量传递和转化的重要原理。
它可以用以下方程表示:进料热交换量+进料物质的热容=出料热交换量+出料物质的热容+反应热5.反应速率方程:反应速率方程描述了化学反应中的反应速率与反应物浓度之间的关系。
根据反应的不同类型,常见的反应速率方程有零级反应速率方程、一级反应速率方程和二级反应速率方程等。
6.传质方程:传质方程描述了物质在传质过程中的传递速率与温度、浓度或压力之间的关系。
常见的传质方程有菲克定律(Fick's Law)、斯多基定律(Stokes's Law)和谷井定律(Graham's Law)等。
7.传热方程:传热方程描述了热量在传热过程中的传递速率与温度、热导率和温度梯度之间的关系。
常见的传热方程有傅里叶热传导定律(Fourier's Lawof Heat Conduction)、牛顿冷却定律(Newton's Law of Cooling)和辐射传热定律等。
《化工原理》公式总结
《化工原理》公式总结化工原理公式总结化工原理是化学工程的基础学科,掌握化工原理对于研究和解决化学工程问题至关重要。
在化工原理中,有许多重要的公式和方程式被广泛应用于工程实践中。
下面是一些常见的化工原理公式总结:1.质量守恒方程化工过程中,质量守恒是一个基本原理。
根据质量守恒方程,输入质量=输出质量+积累质量。
其数学表达式为:dM/dt = Σmi + ∑mo + macc其中,dM/dt表示体系质量变化速率,mi表示输入组分i的质量流量,mo表示输出组分i的质量流量,macc表示组分i的积累质量流量。
2.动量守恒方程化工过程中,动量守恒是一个重要的原理。
根据动量守恒方程,输入动量=输出动量+积累动量。
其数学表达式为:dm/dt = ΣFi + ∑Fo + Facc其中,dm/dt表示体系动量变化速率,Fi表示输入组分i的动量流量,Fo表示输出组分i的动量流量,Facc表示组分i的积累动量流量。
3.能量守恒方程在化学工程中,能量守恒是一个基本原理。
根据能量守恒方程,输入能量=输出能量+积累能量。
其数学表达式为:dH/dt = ΣQi + ∑Qo + Qacc其中,dH/dt表示体系能量变化速率,Qi表示输入组分i的能量流量,Qo表示输出组分i的能量流量,Qacc表示组分i的积累能量流量。
4.化学反应速率方程在化学工程中,化学反应速率是一个重要的参数。
化学反应速率方程可用于描述反应物浓度与反应速率之间的关系。
常见的化学反应速率方程包括:-零级反应速率方程:r=k-一级反应速率方程:r=k[A]- 二级反应速率方程:r = k[A]² or r = k[A][B]5.平均粒径计算公式在颗粒物的粉碎、磨擦和分级过程中,平均粒径是一个重要的参数。
平均粒径计算公式根据粒径分布来计算平均粒径,常见的公式包括:-体积平均粒径(D[4,3]):D[4,3]=∫(D³N(D))dD/∫(D²N(D))dD-数量平均粒径(D[3,2]):D[3,2]=∫(DN(D))dD/∫(N(D))dD6.流体力学公式在化学工程中,流体力学是一个重要的领域。
化工原理1-2重要公式
Sc1 / 3
1 1 m 1 1 1 , , K x mK y K y ky kx K x k x mk y
G B Y1 Y2 Y G y1 y 2 y 1 2 , 1 2 G B Y1 Y1 Gy 1 y1
(2)全塔衡算: GB Y1 Y2 LS X 1 X 2 , G y1 y 2 Lx1 x 2
(3)操作线方程: Y
LS L L L ,y X Y2 S X 2 x x2 y 2 GB G G G B
GB Y1 Y2 , x1 x2 G y y 2 LS L
(4)出塔富液浓度: X 1 X 2
塔底重组分回收率: 2 (2)全塔衡算: 总物料衡算:
F DW
轻组分物料衡算: Fx F Dx D Wx W 馏出液采出率:
D xF xW F xD xW
(4)塔内气液相负荷(流量) :恒摩尔流假定 精馏段:
L RD V ( R 1) D
, 提馏段:
L RD qF V ( R 1) D (1 q ) F
(2)相对挥发度:
K A yA xA K B yB xB
(3)平衡关系: y
x 1 1x
p A A xA P
3、二元非理想溶液平衡关系: y A 二、传质速率 理论板假设 三、物料衡算 (1)塔顶轻组分回收率: 1
Dx D Fx F W 1 x W F 1 x F
化工原理 1-2 重要公式
第 8 章 吸收
一、气液平衡 1、平衡关系: y f ( x) ;亨利定律: p e Ex , p e Hc , y e mx 2、E 、H、m 的换算: m E / P , E Hc M 二、传质速率 1、分子扩散速率 (1)费克定律: J A DAB
化工原理重要概念和公式
《化工原理下》重要公式第八章气体吸收亨利定律Ex p e =,HC p e =;相平衡mx y e =;费克定律dzdC D J AAB A = 传递速率A A A Nx J N +=;)(δ21A A BmM A C C C C D N →=;1212ln B B B B Bm C C C C C →= 对流传质)()()()(x x k y y k C C k p p k N i x i y i L i g A →=→=→=→= 总传质系数xy y k m k K +=11;;传质速率方程式)()(x x K y y K N e x e y A →=→=吸收过程基本方程式my y y e y OG OG y y y a K G y y dy a K G N H H Δ→2112∫=→==对数平均推动力22112211ln)()(Δmx y mx y mx y mx y y m →→→→=;吸收因数法])1ln[(112221L mGmx y mx y L mG LmG N OG +→→→→=最小液气比2121min )(x x y y G L e →→=;物料衡算式)()(2121x x L y y G →=→ 第九章液体精馏相平衡常数A A A x y K =;相平衡方程xxy )1α(1α→+=; 物料衡算W D F +=;W D f Wx Dx Fx += 轻组分回收率f D A Fx Dx =η;默弗里板效率11*++→→=n n n n mV y y y y E ; q 线方程11→→=q x x q q y f塔内气液流率qF RD qF L L +=+=;F q D R F q V V )→1()1()→1(←+=→=精馏段操作方程11+++=R xx R R y D ;提馏段操作方程V Wx x V L y W →=最小回流比ee eD x y y x R →→=min ;芬斯克方程αln )11ln(minWWD D x x x x N →→=第十章气液传质设备全塔效率实际不含釜N N E T T )(=;填料塔高度HETP N H T =第十一章液液萃取分配系数AAA x y k =;选择性系数)1/()1/(//β0000A A A A B B A A x x y y x y x y ==单级萃取E R S F +=+;A A A fA Ey Rx Sz Fx +=+;S S S Ey Rx Sz +=第十四章固体干燥干燥速率τd dXA G N C A =;恒速段速率)(α)(W WWH A t t r H H k N == 间隙干燥恒速段时间:AC C AN X X G )(τ11=降速段时间:**ln τ22X X X XAK G CX C =(近似处理*)(X X K N X A =)连续干燥物料衡算)()(1221H H V X X G W C ==热量衡算损补Q Q Q Q Q Q +++=+321; 预热器)(01I I V Q =;理想干燥12I I =热效率补Q Q Q Q ++=21η;当00==损补,Q Q 时0121ηt t tt =。
化工原理化工计算所有公式总结
化工原理化工计算所有公式总结化工原理是化工工程的基础课程之一,主要讲解化工过程中的原理和计算方法。
在化工原理中,有许多重要的公式用于描述和计算各种物质在化学反应和物质转化过程中的性质和行为。
以下是一些常见的化工原理公式总结。
1.物质的组成和结构:-相对分子质量(M)=相对原子质量之和-摩尔质量(Mm)=相对分子质量/摩尔质量单位中的质量-摩尔质量(Mm)=密度(ρ)/摩尔体积(Vm)-摩尔体积(Vm)=分子体积(V)/物质的摩尔数(n)2.物质的平衡和转化:-反应的反应物摩尔数(ν)=反应的生成物摩尔数(ν)-反应的摩尔质量平衡:νAMA+νBMB=νCMC+νDMD-反应过程中的物质的转化率:X=(nA0-nA)/nA03.物质的热力学性质:-焓变(ΔH)=H2-H1-反应的热力学平衡常数:Kp=(pC)^νC(pD)^νD/(pA)^νA(pB)^νB -熵变(ΔS)=S2-S14.流体流动:-流体的流速(v)=流体的体积流量(Q)/流经的横截面积(A)-流体的质量流速(W)=流体的质量流量(m)/流经的横截面积(A)-流体的雷诺数(Re)=(流体的密度(ρ)*流速(v)*相对粘度(μ))/动力粘度(ν)5.化学反应速率:- 化学反应速率(r)=dC/dt = -1/νA * d[A]/dt = 1/νB *d[B]/dt = 1/νC * d[C]/dt = 1/νD * d[D]/dt-化学反应速率常数(k)=r/C6.热传导:-热传导的传热速率(Q)=热传导系数(k)*温度梯度(ΔT)*传热面积(A)-热传导系数(k)=导热系数(λ)/导热物质的厚度(Δx)以上只是一部分化工原理中的公式总结,化工原理涉及的内容非常广泛,包括物质的传质、传热、物相平衡、反应工程、流体力学等方面。
通过掌握这些公式,可以更好地理解和分析化工过程中的各种物质行为和性质,并进行相应的计算和设计。
化工原理所涉及的基本公式和重要公式
传质速率方程式
N A = K y ( y − ye ) = K x ( xe − x)
吸收过程基本方程式 对数平均推动力
吸收因数法
最小液气比 物料衡算式
( y1 − mx 1 ) − ( y 2 − mx 2 ) y − mx 1 ln 1 y 2 − mx 2 1 mG y1 − mx 2 mG N OG = ln[(1 − ) + ] mG L y 2 − mx 2 L 1− L y − y2 L ( ) min = 1 G x 1e − x 2 G ( y1 − y 2 ) = L( x1 − x 2 ) ∆y m =
流化床压降
Re p < 2
∆P =
m (ρ − ρ )g Aρ p p
第六章 传热
傅立叶定律 牛顿冷却定律 努塞尔数 普朗特数
dt dn q = α (T − TW ) q = −λ Nu = Pr = αl λ C pµ λ
λ 0.8 b Re Pr 受热 b=0.4,冷却 b=0.3 d 1 传热系数 K1 = d δd 1 1 + R1 + + R2 + 1 α1 λd m α 2d 2 传热基本方程式 Q = KA∆ t m
圆管内强制湍流
α = 0.023
热量衡算式
∆ t1 − ∆ t 2 ∆t ln 1 ∆t 2 Q = qm1C p1 (T1 − T2 ) = qm 2C p 2 ( t1 − t 2 ) ∆t m =
或
Q = qm 1r
第七章 蒸发
蒸发水量 热量衡算 传热速率 溶液沸点
W = F (1 −
w0 ) w Q = Dr0 = FC 0 ( t − t 0 ) + Wr + Q损 Q = KA(T − t ) t = t0 + ∆
化工原理重要概念和公式
《化工原理》重要概念第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同。
主要操作费溶剂再生费用,溶剂损失费用。
解吸方法升温、减压、吹气。
选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小。
相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m反比于总压。
漂流因子P/P Bm表示了主体流动对传质的贡献。
(气、液)扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关。
传质机理分子扩散、对流传质。
气液相际物质传递步骤气相对流,相界面溶解,液相对流。
有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结果为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝D 0.5。
传质速率方程式传质速率为浓度差推动力与传质系数的乘积。
因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应。
传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力。
当mky<<kx时,为气相阻力控制;当mky>>kx时,为液相阻力控制。
低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变。
建立操作线方程的依据塔段的物料衡算。
返混少量流体自身由下游返回至上游的现象。
最小液气比完成指定分离任务所需塔高为无穷大时的液气比。
NOG的计算方法对数平均推动力法,吸收因数法,数值积分法。
第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据(原理)是液体中各组分挥发度的不同。
主要操作费用塔釜的加热和塔顶的冷却。
双组份汽液平衡自由度自由度为2(P一定,t~x或y;t一定,P~x或y);P一定后,自由度为1。
泡点泡点指液相混合物加热至出现第一个汽泡时的温度。
露点露点指气相混合物冷却至出现第一个液滴时的温度。
非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系。
化工原理基本概念和主要公式
mx 2 )
y2 − mx 2
吸收因数法
N OG
=
1 1 − mG
ln[(1 −
mG )
L
y1 y2
− mx 2 − mx 2
+
mG ]
L
L
最小液气比
L (G )min
=
y1 − y2 x1e − x2
物料衡算式 G( y1 − y2 ) = L( x1 − x2 )
第九章
基本概念:
蒸馏的目的及基本依据 主要操作费用 双组份汽液平衡自由度 泡点 露点 非理想物系
∆P ∆PW
µW µ
8VW V
τ
基本概念:
曳力(表面曳力、形体曳力) 曳力系数 斯托克斯定律区 牛顿区 (自由)沉降速度 重力沉降室加隔板 离心分离因数 旋风分离器主要评价指标 总效率 粒级效率 分割直径 dpc 流化床的特点(混合、
压降) 两种流化现象 聚式流化的两种极端情况 起始流化速度 带出速度 气力输送
µµ
阻力损失 层流
hf
=λ l d
u2 2
λ = 64 或 Re
hf
∞
u? d?
∞
qV? d?
hf
=
32µul ρd 2
局部阻力
hf
=ζ
u2 2
当量直径
de
=
4A Π
孔板流量计
qV = C0 A0
2∆P ρ
,
∆P = R(ρ i − ρ )g
第二章
基本概念: 管路特性方程 输送机械的压头或扬程 离心泵主要构件 离心泵理论压头的影响因素 叶片后弯原因 气缚现象 离心泵特性曲线 离心泵工作点 离心泵的调节手段 汽蚀现象 必需汽蚀余量(NPSH)r 离心泵的选型(类型、型号) 正位移特性 往复泵的调节手段 离心泵与往复泵的比较(流量、压头)
化工原理重要概念和公式
化工原理重要概念和公式一、概念1. 化学反应:指两种或两种以上的物质通过化学变化,生成新的物质的过程。
化学反应可以分为反应物的摩尔比例和反应速率两个方面。
2. 反应速率:指单位时间内反应物消耗量或生成物生成量的变化率。
反应速率与反应物浓度、温度、压力等因素有关。
常用的反应速率公式为:反应速率= ΔC/Δt其中,ΔC为反应物浓度的变化量,Δt为时间的变化量。
3. 化学平衡:指化学反应达到一定条件下,反应物浓度和生成物浓度保持一定比例的状态。
化学平衡的条件包括反应物浓度、温度和压力等因素。
4. 平衡常数:表示在一定温度下,反应物浓度和生成物浓度的比例。
平衡常数的计算公式为:平衡常数 K = ([生成物1]^m * [生成物2]^n) / ([反应物1]^x * [反应物2]^y)其中,m、n、x、y分别表示生成物和反应物的摩尔系数。
5. 反应热力学:研究化学反应中能量变化和热力学性质的科学。
反应热力学包括焓变、熵变和自由能变等概念。
- 焓变:表示化学反应过程中吸热或放热的能量变化。
焓变的计算公式为:ΔH = H(生成物) - H(反应物)- 熵变:表示化学反应过程中系统的混乱程度的变化。
熵变的计算公式为:ΔS = S(生成物) - S(反应物)- 自由能变:表示化学反应过程中系统可利用的能量变化。
自由能变的计算公式为:ΔG = ΔH - TΔS其中,ΔG为自由能变,T为温度。
二、公式1. 摩尔浓度公式:表示溶液中溶质的摩尔浓度。
摩尔浓度的计算公式为:C = n/V其中,C为摩尔浓度,n为溶质的摩尔数,V为溶液的体积。
2. 理想气体状态方程:描述理想气体的状态。
理想气体状态方程的公式为:PV = nRT其中,P为气体的压强,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
3. 热力学第一定律:描述能量守恒定律。
热力学第一定律的公式为:ΔU = Q - W其中,ΔU为系统内能的变化,Q为系统吸收的热量,W为系统对外界做功。
《化工原理》公式总结
《化工原理》公式总结化工原理是化学工程与化学技术的基础课程之一,主要涵盖了化学工程量的单位与转化、物质平衡、能量平衡、物质和能量平衡的综合应用等内容。
在学习化工原理时,我们会接触到各种各样的公式,这些公式是化工原理的重要知识点,也是我们日后进行工程设计和实践操作的基础。
下面是对于《化工原理》中常用公式的总结:1.化学工程量的单位与转化:-物质的量(n):n=m/M其中,n为物质的量,m为物质的质量,M为物质的摩尔质量。
-质量与浓度的关系:C=m/V其中,C为浓度,m为溶质的质量,V为溶液的体积。
-分子量:M=m/n其中,M为摩尔质量,m为质量,n为物质的量。
-摩尔浓度(C):C=n/V其中,C为摩尔浓度,n为溶质的量,V为溶液的体积。
2.物质平衡:-输入质量流率=输出质量流率+产物质量流率m1=m2+m3-输入摩尔流率=输出摩尔流率+产物摩尔流率n1=n2+n3-输入物质量浓度=输出物质量浓度+产物物质量浓度C1=C2+C3-输入物质摩尔浓度=输出物质摩尔浓度+产物物质摩尔浓度C1=C2+C33.能量平衡:-输入能量流率=输出能量流率+产物能量流率Q1=Q2+Q3-比热容:Cp=Q/(m*ΔT)其中,Cp为比热容,Q为吸收或放出的热量,m为物质的质量,ΔT 为温度变化。
-等效热容:Cp=Q/(m*ΔT)-热量转化效率:η=(Q1-Q2)/Q1其中,η为热量转化效率,Q1为输入的热量,Q2为产出的热量。
4.物质和能量平衡的综合应用:- 塔板间液相物质平衡方程:(n1 * y1) + (n2 * y2) + ... + (nm * ym) = (n1 * x1) + (n2 * x2) + ... + (nm * xm)其中,n为摩尔流率,y为液相的摩尔分数,x为气相的摩尔分数,m 为塔板总数。
- 塔板间液相能量平衡方程:(h1 * n1 * y1) + (h2 * n2 * y2)+ ... + (hm * nm * ym) = (h1 * n1 * x1) + (h2 * n2 * x2) + ... + (hm * nm * xm)其中,h为液相的比焓,n为摩尔流率,y为液相的摩尔分数,x为气相的摩尔分数,m为塔板总数。
化工原理重要单元主要公式汇总
化工原理课程综合温习提纲化工原理重要单元主要公式汇总第1章 流体流动一、机械能衡算方程式 本章内容的核心公式是机械能衡算方程式:g 2ud L g 2u g P Z H g 2u g P Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ζλρρ (单位:J/N=m ) (1-1)应用公式(1-1)注意以下几点:(1) 稳固流动、不可紧缩性流体、自1-1至2-2的控制体内流体持续。
(2) Z 1、Z 2选择同一水平基准面,通常选择地平面或控制体1-一、2-2中的较低的一个。
(3) P 1、P 2同时以绝对压计或同时以表压计,而且注意单位均统一到N/m 2 。
(4) 自高位槽或高压容器向其他地方输送流体时一般不需要流体输送机械,现在,H e =0 。
(5) 公式中的每一项均是单位流体的能量,每牛顿流体的能量焦耳,形式上的单位是米。
H e 是流体输送机械加给每牛顿流体的能量焦耳数,阻力损失项亦是每牛顿流体的能量损失焦耳数。
(6) 按照所取的1-一、2-2截面的性质,灵活地肯定u 1、u 2的数值。
(7) 阻力损失项中的流速取产生阻力损失的管段上的流速,有时管段不止一段。
(8) 若控制体内的阀门关闭,1-一、2-2截面上的流体能量便再也不有任何关系。
(9) 若在等直径的管段,无流体输送机械,阻力损失能够忽略,(1-1)式变成流体静力学的形式。
应用公式(1-1)可解决以下方面的问题:(1) 在肯定的控制体中,达到必然的流量,肯定流体输送机械加给每牛顿流体的能量焦耳数及功率。
(2) 在肯定的控制体中,达到必然的流量,肯定起始截面1-1的高度或压强。
(3) 在肯定的控制体中,可达到的流量(流速)。
(4) 在肯定的控制体中,达到必然的流量,肯定管径。
公式(1-1)的另两种形式:2ud L 2u P g Z w 2u P g Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ζλρρ (单位:J/kg )(1-2)ρζλρρρρρ2udL2u P g Z g H 2u P g Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ (单位:J/m 3=N/m 2) (1-3)因为机械能衡算式中的每一项均是单位流体的能量,故计算流体输送机械的功率时应注意流体的总流量V q (单位:m 3/s)。
化工原理公式知识点总结
化工原理公式知识点总结一、物质转化1. 化学反应速率公式化学反应速率是描述化学反应进行速度的物理量。
化学反应速率公式通常表示为:r = k * C^n其中,r表示反应速率,k表示反应速率常数,C表示反应物浓度,n表示反应级数。
该公式描述了反应速率与反应物浓度之间的关系,根据不同的反应类型和反应条件,反应级数n可以为整数、分数或负数。
2. 反应热平衡公式化学反应通常伴随着放热或吸热现象,反应热平衡公式描述了反应热量与反应物质量之间的关系。
反应热平衡公式通常表示为:ΔH = Σ(ν_i * H_i)其中,ΔH表示反应热,ν_i表示反应物物质量系数,H_i表示反应物的燃烧热。
该公式描述了反应热与反应物质量之间的线性关系,根据反应类型和反应条件的不同,反应热可以是正值或负值。
二、能量平衡1. 热传导公式热传导是物质内部热量传递的过程,热传导公式描述了热传导速率与温度梯度之间的关系。
热传导公式通常表示为:q = -k * A * ΔT/Δx其中,q表示热传导速率,k表示材料的热导率,A表示热传导的面积,ΔT表示温度差,Δx表示热传导距离。
该公式描述了热传导速率与温度梯度之间的线性关系,根据材料性质和传导距离的不同,热传导速率可以有所变化。
2. 热交换公式热交换是物质之间热量传递的过程,热交换公式描述了热交换速率与温度差之间的关系。
热交换公式通常表示为:q = U * A * ΔT其中,q表示热交换速率,U表示传热系数,A表示热交换面积,ΔT表示温度差。
该公式描述了热交换速率与温度差之间的线性关系,根据传热系数和热交换面积的不同,热交换速率可以有所变化。
三、质量平衡1. 流体流动公式流体流动是化工过程中常见的一种运动形式,流体流动公式描述了流体流动速度与流体性质之间的关系。
流体流动公式通常表示为:v = ΔP * L / (μ * A)其中,v表示流体流动速度,ΔP表示压差,L表示管道长度,μ表示流体的粘度,A表示管道横截面积。
(完整版)化工原理基本知识点
第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
化工原理重要概念和公式
《化工原理》重要概念第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。
欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。
平均流速流体的平均流速是以体积流量相同为原则的。
动能校正因子实际动能之平均值与平均速度之动能的比值。
均匀分布同一横截面上流体速度相同。
均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度 u 、压强 p 的脉动性,即是否存在流体质点的脉动性。
第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。
输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量 (J/N) 。
离心泵主要构件叶轮和蜗壳。
化工原理化工计算所有公式总结
化工原理化工计算所有公式总结化工原理是研究物质在化学变化过程中的行为和性质的科学,化工计算则是应用数学和物理原理来解决化工过程中的问题。
下面总结了一些常见的化工原理和计算公式,以帮助理解和应用化工原理。
1.质量守恒方程质量守恒方程描述了化工过程中物质质量的守恒关系。
对于一个系统,质量守恒方程可以表示为:Σ(mi · Ai) = Σ(mo · Ao)其中,mi是进料流体的质量流率,Ai是进料流体的截面积,mo是出料流体的质量流率,Ao是出料流体的截面积。
2.能量守恒方程能量守恒方程描述了化工过程中能量的守恒关系。
对于一个系统,能量守恒方程可以表示为:Σ(mi · Hi) + Σ(Qi) = Σ(mo · Ho) + Σ(Qo)其中,Hi和Ho是进料和出料流体的焓,Qi和Qo是进料和出料流体的热量。
3.物质的摩尔质量计算物质的摩尔质量是物质的质量和物质的摩尔数的比值。
摩尔质量可以通过元素的摩尔质量来计算,可以根据元素的周期表上的相对原子质量得到。
4.摩尔质量和密度的关系计算摩尔质量和密度有以下关系:摩尔质量=质量/摩尔量密度=质量/体积5.摩尔质量和体积浓度的关系计算摩尔质量和体积浓度有以下关系:摩尔质量=质量/摩尔数体积浓度=摩尔数/体积6.反应热量计算反应热量是化学反应中释放或吸收的热量。
可以通过以下公式计算:反应热量=Σ(νiΔHi)其中,νi是反应物i的摩尔系数,ΔHi是反应物i的摩尔焓变。
7.动力学常数计算动力学常数是描述化学反应速率的参数。
可以通过以下公式计算:k = A · exp(-E/RT)其中,k是动力学常数,A是指前因子,E是活化能,R是气体常数,T是温度。
8.流体流动的雷诺数计算雷诺数可以衡量流体流动的稳定性和变动性。
Re=ρvL/μ其中,Re是雷诺数,ρ是流体的密度,v是流体的速度,L是特征长度,μ是流体的动力黏度。
9.库水平衡计算库水平衡在化工过程中扮演着重要的角色。
化工原理重要单元主要公式汇总
化工原理课程综合复习提纲化工原理重要单元主要公式汇总第1章 流体流动一、机械能衡算方程式 本章内容的核心公式是机械能衡算方程式:g2ud L g 2u g P Z H g 2u g P Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ζλρρ (单位:J/N=m ) (1-1) 应用公式(1-1)注意以下几点:(1) 稳定流动、不可压缩性流体、自1-1至2-2的控制体内流体连续。
(2) Z 1、Z 2选择同一水平基准面,通常选择地平面或控制体1-1、2-2中的较低的一个。
(3) P 1、P 2同时以绝对压计或同时以表压计,并且注意单位均统一到N/m 2 。
(4) 自高位槽或高压容器向其他地方输送流体时一般不需要流体输送机械,此时,H e =0 。
(5) 公式中的每一项均是单位流体的能量,每牛顿流体的能量焦耳,形式上的单位是米。
H e 是流体输送机械加给每牛顿流体的能量焦耳数,阻力损失项亦是每牛顿流体的能量损失焦耳数。
(6) 根据所取的1-1、2-2截面的性质,灵活地确定u 1、u 2的数值。
(7) 阻力损失项中的流速取产生阻力损失的管段上的流速,有时管段不止一段。
(8) 若控制体内的阀门关闭,1-1、2-2截面上的流体能量便不再有任何关系。
(9) 若在等直径的管段,无流体输送机械,阻力损失可以忽略,(1-1)式变成流体静力学的形式。
应用公式(1-1)可解决以下方面的问题:(1) 在确定的控制体中,达到一定的流量,确定流体输送机械加给每牛顿流体的能量焦耳数及功率。
(2) 在确定的控制体中,达到一定的流量,确定起始截面1-1的高度或压强。
(3) 在确定的控制体中,可达到的流量(流速)。
(4) 在确定的控制体中,达到一定的流量,确定管径。
公式(1-1)的另两种形式:2udL2u P g Z w 2u P g Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ζλρρ (单位:J/kg ) (1-2) ρζλρρρρρ2ud L 2u P g Z g H 2u P g Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ (单位:J/m 3=N/m 2) (1-3)因为机械能衡算式中的每一项均是单位流体的能量,故计算流体输送机械的功率时应注意流体的总流量V q (单位:m 3/s)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工原理》重要概念第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。
欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。
平均流速流体的平均流速是以体积流量相同为原则的。
动能校正因子实际动能之平均值与平均速度之动能的比值。
均匀分布同一横截面上流体速度相同。
均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度 u 、压强 p 的脉动性,即是否存在流体质点的脉动性。
第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。
输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量 (J/N) 。
离心泵主要构件叶轮和蜗壳。
离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。
叶片后弯原因使泵的效率高。
气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象。
离心泵特性曲线离心泵的特性曲线指 H e~ q V ,η~ q V , P a~ q V 。
离心泵工作点管路特性方程和泵的特性方程的交点。
离心泵的调节手段调节出口阀,改变泵的转速。
汽蚀现象液体在泵的最低压强处 ( 叶轮入口 ) 汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。
必需汽蚀余量 (NPSH)r 泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型 ( 类型、型号 ) ①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。
正位移特性流量由泵决定,与管路特性无关。
往复泵的调节手段旁路阀、改变泵的转速、冲程。
离心泵与往复泵的比较 ( 流量、压头 ) 前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。
前者不易达到高压头,后者可达高压头。
前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。
通风机的全压、动风压通风机给每立方米气体加入的能量为全压 (Pa=J/m 3 ) ,其中动能部分为动风压。
真空泵的主要性能参数① 极限真空;② 抽气速率。
第三章液体的搅拌搅拌目的均相液体的混合,多相物体 ( 液液,气液,液固 ) 的分散和接触,强化传热。
搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类。
旋桨式大流量,低压头;涡轮式小流量,高压头。
混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量。
宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合。
微观混合只有分子扩散才能达到微观混合。
总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间。
搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场。
改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施。
第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等。
形状系数等体积球形的表面积与非球形颗粒的表面积之比。
分布函数小于某一直径的颗粒占总量的分率。
频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比。
颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准。
因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关。
床层比表面单位床层体积内的颗粒表面积。
床层空隙率单位床层体积内的空隙体积。
数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数。
架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象。
过滤常数及影响因素过滤常数是指 K 、 qe 。
K 与压差、悬浮液浓度、滤饼比阻、滤液粘度有关; qe 与过滤介质阻力有关。
它们在恒压下才为常数。
过滤机的生产能力滤液量与总时间 ( 过滤时间和辅助时间 ) 之比。
最优过滤时间使生产能力达到最大的过滤时间。
加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤。
第五章颗粒的沉降和流态化曳力 ( 表面曳力、形体曳力 ) 曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系。
表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起。
( 自由 ) 沉降速度颗粒自由沉降过程中 , 曳力、重力、浮力三者达到平衡时的相对运动速度。
离心分离因数离心力与重力之比。
旋风分离器主要评价指标分离效率、压降。
总效率进入分离器后,除去的颗粒所占比例。
粒级效率某一直径的颗粒的去除效率。
分割直径粒级效率为 50% 的颗粒直径。
流化床的特点混合均匀、传热传质快;压降恒定、与气速无关。
两种流化现象散式流化和聚式流化。
聚式流化的两种极端情况腾涌和沟流。
起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度。
带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度。
气力输送利用气体在管内的流动来输送粉粒状固体的方法。
第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式。
载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体。
用于加热的称为加热剂;用于冷却的称为冷却剂。
三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波。
间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体。
导热系数物质的导热系数与物质的种类、物态、温度、压力有关。
热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻。
推动力高温物体向低温传热,两者的温度差就是推动力。
流动对传热的贡献流动流体载热。
强制对流传热在人为造成强制流动条件下的对流传热。
自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热。
自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动。
努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比。
普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献。
α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度。
比如,圆管内的强制对流传热,定性尺寸为管径 d 、定性温度为进出口平均温度。
大容积自然对流的自动模化区自然对流α与高度 l 无关的区域。
液体沸腾的两个必要条件过热度 tw-ts 、汽化核心。
核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt 急剧上升。
第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同。
主要操作费溶剂再生费用,溶剂损失费用。
解吸方法升温、减压、吹气。
选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小。
相平衡常数及影响因素m 、 E 、 H 均随温度上升而增大, E 、 H 与总压无关, m 反比于总压。
漂流因子P/P Bm 表示了主体流动对传质的贡献。
( 气、液 ) 扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关。
传质机理分子扩散、对流传质。
气液相际物质传递步骤气相对流,相界面溶解,液相对流。
有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结果为k ∝ D ,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k ∝ D 0.5 。
传质速率方程式传质速率为浓度差推动力与传质系数的乘积。
因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应。
传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力。
当 mky<<kx 时,为气相阻力控制;当 mky>>kx 时,为液相阻力控制。
低浓度气体吸收特点① G 、 L 为常量,② 等温过程,③ 传质系数沿塔高不变。
建立操作线方程的依据塔段的物料衡算。
返混少量流体自身由下游返回至上游的现象。
最小液气比完成指定分离任务所需塔高为无穷大时的液气比。
NOG 的计算方法对数平均推动力法,吸收因数法,数值积分法。
第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据 ( 原理 )是液体中各组分挥发度的不同。
主要操作费用塔釜的加热和塔顶的冷却。
双组份汽液平衡自由度自由度为 2(P 一定, t ~ x 或 y ; t 一定, P ~ x 或 y) ; P 一定后,自由度为 1 。
泡点泡点指液相混合物加热至出现第一个汽泡时的温度。
露点露点指气相混合物冷却至出现第一个液滴时的温度。
非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系。
总压对相对挥发度的影响压力降低,相对挥发度增加。
平衡蒸馏连续过程且一级平衡。
简单蒸馏间歇过程且瞬时一级平衡。
连续精馏连续过程且多级平衡。
间歇精馏时变过程且多级平衡。
特殊精馏恒沸精馏、萃取精馏等加第三组分改变α。
实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离。
理论板离开该板的汽液两相达到相平衡的理想化塔板。