四川省广元市2015_2016学年八年级数学上学期期末试题
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
八年级数学上学期第一次月考试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某市鄂城区汀祖中学2015-2016学年八年级数学上学期第一次月考试题一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.51210.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=度.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC=.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥B C于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.2015-2016学年某某省某某市鄂城区汀祖中学八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形内角和定理.【分析】根据已知及三角形的内角和定理得出.【解答】解:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意得∠1=∠3﹣∠2,∴∠1+∠2=∠3,又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°.故选B.2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能【考点】三角形内角和定理.【分析】三角形分锐角,直角,钝角三角形三种.判断种类只需看最大角即可.【解答】解:∵3∠A>5∠B,3∠C≤2∠B,得∠B<∠A,∠C≤∠B,∴∠C<∠A,∴∠B+∠C<∠A.∵∠A+∠B+∠C=180°,∴2(∠B+∠C)<180°,∴∠B+∠C<90°,∴﹣(∠B+∠C)>﹣90°,∴180°﹣(∠B+∠C)>180°﹣90°=90°,即∠A>90°.∴△ABC是钝角三角形,故选A.3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°【考点】三角形的角平分线、中线和高;垂线;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【解答】解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.故选A.4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°【考点】三角形内角和定理.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠2=60°,∠3=45°,∴∠1=180°﹣∠2﹣∠3=75°.故选:C.5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选A.6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【考点】多边形.【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个四边形,则这X纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°【考点】翻折变换(折叠问题).【分析】根据折叠前后部分是全等的,可知角的关系,再结合三角形内角和定理,即可求∠CFD′的度数.【解答】解:∵折叠前后部分是全等的又∵∠AFC+∠AFD=180°∴∠AFD′=∠AFD=180°﹣∠AFC=180°﹣76°=104°∴∠CFD′=∠AFD′﹣∠AFC=104°﹣76°=28°故选B.8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种【考点】三角形三边关系.【分析】已知三角形的周长,分别假设三角形的最长边,从而利用三角形三边关系进行验证即可求得不同的截法.【解答】解:∵长棒的长度为15cm,即三角形的周长为15cm∴①当三角形的最长边为7时,有4种截法,分别是:7,7,1;7,6,2;7,5,3;7,4,4;②当三角形的最长边为6时,有2种截法,分别是:6,6,3;6,5,4;③当三角形的最长边为5时,有1种截法,是:5,5,5;④当三角形的最长边为4时,有1种截法,是4,3,8,因为4+3<8,所以此截法不可行;∴不同的截法有:4+2+1=7种.故选C.9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.512【考点】平面镶嵌(密铺).【分析】根据正六边形的面积除以一个正三角形的面积,可得答案.【解答】解:正六边形的面积为×4×2×6=24m2,一个正三角形的面积××=m2,需要这种瓷砖24÷=384(块).故选:C.10.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米【考点】多边形内角与外角.【分析】根据题意,小明走过的路程是正多边形,先用360°除以30°求出边数,然后再乘以8米即可.【解答】解:∵小明每次都是沿直线前进8米后向左转30度,∴他走过的图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到出发点A时,一共走了12×8=96(米).二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=120 度.【考点】多边形内角与外角.【分析】根据高的性质以及四边形内角和定理的相关知识解答.【解答】解:已知∠A=60°,高BD,CE相交于点H,∴∠EHD=360°﹣∠A﹣∠AEC﹣∠ADH=120°,又∵∠EHD=∠BHC,∴∠BHC=120°.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是 5 .【考点】三角形的面积.【分析】设角形三边分别为a,b,c,面积为S,根据三角形面积公式分别用含S的代数式表示出a、b、c,根据三角形三边之间的关系得a﹣b<c<a+b,列出不等式后解不等式可得.【解答】解:设三角形三边分别为a,b,c,面积为S,则a=,b=,c=,∵a﹣b<c<a+b,∴,解得:3<h<6,故h=4或5,又∵三角形是不等边三角形,故答案为:5.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC= 110°.【考点】等腰三角形的性质.【分析】先根据等腰三角形两底角相等求出∠ACB,再求出∠2+∠3,再根据三角形内角和定理列式计算即可得解.【解答】解:∵∠ABC=∠ACB,∠A=40°,∴∠ACB==70°,∵∠1=∠2,∴∠2+∠3=∠1+∠3=∠ACB=70°,在△BPC中,∠BPC=180°﹣(∠2+∠3)=180°﹣70°=110°.故答案为:110°.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为119 .【考点】多边形内角与外角.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求出边数,然后根据对角线的条数的公式进行计算即可求解即可.【解答】解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2570°,180°•n=2930°+x,∵n为正整数,∴n=17,∴这个多边形的对角线的条数是n×17×(17﹣3)=119.故答案为:119.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围4<c<6 .【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值X围.【解答】解:由题意得:,解得,根据三角形的三边关系定理可得5﹣1<c<5+1,即4<c<6.故答案为:4<c<6.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=150°.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.【解答】解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故答案为:150°.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.【考点】三角形的角平分线、中线和高;三角形的外角性质.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,然后整理即可得到∠A1与∠A的关系,同理得到∠A2与∠A1的关系并依次找出变化规律,从而得解.【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠A BC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为540°.【考点】多边形内角与外角;三角形内角和定理.【分析】如图所示,由三角形外角的性质可知:∠A+∠B+∠C=∠IKD,∠E+∠F+∠G=∠HND,然后由多边形的内角和公式可求得答案.【解答】解:如图所示:由三角形的外角的性质可知:∠A+∠B=∠AJC,∠AJC+∠C=∠IKD,∴∠A+∠B+∠C=∠IKD.同理:∠E+∠F+∠G=∠HND.∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠I+∠H=∠IKD+∠D+∠HND+∠I+∠H=(5﹣2)×180°=3×180°=540°,故答案为:540°.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【考点】三角形三边关系.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD 然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理列出等式整理即可得解.【解答】解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠C=36°,∴∠P=(40°+36°)=38°.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥BC于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.【考点】平行线的性质.【分析】先证明四边形ABCD是平行四边形,得出对角相等∠BAD=∠C,再由四边形内角和定理和已知条件求出∠C+∠EAF=180°,即可得出结论.【解答】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠BAD=∠C,∵AE⊥BC于E,AF⊥CD于F,∴∠AEC=∠AFC=90°,∴∠C+∠EAF=360°﹣90°﹣90°=180°,∴∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.【考点】平行线的性质;多边形内角与外角.【分析】可连接AC,得出AE∥BC,进而利用同旁内角互补求解∠B的大小.【解答】解:如图,连接AC,∵AB∥CD,∴∠DCA=∠BAC,又∠BAE=∠BCD,∴∠EAC=∠ACB,∴AE∥BC,在四边形ACDE中,∠D=130°,∠E=90°,∴∠EAC+∠ACD=140°,即∠EAB=140°,又∵∠B+∠EAB=180°,∴∠B=40°.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形外角的性质∠MON+∠OAB=∠ABM,再由角平分线的性质及三角形内角和定理即可得出结论.【解答】解:∠ACB=为一定值.理由:∵∠ABM是△AOB的外角,∴∠MNO+∠OAB=∠ABM,∠MON=α,∴∠ABM﹣∠OAB=∠MON=α.∵AC平分∠OAB,BD平分∠ABM,∴∠BA C=∠OAB,∠ABD=∠ABM=(∠MNO+∠OAB),∵∠ABD是△ABC的外角,∴∠ABD=∠C+∠BAC,即∠C=∠ABD﹣∠BAC=(∠ABM﹣∠OAB)=.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.【考点】三角形内角和定理;多边形内角与外角.【分析】连接PQ,由三角形内角和定理可得出∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP ﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,再根据∠APD、∠AQB的平分线交于点M可知∠AQB=2∠3,∠APD=2∠4,再由三角形外角的性质可得出∠QMP=(∠BCD+∠A),进而得出结论.【解答】证明:连接PQ,∵∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,又∵∠APD、∠AQB的平分线交于点M,∴∠AQB=2∠3,∠APD=2∠4,∴∠QCP+∠A=+=360°﹣2∠1﹣2∠2﹣2∠3﹣2∠4,∴(∠QCP+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠BCD=∠QCP,∴(∠BCD+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠QMP=180°﹣∠MQP﹣∠MPQ=180°﹣∠1﹣∠3﹣∠2﹣∠4,∴∠QMP=(∠BCD+∠A)=×180°=90°,即PM⊥QM.。
八年级数学上学期第一次月考试卷(含解析) 湘教版-湘教版初中八年级全册数学试题

某某省某某市黄亭中学2016-2017学年八年级(上)第一次月考数学试卷一、选择题(30分)1.下列式子:,,,1+,,其中是分式个数为()A.5 B.4 C.3 D.22.如果分式的值为0,那么x的值是()A.x=±1 B.x=1 C.x=﹣1 D.x=﹣23.下列等式成立的是()A. +=B. =C. =D. =﹣4.计算的结果为()A.B.C.D.5.下列算式中,你认为正确的是()A.B.C.D.6.下列分式是最简分式的是()A.B.C.D.7.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =18.某某市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =9.解分式方程,可知方程()A.解为x=7 B.解为x=8 C.解为x=15 D.无解10.关于x的分式方程的解是负数,则m的取值X围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0二、填空题(24分)11.若=,则=.12.分式与的最简公分母是.13.若(x+)2=9,则(x﹣)2的值为.14.若方程无解,则m=.15.2015×(1.5)﹣2016的结果是.16.使分式的值为0,这时x=.17.方程的解为.18.现有纯农药一桶,倒出20升后用水补满;然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3:5,则桶的容积为升.三、解答题(24分)19.计算:(1)(1﹣)÷(2)(﹣)•.20.解方程: +=1.21.先化简,再求值:(﹣)•,其中x=4.四、应用题(22分)22.一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.23.某某火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?2016-2017学年某某省某某市黄亭中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(30分)1.下列式子:,,,1+,,其中是分式个数为()A.5 B.4 C.3 D.2【考点】分式的定义.【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【解答】解:,,1+是分式,共3个,故选:C.【点评】此题主要考查了分式的定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.如果分式的值为0,那么x的值是()A.x=±1 B.x=1 C.x=﹣1 D.x=﹣2【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得:(x+1)(x﹣1)=0,且x2﹣2x+1≠0,再解即可.【解答】解:由题意得:(x+1)(x﹣1)=0,且x2﹣2x+1≠0,解得:x=﹣1,故选:C.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3.下列等式成立的是()A. +=B. =C. =D. =﹣【考点】分式的混合运算.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.计算的结果为()A.B.C.D.【考点】分式的混合运算.【分析】先计算括号里的,再相乘.【解答】解:==﹣=﹣.故选A.【点评】本题的关键是通分、分解因式、约分,用到了平方差公式.5.下列算式中,你认为正确的是()A.B.C.D.【考点】分式的混合运算.【分析】根据分式的混合运算法则对每一项进行计算,然后作出正确的选择.【解答】解:A、,错误;B、1×=,错误;C、3a﹣1=,错误;D、==,正确.故选D.【点评】互为相反数的两个数为分母,那么最简公分母是其中的一个;除法应统一成乘法再计算;分式的分子分母能因式分解的要先因式分解,可以简化运算.6.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、原式=,分子、分母中含有公因式(x﹣1),则它不是最简分式,故本选项错误;B、它的分子、分母都不能再分解,且不能约分,是最简分式,故本选项正确;C、原式=,分子、分母中含有公因式(x﹣1),则它不是最简分式,故本选项错误;D、它的分子、分母中含有公因式ab,则它不是最简分式,故本选项错误;故选:B.【点评】本题考查了最简分式.分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =1【考点】由实际问题抽象出分式方程.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.8.某某市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得: =,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.9.解分式方程,可知方程()A.解为x=7 B.解为x=8 C.解为x=15 D.无解【考点】解分式方程.【分析】本题考查解分式方程的能力,解分式方程首先要确定最简公分母,将分式方程化成整式方程求解,再将所求解代入最简公分母进行检验,若最简公分母为零,则方程无解.【解答】解:最简公分母为(x﹣7),去分母,得x﹣8+1=8(x﹣7),解得x=7,代入x﹣7=0.∴此方程无解.故选D.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)解分式方程去分母时一定要注意不要漏乘.10.关于x的分式方程的解是负数,则m的取值X围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0【考点】分式方程的解.【分析】由题意分式方程的解为负数,解方程求出方程的解x,然后令其小于0,解出m的X围.注意最简公分母不为0.【解答】解:方程两边同乘(x+1),得m=﹣x﹣1解得x=﹣1﹣m,∵x<0,∴﹣1﹣m<0,解得m>﹣1,又x+1≠0,∴﹣1﹣m+1≠0,∴m≠0,即m>﹣1且m≠0.故选:B.【点评】此题主要考查分式的解,关键是会解出方程的解,此题难度中等,容易漏掉隐含条件最简公分母不为0.二、填空题(24分)11.若=,则=.【考点】比例的性质.【分析】由=,根据比例的性质可得:3(2m﹣n)=n,则可求得m=n,继而求得答案.【解答】解:∵ =,∴3(2m﹣n)=n,∴6m﹣3n=n,解得:m=n,∴=.故答案为:.【点评】此题考查了比例的性质.此题难度不大,注意掌握比例变形与比例的性质是解此题的关键.12.分式与的最简公分母是x(x+3)(x﹣3).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是x(x+3)(x﹣3);故答案为:x(x+3)(x﹣3).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.13.若(x+)2=9,则(x﹣)2的值为 5 .【考点】完全平方公式.【分析】先由(x+)2=9计算出x2+=7,再由(x﹣)2,按完全平方公式展开,代入数值即可.【解答】解:由(x+)2=9,∴x2++2=9,∴x2+=7,则(x﹣)2=x2+﹣2=7﹣2=5.故答案为:5.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14.若方程无解,则m= 1 .【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】本题考查了分式方程无解的条件,是需要识记的内容.15.(﹣)2015×(1.5)﹣2016的结果是﹣.【考点】负整数指数幂.【分析】由于指数大,底数不是±1、0,不能先乘方再乘除;观察底数互为相反数,观察指数,有负整数指数,考虑逆用幂的相关公式计算.【解答】解:原式=﹣()2015×()2016=﹣[()2015×()2015]×()=﹣(×)2015×()=﹣故答案为:﹣【点评】本题考察了幂的相关计算法则,解决本题逆运用了积的乘方法则及同底数幂的乘法法则.16.使分式的值为0,这时x= 1 .【考点】分式的值为零的条件.【分析】让分子为0,分母不为0列式求值即可.【解答】解:由题意得:,解得x=1,故答案为1.【点评】考查分式值为0的条件;需考虑两方面的情况:分子为0,分母不为0.17.方程的解为x=﹣1 .【考点】解分式方程.【分析】本题考查解分式方程的能力,观察可得方程最简公分母为:x(x﹣2),去分母,化为整式方程求解.【解答】解:方程两边同乘x(x﹣2),得x﹣2=3x,解得:x=﹣1,经检验x=﹣1是方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.18.现有纯农药一桶,倒出20升后用水补满;然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3:5,则桶的容积为40 升.【考点】分式方程的应用.【分析】设桶的容积为x升,根据设桶的容积为X升,倒出20升农药后用水补满,浓度为,第二次倒出的10升中含农药10•,可计算出共倒出多少农药,根据这时,桶中纯农药与水的体积之比为3:5,纯农药占容积的,可列方程求解.【解答】解:设桶的容积为x升,=x=40或x=﹣8(舍去).经检验x=40是方程的解.故桶的容积为40升.【点评】本题考查理解题意的能力,关键将剩下农药的和容积的比值做为等量关系列方程求解.三、解答题(24分)19.计算:(1)(1﹣)÷(2)(﹣)•.【考点】分式的混合运算.【分析】(1)先计算括号的式子,再根据分式的除法即可解答本题;(2)先计算括号的式子,再根据分式的乘法即可解答本题.【解答】解:(1)(1﹣)÷==;(2)(﹣)•===.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.20.解方程: +=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣x2+2x+4=4﹣x2,解得:x=0,经检验x=0是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.先化简,再求值:(﹣)•,其中x=4.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=x+2,当x=4时,原式=6.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、应用题(22分)22.(10分)(2010春•昌宁县校级期末)一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.【考点】分式方程的应用.【分析】如果设这列火车原来的速度为每小时x千米,那么提速后的速度为每小时(x+0.2x)千米,根据等量关系:按原速度行驶所用时间﹣提速后时间=,列出方程,求解即可.【解答】解:设这列火车原来的速度为每小时x千米.由题意得:﹣=.整理得:12x=900.解得:x=75.经检验:x=75是原方程的解.(4分)答:这列火车原来的速度为每小时75千米.(5分)【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.如本题:车速提高了0.2倍,是一种隐含条件.23.(12分)(2015•某某)某某火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【考点】分式方程的应用;二元一次方程组的应用.【分析】(1)首先设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得等量关系:种植A,B两种花木共6600棵,根据等量关系列出方程,再解即可;(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26﹣a)人种植B花木所用时间,根据等量关系列出方程,再解即可.【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:x+2x﹣600=6600,解得:x=2400,2x﹣600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原分式方程的解,26﹣a=26﹣14=12,答:安排14人种植A花木,12人种植B花木.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.。
2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。
2015-2016年四川省成都七中育才学校八年级上学期数学期中试卷与答案

第1页(共25页)页)赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt △ABC 中,∠ACB =90°,以斜边AB 为底边向外作等腰三角形P AB ,连接PC . (1)如图,当∠APB =90°时,若AC =5,PC =62,求BC 的长;的长;(2) 当∠APB =90°时,若AB =45,四边形APBC 的面积是36,求△ACB 的周长.PC BA2.已知:如图,B 、C 、E 三点在一条直线上,AB =AD ,BC =CD.(1)若∠B =90°,AB =6,BC =23,求∠A 的值;的值; (2)若∠BAD +∠BCD =180°,cos ∠DCE =35,求AB BC 的值.EDABC3.如图,在四边形ABCD 中,AB=AD ,∠DAB=∠BCD=90°, (1)若AB =3,BC +CD =5,求四边形ABCD 的面积的面积(2)若p = BC +CD ,四边形ABCD 的面积为S ,试探究S 与p 之间的关系。
之间的关系。
DBA C试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符号题目要求,答案涂在答题卡上)1.(3分)9的平方根是(的平方根是( )A.±3 B.± C.3 D.﹣32.(3分)下列各组线段中,能够组成直角三角形的一组是(分)下列各组线段中,能够组成直角三角形的一组是( ) A.1,2,3 B.2,3,4 C.4,5,6 D.1,,3.(3分)如图,点A(﹣2,1)到y轴的距离为(轴的距离为( )A.﹣2 B.1 C.2 D.4.(3分)估计介于(介于( )A.5与6之间之间 D.8与9之间之间 B.6与7之间之间 C.7与8之间5.(3分)在函数y=,自变量x的取值范围是(的取值范围是( )A.x≥﹣1 B.x>0且x≠1 C.x≥1 D.x>16.(3分)下列说法正确的有(分)下列说法正确的有( )(1)实数与数轴的点是一一对应的:(2)无限小数都是无理数:(3)正比例函数是特殊的一次函数:(4)=a.A.3个 B.2个 C.1 D.0个7.(3分)下列二次根式中属于最简二次根式的是(分)下列二次根式中属于最简二次根式的是( )A. B. C. D.8.(3分)下列函数中,是正比例函数的是(分)下列函数中,是正比例函数的是( )A.y= B.y= C.y=2x2+1 D.y=x﹣19.(3分)若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()在( ) A.第四象限.第二象限 D.第一象限.第四象限 B.第三象限.第三象限 C.第二象限10.(3分)如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点)边上的高长为(上,则AB边上的高长为(A. B. C. D.二.填空题(本大题共4小题,每小题4分,共16分)11.(4分)在实数、、、0、、﹣1.414中,有理数有中,有理数有 个. 12.(4分)在平面直角坐标系内点P(3,4)关于原点O对称点的坐标对称点的坐标 ,.)到原点的距离是点P(3,4)到原点的距离是13.(4分)﹣27的立方根是的立方根是 ,的算术平方根是的算术平方根是 . 14.(4分)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A.(结果则小虫爬行的最短路程是点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是保留根号)三、解答题(54分)15.(10分)计算:(1)2;(2).16.(10分)(1)解方程:(2)解不等式组解集在数轴上表示出来.17.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于y对称轴对称的△A1B1C1.(2)将△A1B1C1向右平移2个单位,向下平移1个单位作出平移后的△A2B2C2. (3)在x轴上求作一点P,使PB1+P A2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)18.(6分)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.19.(10分)已知关于x,y的方程组的解满足不等式x+2y>1,求满足条件的m的负整数值.20.(10分)如图Rt△ABC,AB=AC=6,D为AC上一点,连接BD,AF⊥BD交BD 于H,交BC于F,CE⊥AC交AF的延长线于E,(1)求证:△ABD≌△CAE;(2)当D为AC上离A点最近的三等分点时,连接DE,求DE的长;(3)当D为AC上离A点最近的n等分点时,连接BE,求S△BDC :S△BEC(用含n的代数式表示,直接写出答案)一、填空题(每小题4分,共20分)21.(4分)若y=(m﹣1)x2﹣|m|+m+1是关于x的一次函数,则m= .22.(4分)已知a,b,c满足1+2a+a2+=0,那么a+2b﹣c= .23.(4分)若关于x的不等式组无解,则a的取值范围是的取值范围是 . 24.(4分)如图,如图,△△ABC中,∠BAC=90°,AD为BC边上中线,边上中线,若若AD=,△ABC 周长为6+2,则△ABC的面积为的面积为.25.(4分)如图,在平面直角坐标系中,A点坐标为(3,0),线段OA绕原点O每次按逆时针方向旋转60°,并且每旋转一次长度增加两倍,例如:OA1=3OA,∠A1OA=60°,那么按照此规律,A2的坐标为的坐标为,A100的坐标为的坐标为.二、解答题(共30分)26.(8分)已知a=,b=.求: (1)a2b﹣ab2的值;(2)a 3﹣5a2﹣6a﹣b+2015的值.27.(10分)如图,在长方形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在线段AC上的点E、F处,折痕分别为CM、AN.(1)求证:DN=MB;(2)如果AB=4、BC=3时,求线段MN的长度;(3)在(2)的条件下,求△NEM的面积.28.(12分)如图,以长方形OABC的顶点O为原点,OA所在直线为x轴,OC 所在直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,连结BD,点A关于BD的对称点恰好落在线段BC边上的点F 处.(1)直接写出点E,F的坐标;(2)在线段CB上是否存在一点P,使△OEP为等腰三角形?若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.(3)在x轴、y轴上是否分别存在点M、N,使四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.2015-2016学年四川省成都七中育才学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符号题目要求,答案涂在答题卡上)1.(3分)9的平方根是(的平方根是( )A.±3 B.± C.3 D.﹣3【解答】解:9的平方根是:±=±3.故选:A.2.(3分)下列各组线段中,能够组成直角三角形的一组是(分)下列各组线段中,能够组成直角三角形的一组是( )A.1,2,3 B.2,3,4 C.4,5,6 D.1,,【解答】解:A、12+22≠32,不能组成直角三角形,故错误;B、22+32≠42,不能组成直角三角形,故错误;C、42+52≠62,不能组成直角三角形,故错误;D、12+()2=()2,能够组成直角三角形,故正确.故选:D.3.(3分)如图,点A(﹣2,1)到y轴的距离为(轴的距离为( )A.﹣2 B.1 C.2 D.【解答】解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.故选:C.4.(3分)估计介于(介于( )A.5与6之间之间 D.8与9之间 之间 B.6与7之间之间 C.7与8之间【解答】解:∵36<41<49,∴6<<7.故选:B.5.(3分)在函数y=,自变量x的取值范围是(的取值范围是( ) A.x≥﹣1 B.x>0且x≠1 C.x≥1 D.x>1【解答】解:由题意,得x﹣1>0,解得x>1,故选:D.6.(3分)下列说法正确的有(分)下列说法正确的有( )(1)实数与数轴的点是一一对应的:(2)无限小数都是无理数:(3)正比例函数是特殊的一次函数:(4)=a.A.3个 B.2个 C.1 D.0个【解答】解:(1)实数与数轴的点是一一对应的,故(1)正确: (2)无限不循环小数都是无理数,故(2)错误:(3)正比例函数是特殊的一次函数,故(3)正确:(4)=|a|,故(4)错误;故选:B.7.(3分)下列二次根式中属于最简二次根式的是(分)下列二次根式中属于最简二次根式的是( ) A. B. C. D.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选:D.8.(3分)下列函数中,是正比例函数的是(分)下列函数中,是正比例函数的是( )A.y= B.y= C.y=2x2+1 D.y=x﹣1【解答】解:A、是正比例函数,故此选项正确;B、不是正比例函数,故此选项错误;C、不是正比例函数,故此选项错误;D、不是正比例函数,故此选项错误;故选:A.9.(3分)若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()在( ) A.第四象限.第二象限 D.第一象限.第四象限 B.第三象限.第三象限 C.第二象限【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选:C.10.(3分)如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点)上,则AB边上的高长为(边上的高长为(A. B. C. D.【解答】解:S=22﹣×1×2﹣×1×1﹣×1×2=,且S△ABC=AB•CD, △ABC∵AB==,∴AB•CD=, 则CD==.故选:A .二.填空题(本大题共4小题,每小题4分,共16分) 11.(4分)在实数、、、0、、﹣1.414中,有理数有中,有理数有 4 个. 【解答】解:因为,所以有理数有,0,,﹣1.414共4个.故答案为:412.(4分)在平面直角坐标系内点P (3,4)关于原点O 对称点的坐标对称点的坐标 (﹣3,﹣4) ,点P (3,4)到原点的距离是)到原点的距离是 5 .【解答】解:点P (3,4)关于原点O 对称点的坐标对称点的坐标 (﹣3,﹣4),点P (3,4)到原点的距离是到原点的距离是 5, 故答案为:(﹣3,﹣4),5.13.(4分)﹣27的立方根是的立方根是 ﹣3 ,的算术平方根是的算术平方根是 2 . 【解答】解:﹣27的立方根是﹣3,=4,4的算术平方根是2.故答案为:﹣3;2.14.(4分)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C 点,则小虫爬行的最短路程是点,则小虫爬行的最短路程是 2 .(结果保留根号)【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=2.∴AC===2,故答案为:2.三、解答题(54分)15.(10分)计算:(1)2;(2).【解答】解:(1)原式=2﹣6+=﹣6;(2)原式==.16.(10分)(1)解方程:(2)解不等式组解集在数轴上表示出来.【解答】解:(1)①+②得:3x=6,解得:x=2,把x=2代入①得:y=3,所以原方程组的解为:;(2)∵解不等式①得:x≥2,解不等式②得:x<4,∴不等式组的解集为2≤x<4,在数轴上表示为:.17.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于y对称轴对称的△A1B1C1.(2)将△A1B1C1向右平移2个单位,向下平移1个单位作出平移后的△A2B2C2. (3)在x轴上求作一点P,使PB1+P A2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,点P即为所求,P(2,0).18.(6分)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.【解答】解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.6=61.6米,答:风筝的高度CE为61.6米.19.(10分)已知关于x,y的方程组的解满足不等式x+2y>1,求满足条件的m的负整数值.【解答】解:解关于x,y的方程组,得,把它代入x+2y>1得,2m+2+2(m+2)>1,解得m>﹣,所以满足条件的m的负整数值为﹣1.20.(10分)如图Rt△ABC,AB=AC=6,D为AC上一点,连接BD,AF⊥BD交BD于H,交BC于F,CE⊥AC交AF的延长线于E,(1)求证:△ABD≌△CAE;(2)当D为AC上离A点最近的三等分点时,连接DE,求DE的长;(3)当D为AC上离A点最近的n等分点时,连接BE,求S△BDC :S△BEC(用含n的代数式表示,直接写出答案)【解答】解:(1)如图1,Rt△ABC中,∠BAD=90°,AH⊥BD,∴∠1+∠2=∠1+∠3=90°,∴∠2=∠3,又∵CE⊥AC,∴∠ACE=∠BAD=90°,在△ABD和△CAE中,,∴△ABD≌△CAE(ASA);(2)如图2,∵△ABD≌△CAE,∴CE=AD,∵D为AC上离A点最近的三等分点,AC=6,∴AD=2,CD=4,∴CE=2,∵∠DCE=90°,∴Rt△CDE中,DE===2;(3)如图3,∵△ABD≌△CAE,∴CE=AD,∵D为AC上离A点最近的n等分点,AC=6,∴AD=,CD=6﹣=,∴CE=,∴S△BDC=×CD×AB=××6=,S△BEC=×CE×AC=××6=,∴S△BDC :S△BEC=:=n﹣1.一、填空题(每小题4分,共20分)21.(4分)若y=(m﹣1)x2﹣|m|+m+1是关于x的一次函数,则m= ﹣1 . 【解答】解:∵y=(m﹣1)x2﹣|m|+m+1是关于x的一次函数,∴2﹣|m|=1,m﹣1≠0.解得:m=﹣1.故答案为:﹣1.22.(4分)已知a,b,c满足1+2a+a2+=0,那么a+2b﹣c= 4 .【解答】解:∵a,b,c满足1+2a+a2+=0,∴(a+1)2+|b﹣2|+=0,则,解得,所以a+2b﹣c=﹣1+4+1=4.故答案是:4.23.(4分)若关于x的不等式组无解,则a的取值范围是的取值范围是 a≤1 . 【解答】解:,解不等式①,得x>a+1,解不等式②,得x≤2a,∵关于x的不等式组无解,∴a+1≥2a,解得,a≤1,故答案为:a≤1.24.(4分)如图,如图,△△ABC中,∠BAC=90°,AD为BC边上中线,边上中线,若若AD=,△ABC4 .的面积为周长为6+2,则△ABC的面积为【解答】解:设AB长为a,AC长为b,∵在△ABC中,∠BAC=90°,AD为BC边上中线且AD=,∴BC=2,∴a2+b2=(2)2=20,又∵△ABC周长为6+2,∴a+b=6+2﹣2=6,∴ab=[(a+b)2﹣(a2+b2)]=[36﹣20]=8.∴△ABC的面积为:ab=×8=4.故答案为:4.25.(4分)如图,在平面直角坐标系中,A点坐标为(3,0),线段OA绕原点O每次按逆时针方向旋转60°,并且每旋转一次长度增加两倍,例如:OA1=3OA,(﹣,) ,A100的坐标∠A1OA=60°,那么按照此规律,A2的坐标为的坐标为为 .【解答】解:∵在平面直角坐标系中,A点坐标为(3,0),线段OA绕原点O 每次按逆时针方向旋转60°,每旋转一次长度增加两倍,∴,.∵线段OA绕原点O每次按逆时针方向旋转60°,∴点A2在第二象限.∴A2的坐标为:().即A2的坐标为:.∵线段OA绕原点O每次按逆时针方向旋转60°,∴OA旋转6次正好转一圈.∵100÷6=16…4,∴第100次,点A100在第三象限.∴A100的坐标为:.故答案为:,.二、解答题(共30分)26.(8分)已知a=,b=.求:(1)a2b﹣ab 2的值;(2)a3﹣5a2﹣6a﹣b+2015的值.【解答】解:(1)∵a==3+2,b==3﹣2,∴a2b﹣ab2=ab(a﹣b)=(3+2)(3﹣2)(3+2﹣3+2)=1×4=4.(2)a3﹣5a2﹣6a﹣b+2015=a(a2﹣5a﹣6)﹣b+2015=(3+2)(9+8+12﹣15﹣10﹣6)﹣(3﹣2)+2015=(3+2)(2﹣4)﹣(3﹣2)+2015=6﹣12+8﹣8﹣3+2+2015=2008.27.(10分)如图,在长方形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在线段AC上的点E、F处,折痕分别为CM、AN.(1)求证:DN=MB;(2)如果AB=4、BC=3时,求线段MN的长度;(3)在(2)的条件下,求△NEM的面积.【解答】(1)证明:如图1,由折叠的性质得出∠DAN=∠NAC,∠BCM=∠ACM,∵AD∥BC,∴∠DAC=∠BCA,∴∠DAN=∠BCM,在Rt△ADN和Rt△CBM中,,∴△ADN≌△CBM(ASA),∴DN=BM;(2)如图2中,作NH⊥AB于H.在Rt△ADC中,∵∠D=90°,AD=BC=3,CD=AB=4,∴AC===5,由折叠的性质得出可知,AD=AF=3,DN=NF,设DN=NF=x,则CN=4﹣x,CF=2, 在Rt△NFC中,∵CN2=CF2+NF2,∴(4﹣x)2=x2+22,∴x=,∴DN=NF=,∵∠D=∠DAH=∠AHN=90°,∴四边形ADNH是矩形,∴NH=AD=3,AH=DN=,HM=AM﹣AH=4﹣﹣=1,在Rt△MNH中,MN===.(3)如图3中,连接EN,FM.∵NF⊥AC,EM⊥AC,DN=NF=BM=EM,∴NF∥EM,NF=EM,∴四边形MENF是平行四边形,∴S=S平行四边形MENF=S△EFN=•EF•NF=×(6﹣5)×=.△MNE28.(12分)如图,以长方形OABC的顶点O为原点,OA所在直线为x轴,OC 所在直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,连结BD,点A关于BD的对称点恰好落在线段BC边上的点F 处.(1)直接写出点E,F的坐标;(2)在线段CB上是否存在一点P,使△OEP为等腰三角形?若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.(3)在x轴、y轴上是否分别存在点M、N,使四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【解答】解:(1)∵OC=2,四边形OABC是矩形,∴AB=OC=2,∵点E是AB的中点,∴AE=1,∵AO=3,∴E(3,1),根据折叠可得DA=DF,∴DF=CO=2,∴AD=2,∴DO=3﹣2=1,∴F(1,2),(2)存在,理由:由(1)知,E(3,1),O(0,0)设P(a,2)(0≤a≤3),∴PE=,PO=,EO=,∵△OEP为等腰三角形,∴①当PE=PO时,∴=,∴a=1,∴P(1,2);②当PE=EO时,∴=,∴a=0或a=6(舍),∴P(0,2),③当PO=EO时,∴=,∴a=或a=﹣(舍),∴P(,2),即:满足条件的点P的坐标为(1,2)或(0,2)或(,2). (3)如图2,作点E关于x轴的对称点Eʹ,作点F关于y轴的对称点Fʹ,连接EʹFʹ,分别与x轴、y轴交于点M、N,连接FN、NM、ME,此时四边形MNFE的周长最小.∴Eʹ(3,﹣1),Fʹ(﹣1,2),设直线EʹFʹ的解析式为y=kx+b,有,解这个方程组,得,∴直线EʹFʹ的解析式为y=﹣x+.当y=0时,x=,∴M点的坐标为(,0).当x=0时,y=,∴N点的坐标为(0,).∵E与Eʹ关于x轴对称,F与Fʹ关于y轴对称, ∴NF=NFʹ,ME=MEʹ.FʹB=4,EʹB=3.在Rt△BEʹFʹ中,F'E'==5.∴FN+NM+ME=FʹN+NM+MEʹ=FʹEʹ=5.在Rt△BEF中,EF==.∴FN+NM+ME+EF=F'E'+EF=5+,即四边形MNFE的周长最小值是5+.。
2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
四川省广元市利州区嘉陵第一初级中学2015-2016学年七年级上学期期末考试数学试题解析(解析版)

四川省广元市利州区嘉陵第一初级中学2015-2016学年七年级上学期期末考试数学试题时间:120分钟满分:120分一.选择题(每小题3分,共30分)1. 下列等式正确的是()A. -︱3︱=︱-3︱B. ︱3︱=︱-3︱C. ︱-3︱=-3D. -﹙-3﹚=-︱-3︱【答案】B2. 下列结论中正确的是()A. 单项式错误!未找到引用源。
的系数是错误!未找到引用源。
,次数是4B. 单项式m的次数是1,没有系数C. 单项式﹣xy2z的系数是﹣1,次数是4D. 多项式2x2+xy2+3是二次三项式【答案】C【解析】因为单项式错误!未找到引用源。
的系数是错误!未找到引用源。
,次数是3,所以A选项是错误的;因为单项式m的次数是1,系数是1,所以B选项是错误的;因为多项式2x2+xy2+3是三次三项式,所以D选项是错误的;故选C。
点睛:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在确定单项式的系数和次数时紧紧抓住此定义是解决问题的关键;常见的错误有(1)把数字指数和字母指数混为一谈,如指出4.1╳103ab的系数和指数,错解为系数是4.1、次数是3;(2) 把错误!未找到引用源。
当做字母;(3) 忽视“1”的省略。
3. 某市在去年4月份突遇大风,冰雹灾害性天气,造成直接经济损失5 000万元.5 000万元用科学记数法表示为()A. 5000万元B. 5×102万元C. 5×103万元D. 5×104万元【答案】C【解析】5000万元=错误!未找到引用源。
万元;故选C。
点睛:把一个大于10的数表示成a×10n(1≤a<10,n为正整数)的形式,其中得到a的方法是:最后面的零都去掉,在第一位数后面加上小数点;得到n的方法是:原数的小数点前的整数数位的个数减1。
4. 下列运算正确的是()A. 5x﹣3x=2B. 2a+3b=5abC. 2ab﹣ba=abD. ﹣(a﹣b)=b+a【答案】C【解析】因为5x-3x=2x,所以A是错误的;因为2a和3b不是同类项,所以B选项是错误的;因为-(a-b)=b-a,所以D选项是错误的;故选C。
2015--2016学年第二学期初中期末考试班级成绩统计表(1)

信丰三中2016年中考成绩 2016年7月语文单科统计表班级/层次12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师李永飞钟蔚文李梅李永飞邱尚莉邱尚莉阳桂花李梅参评人数4748484864646464平均分104.93492.9062592.5312594.5577.9531381.4921980.2421976.47656优秀人数421614240201优秀率0.8936170.3333330.2916670.500.0312500.015625及格人数4748484849576050及格率11110.7656250.8906250.93750.78125 40%以下数00001004 40%以下率00000.015625000.0625信丰三中2016年中考成绩 2016年7月数学单科统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师刘贵秋周宇郑平祥廖祥琴蓝春山郑平祥廖祥琴周宇参评人数4748484864646464平均分103.676681.12583.37582.72547.2968852.8906359.62545.76563优秀人数3896110101优秀率0.8085110.18750.1250.22916700.01562500.015625及格人数4735393810192511及格率10.7291670.81250.7916670.156250.2968750.3906250.171875 40%以下数010********* 40%以下率00.02083300.0208330.5781250.4531250.3281250.578125信丰三中2016年中考成绩 2016年7月英语单科统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师肖云华陈晓青邱燕妮肖青燕李明李明邱燕妮陈晓青参评人数4748484864646464平均分109.868186.8333387.6770885.97546.7890645.4531349.0781342.5优秀人数431815130000优秀率0.9148940.3750.31250.2708330000及格人数47384039109139及格率10.7916670.8333330.81250.156250.1406250.2031250.140625 40%以下数010********* 40%以下率00.020833000.6093750.6093750.5468750.6875信丰三中2016年中考成绩 2016年7月物理单科统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师曾传香刘芳曾传香肖发东肖发东刘芳肖发东曾传香参评人数4748484864646464平均分88.2893668.687568.7916769.0541747.5781347.0781352.7343837.54688优秀人数455670010优秀率0.9574470.1041670.1250.145833000.0156250及格人数473739381613277及格率10.7708330.81250.7916670.250.2031250.4218750.109375 40%以下数000017231332 40%以下率00000.2656250.3593750.2031250.5信丰三中2016年中考成绩 2016年7月化学单科统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师兰辛妹兰辛妹张相福施云飞兰辛妹张相福张相福施云飞参评人数4748484864646464平均分96.7574574.2916776.8229278.387546.1718848.4843852.4062542.1875优秀人数472222243543优秀率10.4583330.4583330.50.0468750.0781250.06250.046875及格人数4741424319212813及格率10.8541670.8750.8958330.2968750.3281250.43750.203125 40%以下数030027272330 40%以下率00.0625000.4218750.4218750.3593750.46875信丰三中2016年中考成绩 2016年7月政治单科统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师黄贵生黄贵生钟太金黄贵生黄贵生黄贵生钟太金钟太金参评人数4748484864646464平均分59.0680946.7547.7916747.337534.312536.312537.2031329.95313优秀人数353360000优秀率0.7446810.06250.06250.1250000及格人数4739443918192712及格率10.81250.9166670.81250.281250.2968750.4218750.1875 40%以下数00001812926 40%以下率00000.281250.18750.1406250.40625信丰三中2016年中考成绩 2016年7月历史单科统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师罗世华罗世华肖福姣肖福姣罗世华罗世华罗世华罗世华参评人数4748484864646464平均分47.1957438.7708339.7539.212527.3437527.9687529.5156323.42188优秀人数462626255473优秀率0.9787230.5416670.5416670.5208330.0781250.06250.1093750.046875及格人数4744484433323921及格率10.91666710.9166670.5156250.50.6093750.328125 40%以下数00001613924 40%以下率00000.250.2031250.1406250.375信丰三中2016年中考成绩 2016年7月地理单科统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师王旭东王旭东吉庆吉庆吉庆吉庆吉庆吉庆参评人数4748484864646464平均分29.1319124.3645824.62523.4520816.3984416.7578118.0078114.52344优秀人数473131276964优秀率10.6458330.6458330.56250.093750.1406250.093750.0625及格人数4746473930313719及格率10.9583330.9791670.81250.468750.4843750.5781250.296875 40%以下数00001417721 40%以下率00000.218750.2656250.1093750.328125信丰三中2016年中考成绩 2016年7月生物单科统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅任课教师李天生李天生曾玉琇曾玉琇李天生李天生李天生李天生参评人数4748484864646464平均分26.5744719.5208321.166672113.7031313.6093815.062512.07813优秀人数41812141021优秀率0.872340.1666670.250.2916670.01562500.031250.015625及格人数473443361717208及格率10.7083330.8958330.750.2656250.2656250.31250.125 40%以下数000023301835 40%以下率00000.3593750.468750.281250.546875信丰三中2016年中考成绩 2016年7月体育成绩统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅参评人数4748484864646464平均分29.9893629.9062529.812529.9895826.2526.187526.0937524.58594优秀人数4748484851514646优秀率11110.7968750.7968750.718750.71875及格人数4748484864646459及格率11111110.921875 40%以下数00000003 40%以下率00000000.046875信丰三中2016年中考成绩 2016年7月班级统计表班级12345678班主任李永飞钟蔚文郑平祥肖发东罗世华黎新廖祥琴李梅参评人数4748484864646464平均分703.4213571.5576.5580.7771392.3281405.1094425.5313358.1406优秀人数471010140000优秀率10.2083330.2083330.2916670000及格人数4745484618192613及格率10.937510.9583330.281250.2968750.406250.203125 40%以下数0000119517 40%以下率00000.1718750.1406250.0781250.26562591011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋钟蔚文王春妹王春妹陈长英陈长英朱莉菁邓小金吕述兴朱莉菁646464646464484848 73.7890676.8437579.2968882.7734480.5859481.6406396.1562592.8229293.39167261334281319 0.031250.093750.0156250.0468750.0468750.06250.5833330.2708330.395833504955575258484848 0.781250.7656250.8593750.8906250.81250.906251114400000000.06250.0625000000091011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋蓝春山曾飞赖军锋曾飞曹丽芳曹丽芳黎洪玉刘贵秋赖军锋646464646464484848 45.6093844.7187549.187553.062549.9843850.5312584.2916787.312581.49167000000783 0000000.1458330.1666670.0625 13109151117424539 0.2031250.156250.1406250.2343750.1718750.2656250.8750.93750.8125353731312931001 0.5468750.5781250.4843750.4843750.4531250.484375000.02083391011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋肖青燕谢秋莲蓝师胜谢秋莲蓝师胜李琼华肖云华曹烁英李琼华646464646464484848 43.5937542.4843843.2968844.5468844.4765645.9453185.1979289.8958382.03333000000131812 0000000.2708330.3750.25 9578914384335 0.1406250.0781250.1093750.1250.1406250.218750.7916670.8958330.729167394043394040002 0.6093750.6250.6718750.6093750.6250.625000.04166791011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋刘芳张庆生张小武张小武温长生张庆生张小武温长生张庆生646464646464484848 46.9218839.6718844.37543.5312547.1406343.312567.0833371.0208368.3791700010048100000.015625000.0833330.1666670.208333 1998131812384738 0.2968750.1406250.1250.2031250.281250.18750.7916670.9791670.791667213225291925001 0.3281250.50.3906250.4531250.2968750.390625000.02083391011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋施云飞李江英李江英曾晓勇曾晓勇刘洪礼曾晓勇刘洪礼李江英646464646464484848 44.9687543.4218844.4531347.2578147.9218852.6562580.9791782.7395876.025351364313127 0.0468750.0781250.0156250.0468750.093750.06250.6458330.6458330.5625181815151629474840 0.281250.281250.2343750.2343750.250.4531250.97916710.833333273127232322001 0.4218750.4843750.4218750.3593750.3593750.34375000.02083391011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋黄贵生李安文李安文钟太金李安文李安文钟太金钟太金李安文646464646464484848 32.687533.0468833.5312535.7812535.2812536.2968848.7708349.1041747.32083000100266 0000.015625000.0416670.1250.125 181512171920454537 0.281250.2343750.18750.2656250.2968750.31250.93750.93750.77083322201913129000 0.343750.31250.2968750.2031250.18750.14062500091011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋肖福姣肖福姣谢菊萍谢菊萍谢菊萍肖福姣肖福姣谢菊萍谢菊萍646464646464484848 24.5781324.37527.8437531.5468827.3593828.062539.3958340.0833339.133337259107253024 0.1093750.031250.0781250.1406250.156250.1093750.5208330.6250.52422323730344848460.3750.343750.50.5781250.468750.53125110.95833321191641418000 0.3281250.2968750.250.06250.218750.2812500091011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋王旭东罗定喜罗定喜罗定喜刘祖莲罗定喜罗定喜刘祖莲刘祖莲646464646464484848 17.062515.4843816.2187518.4687515.1953116.3593825.3229224.8437524.12292751957363330 0.1093750.0781250.0156250.1406250.0781250.1093750.750.68750.625352327332026484845 0.5468750.3593750.4218750.5156250.31250.40625110.937513201572119000 0.2031250.31250.2343750.1093750.3281250.29687500091011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋曾玉琇曾玉琇刘斐刘斐刘斐曾玉琇刘斐刘斐曾玉琇646464646464484848 13.7343813.1562515.187515.9531315.0781314.5312521.2291722.0416720.3333300120111169 000.0156250.0312500.0156250.2291670.3333330.1875 1617192922194046380.250.2656250.2968750.4531250.343750.2968750.8333330.9583330.791667212819161825001 0.3281250.43750.2968750.250.281250.390625000.02083391011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋646464646464484848 24.7656325.4609426.9687527.4453126.5078126.4531329.8333329.87529.95833455555575250484848 0.7031250.8593750.8593750.8906250.81250.78125111615964646464484848 0.9531250.9218751111111340000000 0.0468750.0625000000091011121314151617肖青燕谢秋莲张小武曾飞曾晓勇刘洪礼邓小金吕述兴赖军锋646464646464484848 376.9531368.2344388.5469408.5313398.7188405.5156585.3333594.3542570.1479 0001007159 0000.015625000.1458330.31250.1875 1614121817224848450.250.218750.18750.281250.2656250.34375110.937517191371315000 0.2656250.2968750.2031250.1093750.2031250.23437500018黎洪玉邓小金47 103.761742 0.89361747118黎洪玉黎洪玉47 100.246833 0.70212847118黎洪玉曹烁英47 108.502143 0.91489447118黎洪玉温长生47 85.685113847118黎洪玉刘洪礼47 94.6425544 0.9361747118黎洪玉李安文47 57.923429 0.61702147118黎洪玉谢菊萍47 46.0297947147118罗定喜47 28.3914946 0.97872347118黎洪玉刘斐47 25.8085137 0.78723447118黎洪玉473047147118黎洪玉47 689.555342 0.893617471。
2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤52.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,157.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= cm.12.写出命题“对顶角相等”的逆命题.13.比较大小:.(填“>、<、或=”)14.如果+(b﹣7)2=0,则的值为.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为cm.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤5【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子有意义,∴x﹣5≥0,解得x≥5.故选C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的条件进行判断即可.【解答】解: =,被开方数含分母,不是最简二次根式;=,被开方数含分母,不是最简二次根式;=2,被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的性质以及结合二次根式混合运算法则化简求出答案.【解答】解:A、()2=4,正确;B、=4,故此选项错误;C、=×,故此选项错误;D、﹣无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的混合运算以及二次根式的化简,正确掌握二次根式的性质是解题关键.4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对【考点】勾股定理.【分析】由勾股定理即可得出结论,注意a是斜边长.【解答】解:∵∠A=90°,∴由勾股定理得:b2+c2=a2.故选:B.【点评】本题考查了勾股定理;熟记勾股定理是解决问题的关键.5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm【考点】勾股定理.【分析】题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5cm;(2)当4为斜边时,由勾股定理得,第三边为cm;故直角三角形的第三边应该为5cm或cm.故选:D.【点评】此题主要考查学生对勾股定理的运用,注意分情况进行分析.6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能【考点】多边形.【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AC⊥BD,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= 14 cm.【考点】三角形中位线定理.【分析】根据三角形中位线定理得出BC=2DE,代入求出即可.【解答】解:∵D、E分别是AB、AC边的中点,且DE=7cm,∴BC=2DE=14cm,故答案为:14.【点评】本题考查了三角形中位线定理的应用,能熟记三角形的中位线定理的内容是解此题的关键,注意:三角形的中位线平行于第三边,并且等于第三边的一半.12.写出命题“对顶角相等”的逆命题如果两个角相等,那么这两个角是对顶角.【考点】命题与定理.【分析】根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.【点评】本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.13.比较大小:<.(填“>、<、或=”)【考点】实数大小比较.【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.14.如果+(b﹣7)2=0,则的值为 3 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先利用偶次方的性质以及二次根式的性质进而得出a,b的值,进而求出答案.【解答】解:∵ +(b﹣7)2=0,∴a=2,b=7,则==3.故答案为:3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10 m.【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15 cm.【考点】平面展开﹣最短路径问题.【专题】推理填空题.【分析】根据题意,可以画出长方体的展开图,根据两点之间线段最短和勾股定理,可以解答本题.【解答】解:如右图所示,点A到B的最短路径是: cm,故答案为:15.【点评】本题考查平面展开﹣最短路径问题,解题的关键是明确两点之间线段最短,能画出图形的平面展开图.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .【考点】菱形的性质;勾股定理.【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.【点评】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为2cm.【考点】正方形的性质;菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积,进一步开方求得正方形的边长即可.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4×6=12cm2,∵菱形的面积与正方形的面积相等,∴正方形的边长是=2cm.故答案为:2.【点评】本题考查了菱形的面积和正方形的面积计算的方法,本题中根据菱形对角线求得菱形的面积是解题的关键.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是 6 .【考点】矩形的性质.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.【点评】本题主要考查的是矩形的性质、三角形的面积公式,将阴影部分的面积转化为S矩形ABCD﹣S△﹣S△ADQ求解是解题的关键.BPC三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先化简二次根式,再合并同类项即可解答本题;(2)根据去括号的法则去掉括号,然后合并同类项即可解答本题.【解答】解:(1)(﹣)2﹣+=3﹣2+3=4;(2)(3﹣)﹣(+)==.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.【考点】二次根式的化简求值.【分析】(1)利用平方差公式分解因式后再代入计算;(2)利用完全平方差公式分解因式后再代入计算.【解答】解:当a=3+,b=3﹣时,(1)a2﹣b2,=(a+b)(a﹣b),=(3+3﹣)(3+﹣3+),=6×2,=12;(2)a2﹣2ab+b2,=(a﹣b)2,=(3﹣3+)2,=(2)2,=8.【点评】本题是运用简便方法进行二次根式的化简求值,熟练掌握平方差公式和完全平方公式是解题的关键.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理计算BD的长,再利用勾股定理的逆定理证明∠DBC=90°,所以:△BCD是直角三角形.【解答】解:△BCD是直角三角形,理由是:在△ABD中,∠A=90°,∴BD2=AD2+AB2=32+42=25,在△BCD中,BD2+BC2=52+122=169,CD2=132=169,∴BD2+BC2=CD2,∴∠DBC=90°∴△BCD是直角三角形.【点评】本题考查了勾股定理及其逆定理,熟练掌握定理的内容是关键,注意各自的条件和结论.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC 中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【专题】证明题;压轴题.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC 的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 2:1 时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。
四川省广元市青川县2019-2020八年级上学期期末数学试卷 及答案解析

四川省广元市青川县2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.√9的值等于()A. 3B. −3C. ±3D. √32.点P(2,−3)关于x轴的对称点的坐标为()A. (−2,−3)B. (2,3)C. (−2,3)D. (3,−2)3.已知a、b、c是三角形的三边长,如果满足(a−6)2+√b−8+|c−10|=0,则三角形的形状是()A. 底与边不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形4.下列命题是假命题的是()A. 同旁内角互补B. 在同一平面内,垂直于同一条直线的两条直线平行C. 对顶角相等D. 同角的余角相等5.若8名学生的体重(单位:kg)分别是:40,42,43,45,47,47,47,58,则这组数据的中位数是()A. 44B. 45C. 46D. 476.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. 94B. 3√3 C. 365D. 2537.已知{x=2y=1是方程组{ax−3y=−1x+by=5的解,则a、b的值为()A. a=−1,b=3B. a=1,b=3C. a=3,b=1D. a=3,b=−18.下列说法正确的是()A. 了解某班同学的身高情况适合用全面调查B. 数据2、3、4、2、3的众数是2C. 数据4、5、5、6、0的平均数是5D. 甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定9.如图,下列条件中,不能判断直线a//b的是()A. ∠1=∠3B. ∠4=∠5C. ∠2+∠4=180°D. ∠2=∠310.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的关系用图象表示为()A. B. C. D.二、填空题(本大题共8小题,共24.0分)11.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(−2,0),且两直线与y轴围成的三角形面积为4,那么b1−b2等于______ .12.计算:√3−1−4×√12+√8−(−1)2018=______________.13.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为_________14.下图是甲、乙两名射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形可知甲、乙这10次射击成绩中甲的方差________乙的方差.(填“>”“=”或“<”)15.如图,矩形ABCD中,AB=4cm,BC=8cm,把△ABC沿对角线AC折叠,得到△AB′C,B′C与AD相交于点E,则AE的长______.16.若将三个数−√3,√7,√11表示在数轴上,其中能被如图所示的墨迹覆盖的数是______.17.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是______.18.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1,都是等腰直角三角形.其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上.已知OA1=1,则OA2018的长为______.三、计算题(本大题共1小题,共6.0分)19.解方程组:(1){5x+2y=7 2x+y=1;(2){x+y3+x−y2=63(x+y)−2(x−y)=28.四、解答题(本大题共7小题,共60.0分)20.计算:(1)4√2×12√3−(√3+√2)2+1√3−2(2)2y√xy3−√x3y−1x√x3y3(x>0,y>0)21.如图,是规格为9×9的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中画出平面直角坐标系,使A的坐标为(−2,4),B的坐标为(−4,2);(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则点C的坐标是________,△ABC的周长是________(结果保留根号);(3)把△ABC以点C为位似中心向右放大后得到△A1B1C,使放大前后对应边长的比为1︰2,画出△A1B1C的图形并写出点A1的坐标;22.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100学生甲______ ______ ______ ______ ______ ______乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.23.一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产,若购买3盒豆腐乳和2盒猕猴桃果汁共需60元;购买1盒豆腐乳和3盒猕猴桃果汁共需55元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?24.根据下列条件,求函数关系式:(1)正比例函数的图像经过点(−3,2);(2)一次函数的图像过P(−1,−2),Q(−3,4);(3)一次函数的图像与直线y=3x−2平行,且过点(4,6).25.在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=40°,求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)求证:EF2+BF2=2AC2.26.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB//CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B−∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.-------- 答案与解析 --------1.答案:A解析:此题考查的是9的算术平方根,需注意的是算术平方根必为非负数.此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.解:∵√9=3,故选:A.2.答案:B解析:解:点P(2,−3)关于x轴的对称点的坐标为(2,3),故选:B.根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.3.答案:D解析:解:∵(a−6)2≥0,√b−8≥0,|c−10|≥0,∴a−6=0,b−8=0,c−10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故选D.首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.4.答案:A解析:利用平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及余角的定义等知识,难度不大.解:A、两直线平行,同旁内角才互补,故原命题是假命题,符合题意;B、在同一平面内,垂直于同一直线的两条直线平行,正确,是真命题,不符合题意;C、对顶角相等,正确,是真命题,不符合题意;D、同角的余角相等,正确,是真命题,不符合题意;故选A.5.答案:C解析:解:题目中数据共有8个,故中位数是按从小到大排列后第4,第5两个数的平均数作为中位数.故这组数据的中位数是12(45+47)=46.故选:C.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.考查中位数的概念.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.6.答案:C解析:本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB的距离.解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB=√AC2+BC2=15,∵S△ABC=1 2AC⋅BC=12AB⋅ℎ,∴ℎ=12×915=365.故选C .7.答案:B解析:本题考查了二元一次方程组的解的定义.此题利用代入法求得a 、b 的值.将{x =2y =1代入方程组{ax −3y =−1x +by =5后来求a 、b 的值即可. 解:将{x =2y =1代入方程组{ax −3y =−1x +by =5得: {2a −3=−12+b =5解得:{a =1b =3故选B . 8.答案:A解析:解:A 、了解某班同学的身高情况适合全面调查,故A 正确;B 、数据2、3、4、2、3的众数是2,3,故B 错误;C 、数据4、5、5、6、0的平均数是4,故C 错误;D 、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D 错误.故选:A .根据调查方式,可判断A ;根据众数的意义可判断B ;根据平均数的意义,可判断C ;根据方差的性质,可判断D .本题考查了方差,方差越小数据越稳定是解题关键.9.答案:D解析:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.解:当∠1=∠3时,根据内错角相等,两直线平行,得a//b,故A正确;当∠4=∠5时,根据同位角相等,两直线平行,得a//b,故B正确;当∠2+∠4=180°时,根据同旁内角互补,两直线平行,得a//b,故C正确.故选D.10.答案:B解析:本题考查了一次函数的应用,首先由题意列出y关于x的函数关系式,再结合实际问题弄清自变量有取值范围,然后对应地找出相应的图象,即可解答.解:根据题意,得y=20−5x(0≤x≤4),剩下的长度y会随时间的增加而逐渐减小,由自变量x范围可知只有B符合题意.故选B.11.答案:4解析:解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=−b2,∵△ABC的面积为4,∴12OA⋅OB+12OA⋅OC=4,∴12×2⋅b1+12×2⋅(−b2)=4,解得:b1−b2=4.故答案为:4.根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.12.答案:√3解析:本题主要考查了实数的运算.首先根据二次根式的性质,乘方的意义,二次根式的乘法法则进行计算,然后再合并同类二次根式即可.解:√3−14×√12+√8−(−1)2018=2(√3+1)(√3−1)(√3+1)−4×√22+2√2−1=√3+1−2√2+2√2−1=√3.故答案为√3.13.答案:48.解析:此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度,本题因给出了图形,故只有一种情况,分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.解:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为48.14.答案:<.解析:本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x .,则方差S 2=1n [(x 1−x .)2+(x 2−x .)2+⋯+(x n −x .)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.根据所给的折线图求出甲、乙的平均成绩,再利用方差的公式进行计算,即可求出答案.解:由图可知甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,甲的平均数是:(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙的平均数是:(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7−8.5)2+2×(8−8.5)2+(10−8.5)2+5×(9−8.5)2]÷10=0.85,乙的方差S 乙2=[3×(7−8.5)2+2×(8−8.5)2+2×(9−8.5)2+3×(10−8.5)2]÷10=1.35 则S 甲2<S 乙2.故答案为<. 15.答案:5cm解析:证出△AEC 是等腰三角形:AE =CE ,然后设AE =x ,则CE =x ,DE =8−x ,在Rt △CDE 中,由勾股定理得出方程,解方程即可.此题考查了矩形的性质、折叠的性质以及等腰三角形的判定与性质.由勾股定理得出方程是解决问题的关键。
2015-2016学年第一学期期末考试九年级数学附答案

15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)
2015-2016学年人教版八年级上第一次月考数学试题及答案

AC B A 'C 'B '3050(第9题)NM PBAO睢中附属学校2015-2016学年度第一学期第一次月考八 年 级 数 学 试 题命题人:任润水(考试时间:90分钟,满分:120分 )一、 选择题: (每题3分,共30分)请将正确答案填写在下列方框内题 号 1 2 3 4 5 6 7 8 9 10 答 案1、下面有4个汽车标致图案,其中不是轴对称图形的是( ▲ )A .B .C .D .2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为 ( ▲ ) A .2 B.3 C.5 D.2.53、如图,与关于直线对称,则的度数为( ▲ ) A . B . C .D .4、下列说法中,正确的是 ( ▲ ) A.关于某直线对称的两个三角形是全等三角形B.全等三角形一定是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.有一条公共边的两个全等三角形关于公共边所在的直线对称5、下列条件中不能判断两个三角形全等的是 ( ▲ )A.有两边和它们的夹角对应相等.B.有两边和其中一边的对角对应相等.C.有两角和它们的夹边对应相等.D.有两角和其中一角的对边对应相等.6、在ΔABC 和ΔFED 中,∠A=∠F ,∠B=∠E ,要使这两三角形全等,还需要的条件是 ( ▲ ) A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D7、如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有 ( ▲ )A . 2对 B.3 对 C.4对 D.5对 8、工人师傅常用角尺平分一个任意角,如图在∠AOB 的边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,得到∠AOB 的平分线OP ,做法中用到三角形全等的判定方法是. ( ▲ ) A.SAS B.SSS C.ASA D.HL第7题 第9题F EDABCADCBEF 姓名_____________ 班级____________________ 考号:________________________··························密·························封······················线·· (8)9、AD 是的中线, .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ; ④△BDF ≌△CDE .其中正确的有 ( ▲ )A.1个B.2个C.3个D.4个10、△ABC 中,AB=AC=12厘米,∠B=∠C ,BC=8厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( ▲ ) A.2 B.3 C.2或3 D.1或5 二、填空题:(每题3分,共24分)11、国旗上的一个五角星有 条对称轴.12、如图,已知△ABC 的两条高AD 、BE 交于F ,AE =BE ,若要运用“HL ”说明△AEF ≌△BEC ,还需添加条件: .13、某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第__________块去(填序号)14、如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3 = °.第12题 第14题 第15题 15、如图,方格纸中△ABC 的三个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,则在图中能够作出与△ABC 全等且有一条公共边的格点三角形(不含△ABC )的个数是__________个16、工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB 、CD 两根木条),这样做根据的数学原理是 _______ __ . 17、如图,给出下列四组条件:①AB=DE,BC=EF ,AC=DF ; ②AB=DE,∠B=∠E,BC=EF ; ③∠B=∠E,BC=EF ,∠ACB =∠DFE ;④AB=DE,AC=DF ,∠B=∠E.其中,能使△ABC≌△DEF 的条件是 ;(填序号)18、如图,在△ABC 中,∠B=∠C ,BF=CD ,BD=CE ,∠FDE=α ,则∠B_________α(填“>”“﹦”或“<”)ADC B E F(第18题)αFEDCBA 第16题第17题①②③第13题三、作图题(本大题共2小题,共8分)19、用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹) (1)作出△ABC 关于直线l 对称的△DEF ;CAB l第(1)题 第(2)题(2)如图②:在3×3网格中,已知线段AB 、CD ,以格点为端点再画1条线段,使它与AB 、CD 组成轴对称图形.(画出所有可能情况)四、解答题(本大题共有6小题,共58分,解答时应写出文字说明、推理过程或演算步骤) 20、( 8分)已知: 如图, AC 、BD 相交于点O , ∠A =∠D , AB=CD.求证:△AOB ≌△DOC ,。
2015-2016年四川省成都市武侯区八年级(上)期末数学试卷(解析版)

2015-2016学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题1.(3分)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2 2.(3分)下列实数中是无理数的是()A.B.0.212121C.3πD.3.(3分)若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)4.(3分)估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间5.(3分)如图,OA=OB,BC=1,则数轴上点A所表示的数为()A.B.C.D.﹣3.56.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7.(3分)下列四个命题中,真命题有()①6的平方根是±②三角形的一个外角大于任何一个内角③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量④凡是定理都可以作为公理.A.1个B.2个C.3个D.4个8.(3分)将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,一次连接新的这些点,则所得三角形与原三角形的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.原三角形向x轴的负方向平移一个单位即为所得三角形9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,则所列方程组正确的是()A.B.C.D.二、填空题11.(3分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=.12.(3分)若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为.13.(3分)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.14.(3分)将等宽的直条型纸片按照如图中的方式进行折叠,若∠1=58°,则∠2=.三、解答题15.(1)计算:;(2)计算:(3)解方程组:.16.如图,AB长为2,BC长为4,AF长为10,求正方形CDEF的周长.17.已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥FP.18.武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:(1)这40名学生本学期购买课外书的费用的众数是,中位数是,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?19.如图,在平面直角坐标系中,直线l1:y=x与直线y2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.20.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.(1)如果点G在长方形ABCD的内部,如图①所示.Ⅰ)求证:GF=DF;Ⅱ)若DF=DC,AD=4,求AB的长度.(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k 的代数式表示的值.一、填空题21.(3分)方程组的解是.22.(3分)如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度至少长cm.23.(3分)在实数范围内,若y=﹣3x+1,则y2015的个位数字是.24.(3分)如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的纵坐标为2,∠B=60°,OC=AC,点P是斜边DB上的一个动点,则△PAC的周长的最小值为.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】25.(3分)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积A nB n B n﹣1的面积记作S n,那么S2015=.记作S3,…,四边形A n﹣1二、解答题26.某商店销售功能相同的A、B两种品牌的计算器,A品牌计算器的成本价为每个20元,B品牌计算器的成本价为每个25元,且销售3个A品牌和2个B 品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按照原价的八折销售;B品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x个A品牌的计算器的利润为y1元,销售x各B品牌的计算器的利润为y2元.(I)分别求y1,y2与x之间的函数表达式;(Ⅱ)某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.27.(1)如图①,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO绕点B逆时针旋转60°得到线段BO',连结线段OO',AO',试判断△AOO'的形状.(2)点D是以AB为斜边的等腰直角三角形ABC内一点,且BD=1,CD=2,AD=3.(Ⅰ)求∠BDC的度数;(Ⅱ)求△ABC的面积.28.如图,过A(﹣4,0),两点的直线与直线y=﹣x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿戈轴向左平移,到C点时停止.直线l分别交线段BC,OC于点D,E,以DE为边向右侧作等边△DEF.设△DEF与△BCO重叠部分图形的周长为m,直线l的运动时间为t(秒).(1)求C点坐标;(2)当点F落在y轴上时,求相应的时间t的值;(3)求m与t之间的关系式.【说明:不考虑直线l平移过程中“起点”与“终点”时的情况.】2015-2016学年四川省成都市武侯区八年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】根据二次根式被开方数非负即可得出关于x的一元一次不等式,解不等式即可得出结论.【解答】解:∵x+2≥0,∴m≥﹣2.故选:B.2.(3分)下列实数中是无理数的是()A.B.0.212121C.3πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,0.212121,﹣是有理数,3π是无理数,故选:C.3.(3分)若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)【分析】先根据P点的坐标判断出x,y的符号,进而求出x,y的值,即可求得答案【解答】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=5,|y|=3,∴点P(x,y)坐标中,x=5,y=﹣3,∴P点的坐标是(5,﹣3).故选:A.4.(3分)估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间【分析】求出7=,8=,即可求出的范围,即可得出答案.【解答】解:∵7=,8=,∴7<<8,即的值在7﹣8之间.故选:C.5.(3分)如图,OA=OB,BC=1,则数轴上点A所表示的数为()A.B.C.D.﹣3.5【分析】根据勾股定理,可得OB的长,根据等量代换,可得答案.【解答】解:OB==,OA=OB=,A点表示的数是﹣.故选:C.6.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【解答】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选:D.7.(3分)下列四个命题中,真命题有()①6的平方根是±②三角形的一个外角大于任何一个内角③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量④凡是定理都可以作为公理.A.1个B.2个C.3个D.4个【分析】根据平方根的概念、三角形的外角性质、极差的概念、定理与公理的概念进行判断即可.【解答】解:①6的平方根是±;是真命题;②三角形的一个外角大于任何一个内角;是假命题;③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量;真命题;④凡是定理都可以作为公理.假命题;故选:B.8.(3分)将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,一次连接新的这些点,则所得三角形与原三角形的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.原三角形向x轴的负方向平移一个单位即为所得三角形【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,则所得三角形与原三角形的位置关系是关于y轴对称,故选:A.9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【分析】根据一次函数性质逐项判断即可.【解答】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=﹣6,∴直线与x轴交于点(﹣6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选:D.10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,则所列方程组正确的是()A.B.C.D.【分析】首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.【解答】解:如果设鸡为x只,兔为y只.根据“三十六头笼中露”,得方程x+y=36;根据“看来脚有100只”,得方程2x+4y=100.即可列出方程组.故选:C.二、填空题11.(3分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=﹣1.【分析】根据二元一次方程的定义,可得答案.【解答】解:由题意,得m+2=1,解得m=﹣1,故答案为:﹣1.12.(3分)若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为y=2x.【分析】根据两直线平行,则自变量系数相同,即k值相同得出结论.【解答】解:由题意得:k=2则该正比例函数的表达式为:y=2x;故答案为:y=2x.13.(3分)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=kx交点P的坐标为(﹣4,﹣2),∴关于x,y的二元一次方程组组的解为.故答案为.14.(3分)将等宽的直条型纸片按照如图中的方式进行折叠,若∠1=58°,则∠2=64°.【分析】先根据平行线的性质,得出∠1=∠4=58°,根据折叠的性质,得出∠3=∠4=58°,最后根据平角计算∠2的度数.【解答】解:由矩形的对边平行,可得∠1=∠4=58°,由折叠可得,∠3=∠4=58°,∴∠2=180°﹣2×58°=64°,故答案为:64°.三、解答题15.(1)计算:;(2)计算:(3)解方程组:.【分析】(1)首先进行各项的化简,然后合并同类项即可;(2)首先进行各项的化简,然后合并同类项即可;(3)根据x的系数互为相反数,利用加减消元法求解.【解答】解:(1)=+6=;(2)计算:=+3+12﹣5=(3)解:原方程可化为:,①+②得:4y=28,∴y=7,把y=7代入①得x=3,∴方程组的解为:.16.如图,AB长为2,BC长为4,AF长为10,求正方形CDEF的周长.【分析】在直角△ABC中,根据勾股定理即可求得AC2,然后在直角△ACF中求得FC,根据正方形CDEF的周长=4FC即可求解.【解答】解:在直角△ABC中,AC2=AB2+BC2=(2)2+42=28,在直角△ACF中,FC2=AF2+AC2=102+28=128.∴CF=8,而正方形CDEF的周长=4CF=32.17.已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥FP.【分析】先根据题意得出AB∥CD,故可得出∠BAP=∠APC,再由∠1=∠2即可得出∠EAP=∠APF,进而可得出结论.【解答】证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC.∵∠1=∠2,∴∠EAP=∠APF,∴AE∥FP.18.武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:(1)这40名学生本学期购买课外书的费用的众数是50,中位数是50,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?【分析】(1)众数就是出现次数最多的数,中位数就是大小处于中间位置的数,根据定义判断即可;(2)根据40名学生本学期购买课外书的总费用除以总人数,求得平均费用;(3)利用学校总人数1000乘以本学期购买课外书花费50元以上(含50元)的学生所占的比例即可求解.【解答】解:(1)这次调查获取的样本数据的众数是50元,这次调查获取的样本数据的中位数是50元,故答案是:50,50;(2)平均数为:×(6×20+10×30+12×50+8×80+4×100)=51.5(元);(3)调查的总人数是40人,其中购买课外书花费50元以上(含50元)的学生有24人,∴该校本学期购买课外书费用在50元以上(含50元)的学生有:1000×=600(人).19.如图,在平面直角坐标系中,直线l1:y=x与直线y2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.【分析】(1)利用直线l1的解析式求出点A的坐标,再根据勾股定理求出OA的长度,从而可以得到OB的长度,根据图象求出点B的坐标,然后利用待定系数法列式即可求出直线l2的函数表达式;(2)求得平移后的解析式,进而求得交点D的坐标,代入三角形的面积公式进行计算即可得解.【解答】解:(1)∵点A的横坐标为4,∴y=×4=3,∴点A的坐标是(4,3),∴OA==5,∵OA=OB,∴OB=2OA=10,∴点B的坐标是(0,﹣10),设直线l2的表达式是y=kx+b,则,解得,∴直线l2的函数表达式是y=x﹣10;(2)将直线l1沿y轴向上平移5个单位长度得y=x+5,解得交点的横坐标为6,=×BC•x D=×(10+5)×6=45.∴S△BCD20.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.(1)如果点G在长方形ABCD的内部,如图①所示.Ⅰ)求证:GF=DF;Ⅱ)若DF=DC,AD=4,求AB的长度.(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k 的代数式表示的值.【分析】(1)、Ⅰ)、求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF即可;Ⅱ)、可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到的值,代值即可得出结论;(2)方法同(2).【解答】解:(1)、Ⅰ)、连接EF,根据翻折的性质得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF(HL),∴GF=DF;Ⅱ)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2x,∴=;∵AD=4,∴AB=2(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y,∵AB=DC==,∴BF=BG+GF=(+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(k﹣1)x]2=[(+1)x]2∴y=,∴==2.一、填空题21.(3分)方程组的解是.【分析】利用①+②可消去z,再与方程②组成二元一次方程组,再求解即可.【解答】解:在方程组中,①+③可得:3x+2y=43④,由②、④组成二元一次方程组,由②可得x=y+1,代入④可得:3(y+1)+2y=43,解得y=8,∴x=y+1=9,把x、y的值代入①可得:9+8+z=23,解得z=6,∴原方程组的解为.故答案为:.22.(3分)如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度至少长26cm.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为24cm,圆柱高为5cm,∴AB=5cm,BC=BC′=12cm,∴AC2=52+122=169,∴AC=13cm,∴这圈金属丝的周长最小为2AC=26cm.故答案为:26.23.(3分)在实数范围内,若y=﹣3x+1,则y2015的个位数字是3.【分析】首先利用二次根式有意义的条件得出x,y的值,进而利用尾数特征求出答案.【解答】解:由题意可得:|x|﹣2=0,2﹣x≠0,解得:x=﹣2,则y=7,∵71=7,72=49,73=343;74=2401;75=16807,∴个位数每4个一循环,∵2015÷4=503…3,∴y2015的个位数字是:3.故答案为:3.24.(3分)如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的纵坐标为2,∠B=60°,OC=AC,点P是斜边DB上的一个动点,则△PAC的周长的最小值为2+4.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】【分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.【解答】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵顶点B的纵坐标为2,∠B=60°,∴AB=2,OA=6,由勾股定理得:OB=4,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=3,∴AD=2×3=6,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=3,由勾股定理得:DN=3,∵C(1,0),∴CN=AC﹣AN=4﹣3=1,在Rt△DNC中,由勾股定理得:DC==2,即PA+PC的最小值是2,∴△PAC周长的最小值为:2+4.故答案为:2+4.25.(3分)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积A nB n B n﹣1的面积记作S n,那么S2015=.记作S3,…,四边形A n﹣1【分析】根据题意可知所求的面积等于梯形的面积,然后根据题目中数据和图形即可解答本题.【解答】解:由题意可得,S2015==,故答案为:.二、解答题26.某商店销售功能相同的A、B两种品牌的计算器,A品牌计算器的成本价为每个20元,B品牌计算器的成本价为每个25元,且销售3个A品牌和2个B 品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按照原价的八折销售;B品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x个A品牌的计算器的利润为y1元,销售x各B品牌的计算器的利润为y2元.(I)分别求y1,y2与x之间的函数表达式;(Ⅱ)某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.【分析】(1)设A品牌计算器的销售单价为m元/个,B品牌计算器的销售单价为n元/个,根据“销售3个A品牌和2个B品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.”即可列出关于m、n的二元一次方程组,解之即可得出结论;(2)(I)根据“利润=销售额﹣成本”即可得出y1,y2与x之间的函数表达式;(II)分别令y1<y2、y1=y2以及y1>y2,求出x的取值范围,此题得解.【解答】解:(1)设A品牌计算器的销售单价为m元/个,B品牌计算器的销售单价为n元/个,根据题意,得:,解得:.答:A品牌计算器的销售单价为35元/个,B品牌计算器的销售单价为40元/个.(2)(I)根据题意得:y1=35×0.8x﹣20x=8x.当0≤x≤5时,y2=40x﹣25x=15x;当6≤x时,y2=(40﹣25)×5+[40×0.7﹣25]×(x﹣5)=3x+60.∴y2=.(II)当y1<y2时,有8x<3x+60,解得:x<12;当y1=y2时,有8x=3x+60,解得:x=12;当y1>y2时,有8x>3x+60,解得:x>12.∴当6≤x<12时,选择推销B品牌的计算器获得的利润高;当x=12时,选择推销A、B品牌的计算器获得的利润一样多;当x>12时,选择推销A品牌的计算器获得的利润高.27.(1)如图①,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO绕点B逆时针旋转60°得到线段BO',连结线段OO',AO',试判断△AOO'的形状.(2)点D是以AB为斜边的等腰直角三角形ABC内一点,且BD=1,CD=2,AD=3.(Ⅰ)求∠BDC的度数;(Ⅱ)求△ABC的面积.【分析】(1)利用旋转的性质得BO=BO′,∠OBO′=60°,则△OBO′为等边三角形,所以OO′=OB=8,则可判断△ABC为等边三角形,所以∠ABC=60°,BA=BC,接着利用旋转的定义可把△BOC绕点B逆时针旋转60°得到△BO′A,于是得到AO′=CO=10,然后根据勾股定理的逆定理可判断△AOO'为直角三角形,∠AOO′=90°;(2)(Ⅰ)将△CBD绕点B顺时针旋转90°得到△CAD′,如图②,根据旋转的性质得∠DCD′=90°,∠CD′A=∠CDB,CD′=CD=2,AD′=BD=1,则可判断△CDD′为等腰直角三角形,所以∠CD′D=45°,DD′=CD=2,然后根据勾股定理的逆定理可判断△ADD'为直角三角形,∠AD′D=90°;则∠AD′C=135°,所以∠BDC=135°;(Ⅱ)利用△CDD′为等腰直角三角形得到∠CDD′=45°,再判断点B、D、D′共线得到△BD′A为直角三角形,然后利用△ABC的面积=S△CDD′+S△BD′A进行计算.【解答】解:(1)∵线段BO绕点B逆时针旋转60°得到线段BO',∴BO=BO′,∠OBO′=60°,∴△OBO′为等边三角形,∴OO′=OB=8,∵△ABC为等边三角形,∴∠ABC=60°,BA=BC,∴△BOC绕点B逆时针旋转60°得到△BO′A,∴AO′=CO=10,在△AOO′中,∵AO′=10,AO=6,OO′=8,而62+82=102,∴OA2+OO′2=AO′2,∴△AOO'为直角三角形,∠AOO′=90°;(2)(Ⅰ)将△CBD绕点B顺时针旋转90°得到△CAD′,如图②,∴∠DCD′=90°,∠CD′A=∠CDB,CD′=CD=2,AD′=BD=1,∴△CDD′为等腰直角三角形,∴∠CD′D=45°,DD′=CD=2,在△ADD′中,AD=3,AD′=1,DD′=2,而12+(2)2=32,∴D′A2+AD2=DD′2,∴△ADD'为直角三角形,∠AD′D=90°;∴∠AD′C=135°,∴∠BDC=135°;(Ⅱ)∵△CDD′为等腰直角三角形,∴∠CDD′=45°,而∠BDC=135°;∴∠CDD′+∠BDC=180°,∴点B、D、D′共线,∴△BD′A为直角三角形,∴△ABC的面积=S△CDD′+S△BD′A=×2×2+×1×(1+2)=+.28.如图,过A(﹣4,0),两点的直线与直线y=﹣x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿戈轴向左平移,到C点时停止.直线l分别交线段BC,OC于点D,E,以DE为边向右侧作等边△DEF.设△DEF与△BCO重叠部分图形的周长为m,直线l的运动时间为t(秒).(1)求C点坐标;(2)当点F落在y轴上时,求相应的时间t的值;(3)求m与t之间的关系式.【说明:不考虑直线l平移过程中“起点”与“终点”时的情况.】【分析】(1)根据待定系数法求出直线AB的解析式,再利用方程组求出交点坐标C.(2)设E(t,﹣t),则D(﹣t,﹣t+4),推出DE=﹣2t+4,由△DFE是等边三角形,可得点F坐标(﹣4t+6,2),当点F在y轴上时,﹣4t+6=0,解方程即可解决问题.(3)分两种情形讨论①当0<t≤1.5时,重叠部分四边形DMNE.②当1.5<t <2时,重叠部分是△DEF.分别计算即可.【解答】解:(1)设直线AB的解析式为y=kx+b则有,解得,∴直线AB的解析式为y=x+4,由解得,∴点C坐标(﹣2,2).(2)如图1中,作FH⊥DE于H.设E(﹣t,t),则D(﹣t,﹣t+4),∴DE=﹣2t+4,∵△DFE是等边三角形,∴FH=DE=﹣3t+6,∴点F坐标(﹣4t+6,2),当点F在y轴上时,﹣4t+6=0,∴t=1.5,∴t=1.5s时,点F在y轴上.(3)如图2中,①当0<t≤1.5时,重叠部分四边形DMNE,m=3(﹣2t+4)﹣FM=﹣6t+12﹣(﹣4t+6)=﹣t+8.②当1.5<t<2时,重叠部分是△DEF,m=3(﹣2t+4)=﹣6t+12.综上所述,m=.。
2015-2016学年八年级上数学期中考试试卷含答案

29. 已知:在平面直角坐标系中,△ABC的顶点A、C分
别在轴、轴上,且∠ACB=90°,AC=BC.
(1)如图1,当,点B在第四象限时,
则点B的坐标为 ;
图1
(2)如图2,当点C在轴正半轴上运动,点A在轴正半轴上运动,点B在第四象限时,作BD⊥轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.
示为( )
A. B. C. D.
3. 下列各式:其中分式共有( )个。
A.2 B. 3 C. 4 D. 5
4. 多项式 各项的公因式是( )
一.用心选一选:(每小题3分,共30分)
1.下列各式是因式分解且完全正确的是( )
A.++=+)+ B.
C.(+2)(-2)=- D.-1=(+1)(-1)
2.医学研究发现一种新病毒的直径约为0.000043毫米,这个数用科学记数法表
E是BC的中点, DE平分ÐADC, ÐCED = 35°, 则ÐEAB的度数
是 ( )
A.65° B.55° C.45° D.35°
二.细心填一填:(每小题3分,共24分) .
11.计算:= .
16. 如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,
使得△AOB≌△DOC,你补充的条件是 .
17. 如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.
已知PE=3,则点P到AB的距离是_________________.
18. 在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,
附加题
1.选择题: C
2.填空题: 正确的命题是 1,2,3,4 ,5
八年级数学上学期质量检试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省资阳市简阳市养马中学2015-2016学年八年级数学上学期质检试题一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b24.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±86.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( )A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠310.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=__________.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是__________.13.若分式的值为0,则x的值为__________.14.若等腰三角形的边长分别为2和6,则它的周长为__________.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为__________.16.计算:(x3y)﹣1•(x2y)2=__________.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于__________.18.实数a在数轴上的位置如图,化简+|a﹣2|=__________.19.当x<3时,﹣|x﹣6|=__________.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为__________.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE__________DB(填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE__________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=__________(请你直接写出结果).28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=__________°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.2015-2016学年某某省资阳市简阳市养马中学八年级(上)质检数学试卷一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【解答】解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.【点评】此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.4.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、没把一个多项式转化成几个整式积的形式,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选;D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±8【考点】完全平方式.【分析】一个二项式的平方的形式我们就可以想到完全平方公式,16=42,由此来推算一次项的系数.【解答】解:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.【点评】这道题考我们的逆向思维,关键是我们能够反过来利用完全平方公式确定未知数.6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=【考点】由实际问题抽象出分式方程.【专题】行程问题;压轴题.【分析】设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程解决问题.【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.【点评】此题考查列分式方程解应用题,找出题中蕴含的等量关系是解决问题的关键.7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×【考点】二次根式的性质与化简.【分析】根据二次根式的性质,可判断A、B,根据二次根式的除法,可判断C,根据二次根式的乘法,可判断D.【解答】解:A、=3,故A错误;B、==5,故B错误;C、,故C错误;D、=×,故D正确.故选:D.【点评】本题考查了二次根式的性质与化简,二次根式的性质、二次根式的乘除发是解题关键.9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( ) A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠3【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的X围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.10.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A n的度数,进而可得出结论.【解答】解:∵在△ABA1中,∠B=52°,AB=A1B,∴∠BA1A===64°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===32°;同理可得,∠DA3A2=16°,∠EA4A3=8°,∴∠A n=,∴A2013为顶点的内角的度数===故选B.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=2.【考点】估算无理数的大小.【专题】计算题.【分析】利用”夹逼法“得出的X围,继而也可得出a的值.【解答】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.【点评】本题考查了平方差公式,由题设中代数式x+y,x﹣y的值,将代数式适当变形,然后利用“整体代入法”求代数式的值.13.若分式的值为0,则x的值为0.【考点】分式的值为零的条件;解一元二次方程-因式分解法.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣x=0,|x|﹣1≠0,由x2﹣x=0,得x(x﹣1)=0,∴x=0或x=1,由|x|﹣1≠0,得|x|≠1,∴x≠±1,综上,得x=0,即x的值为0.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.若等腰三角形的边长分别为2和6,则它的周长为14.【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为2和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:假设以2为等腰三角形的腰长,则三角形的各边长分别为2,2,6,不符合两边之和大于第三边;所以腰长只能为6,等腰三角形的周长为6+6+2=14.故填14.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为2019.【考点】代数式求值.【专题】计算题.【分析】原式前两项变形后,把已知等式代入计算即可求出值.【解答】解:∵x(x+3)=1,∴原式=2x(x+3)+2017=2+2017=2019.故答案为:2019.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.计算:(x3y)﹣1•(x2y)2=xy.【考点】负整数指数幂.【分析】根据积的乘方,可化成同底数幂的乘除法,根据同底数幂的乘除法,可得答案.【解答】解:原式=x﹣3y﹣1•x4y2=x﹣3+4y﹣1+2=xy,故答案为:xy.【点评】本题考查了负整指数幂,利用了积的乘方,同底数幂的乘法.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于7或11.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】因为已知条件给出的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.【解答】解:根据题意,①当15是腰长与腰长一半时,AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故填7或11.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确给出哪一部分长要一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.实数a在数轴上的位置如图,化简+|a﹣2|=1.【考点】二次根式的性质与化简;实数与数轴.【分析】利用数轴得出a的取值X围,进而化简求出即可.【解答】解:∵由实数a在数轴上的位置如图,∴1<a<2,∴+|a﹣2|=+|a﹣2|=a﹣1+2﹣a=1.故答案为:1.【点评】此题主要考查了二次根式的性质与化简,正确开平方去绝对值得出是解题关键.19.当x<3时,﹣|x﹣6|=﹣3.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式利用二次根式的性质化简,再利用绝对值的代数意义计算即可.【解答】解:∵x<3,即x﹣3<0,x﹣6<0,∴原式=|x﹣3|﹣|x﹣6|=﹣x+3+x﹣6=﹣3,故答案为:﹣3【点评】此题考查了二次根式的性质与化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【考点】等腰三角形的判定.【分析】分别根据当AB=BP1时,当AB=AP3时,当AB=AP2时,当AP4=BP4时,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.【点评】此题主要考查了等腰三角形的判定,利用分类讨论得出是解题关键.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式计算即可.【解答】解:原式=(98+2)×(98﹣2)=9600.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.【考点】二次根式的混合运算;负整数指数幂.【专题】计算题.【分析】(1)根据负整数指数幂和绝对值的意义得到原式=2﹣4﹣+2﹣,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣4﹣+2﹣=﹣2;(2)原式=1•••=•2a=a.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.记住负整数指数幂的意义.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3x2y﹣2x2y+6xy﹣3x2y﹣5xy=﹣2x2y+xy,∵(x﹣2)2+|y+1|=0,∴x﹣2=0,y+1=0,即x=2,y=﹣1,则原式=8﹣2=6.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】首先把分式进行化简,然后计算分式的除法,最后代入a、b的值计算即可.【解答】解:原式=ab(a+1)÷=ab(a+1)÷(a+1)=ab,则当a=+1,b=﹣1时,原式=(+1)(﹣1)=3﹣1=2.【点评】本题考查了分式的化简求值,解这类题的关键是利用分解因式的方法化简分式.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【考点】分母有理化.【专题】阅读型.【分析】(1)运用第二种方法求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案,【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点评】本题主要考查了分母有理化,解题的关键是找准有理化因式.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?【考点】二元一次方程组的应用.【分析】设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程.【解答】解:设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元.【点评】本题考查了方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE=DB (填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作E F∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=2或4(请你直接写出结果).【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)当E为中点时,过E作EF∥BC交AC于点F,则可证明△BDE≌△FEC,可得到AE=DB;(2)类似(1)过E作EF∥BC交AC于点F,可利用AAS证明△BDE≌△FEC,可得BD=EF,再证明△AEF是等边三角形,可得到AE=EF,可得AE=DB;(3)分点E在AB上和在BA的延长线上,类似(2)证得全等,再利用平行得到.【解答】解:(1)如图1,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(3)因为AE=1,△ABC的边长为3,所以E点可能在线段AB上,也可能在BA的延长线上,当点E在AB时,同(2)可知BD=AE=1,则CD=BC+BD=1+3=4,当点E在BA的延长线上时,如图3,过点E作EF∥BC,交CA的延长线于点F,则∠F=∠FCB=∠B=60°,∠FEC+∠ECD=∠FEC+∠EDC=180°,∴∠EDB=∠FEC,且ED=EC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴EF=BD,又可判定△AEF为等边三角形,∴BD=EF=AE=1,∴CD=BC﹣BD=3﹣1=2,故答案为:2或4.【点评】本题主要考查全等三角形的判定和性质及等边三角形的性质和判定,利用全等得到BD=EF,再找EF和AE的关系是解题的关键.28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=40°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】常规题型.【分析】(1)可证△ABD≌△ACE,可得∠ACE=∠B,即可解题;(2)根据△ABD≌△ACE可分别求得∠BCE用m和用n分别表示,即可求得m、n的关系;(3)分两种情况分析,第1种,当D在线段BC的延长线上或反向延长线上时,第2种,当D在线段BC上时.【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠B,∵AB=AC,∠BAC=40°,∴∠ACE=∠B=70°,∴∠DCE=180°﹣70°﹣70°=40°;(2)∵△ABD≌△ACE(1)已证,∴∠ACE=∠B,∵AB=AC,∠BAC=m,∴∠ACE=∠B=∠ACB=,∴∠BCE=∠ACB+∠ACE=180°﹣m,∵∠BCE=180°﹣∠DCE=180°﹣n,∴m=n.(3)当D在线段BC的延长线上或反向延长线上时,m=n,当D在线段BC上时,m+n=180°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△ACE是解题的关键.。
2015-2016学年度第一学期期末八年级数学试题(含答案)

2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:32(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省广元市2015-2016学年八年级数学上学期期末试题
(时间:120分钟 满分:120分)
一、选择题(每题3分,共30分)
1.下列四个图中,是轴对称图形的是 ( ) A. B . C . D .
2.在下列长度的各组线段中,能组成三角形的是( )
A .5,6,13
B .3,4,9
C .3,6,8
D .5,7,12
3.王师傅用5根木条钉成一个五边形木架,要木架不变形,他至少还要再钉上( )根木条?
A.0根
B. 1根
C.2根
D.3根
4.已知等腰三角形两边长是8cm 和4cm ,那么它的周长是( )
A.12cm
B.16cm
C.16cm 或20cm
D.20cm
5.下列计算中正确的是( )
A .5322a b a =+ B
.55a a a =÷ C .1052a a a =∙ D .632)(a a -=-
6.在式子,1,232,23,3,43m
n x y x a a c a ----+-π中,分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个
7.在平面直角坐标系中,点A(-2,4),B(4,2),在x 轴上取一点P ,使点P 到点A 和点B 的
距离之和最小,则点P 的坐标是( )
A. (2,0)
B. (4,0)
C. (-2,0)
D. (0,0)
8.已知2,4==n m x x ,,则n m x -2的值为( )
A 、8
B 、43
C 、12
D 、3
4 9.已知三角形两边长分别是a,b(b>a),则三角形的周长C 应满足( )
A. 2b<C<2(a+b)
B. a+b<C<3b
C. 2a+b<C<a+2b
D. 2(a+b)<C<a+3b
10.下列各组图形中,是全等三角形的是( )
A.两个含60°角的直角三角形
B.腰对应相等的两个等腰直角三角形
C.边长为3和4的两个等腰三角形
D.一个钝角相等的两个等腰三角形
二、填空题(每题3分,共24分)
11. b 6 =(b 2)3=( )2 12. 0.25)-2 -()0 =
13.一个正多边形的每一个外角都等于 45,则该多边形的内角和等于 .
14.某种感冒病毒的直径为0.000031米,用科学记数法表示为 .
15.若分式24
2--x x 的值为0,则x 的值是
16.如图,ABC ∆中, 30,90=∠=∠A C ,AB 的垂直平分线交 AC 于D ,交AB 于E ,CD =2,则AC = _______. 17. 等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角的度数为 .
18.如图,已知S △ABC = 40,AB=22,AC=18,AD 平分∠BAC ,DE ⊥
点E,DF ⊥AC 于点F,则DE= . 三、解答题(66分) 19.(每小题4分,共
16分)
计算(1)22)3(2)3(xy xy x ÷∙- (2))12)(12()2(42+--+x x x
分解因式(3) 3x 3-6x 2+3x 解方程(4) = 1
20. 先化简再求值:122
)12
14
3(22+-+÷---+x x x x x x 其中x=-3(6分)
C
21. (7分)如图,在△ABC 中,B 36C 66∠=∠= ,,AD 是高,AE 是角平分线,求EAD ∠的度数.
22.(7分)如图:已知AB 平分∠CAD ,AC=AD 。
求证:BC=BD 。
23.(5+4=9分)如图,点C 在线段AB 上,AD∥EB,AC=BE ,AD=BC.CF 平分∠DCE.
求证:(1)⊿ACD≌⊿EBC.(2)CF⊥DE
24.(5+4=9分)大武口区在道路改造过程中,需要铺设一条长为4200米的排水管道,
根据招标文件得知甲工程队比乙工程队每天能多铺设20米. 甲工程队铺设350米所
用的天数与乙工程队铺设250米所用的天数相同.
⑴甲、乙工程队每天各能铺设多少米?
⑵施工时,需付给甲队每天施工费3000元,需付给乙队每天施工费2500元,单独承
包给甲队或乙队,或者两队一起施工,为了节约经费,你认为三种承包方式怎样承包
最合理?
C D
B A
F E
D C B A
25. (5+5+2=12分))如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E,
(1)求证:△FBD≌△ACD;
(2)求证:△ABC是等腰三角形;
(3)求证:CE=BF.
嘉陵一中教育集团2015年秋八年级期末测试卷
8上期末测试数学答案
一.BCCDD BAAAB
二.11. 3 12. 0 13. 1080°14. 3.1-5m 15. -2 16. 6
17. 50°或130° 18. 2
三.19. (1) (2)16x+20 (3) 3x(x-1)2 (4)x=0.75
20. ,2 21,15° 22.23略 24.(1)甲。
70米,乙50米(2)合作
192500元,甲独做180000元,乙独做210000 元,选甲
25.【解答】证明:(1)在等腰Rt△DBC中,BD=C D,
∵∠BDC=90°,
∴∠BDC=∠ADC=90°,
∵在△FBD和△ACD中,,
∴△FBD≌△ACD(SAS);
(2)∵△FBD≌△ACD,
∴∠DBF=∠DCA,
∵∠ADC=90°,
∴∠DCA+∠A=90°,
∴∠DBF+∠A=90°,
∴∠AEB=180°﹣(∠DBF+∠A)=90°,
∵BF平分∠DBC,
∴∠ABF=∠CBF,
∵在△ABE和△C BE中,,
∴△ABE≌△CBE(ASA),
∴AB=CB,
∴△ABC是等腰三角形;
(3)∵△FBD≌△ACD,
∴BF=AC,
∵△ABE≌△CBE,
∴AE=CE=AC,
∴CE=BF.。