朝阳市中考数学试题,2019年辽宁省朝阳市九年级中考数学试卷及答案解析
2019-2020学年辽宁省朝阳市中考数学模拟试卷(有标准答案)(Word版)
辽宁省朝阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣12.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×1083.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.4.方程2x2=3x的解为()A.0 B.C.D.0,5.如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40° B.50° C.150°D.140°6.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.17.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π8.如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.69.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.710.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.函数y=的自变量x的取值范围是.12.已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为.13.若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是.14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是.15.通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为.16.如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=CG2;(5)若AF=2DF,则BF=7GF.其中正确结论的序号为.三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.2016+2•cos60°﹣(﹣)﹣2+()0.18.先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.19.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.20.如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B 点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)21.为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.23.(9分)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)24.小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.25.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣1【考点】实数大小比较.【分析】先求出各数的绝对值,再比较大小即可解答.【解答】解:|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最小的数是0,故选:B.【点评】本题考查了实数的大小比较,解决本题的关键是求出各数的绝对值.2.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4.62亿用科学记数法表示为:4.62×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】计算题.【分析】从正面看几何体得到主视图即可.【解答】解:根据题意的主视图为:,故选B【点评】此题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.4.方程2x2=3x的解为()A.0 B.C.D.0,【考点】解一元二次方程-因式分解法.【专题】常规题型;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选D【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40° B.50° C.150°D.140°【考点】平行线的性质.【分析】作c∥a,由于a∥b,可得c∥b.然后根据平行线的性质解答.【解答】解:作c∥a,∵a∥b,∴c∥b.∴∠1=∠5=50°,∴∠4=90°﹣50°=40°,∴∠6=∠4=40°,∴∠3=180°﹣40°=140°.故选D.【点评】本题考查了平行线的性质,作出辅助线是解题的关键.6.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【考点】中位数;算术平均数.【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【解答】解:(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.【点评】本题考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.7.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π【考点】扇形面积的计算;多边形内角与外角.【分析】圆心角之和等于n边形的内角和(n﹣2)×180°,由于半径相同,根据扇形的面积公式S=计算即可求出圆形中的空白面积,再用5个圆形的面积减去圆形中的空白面积可得阴影部分的面积.【解答】解:n边形的内角和(n﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π.故选:C.【点评】此题考查扇形的面积计算,正确记忆多边形的内角和公式,以及扇形的面积公式是解决本题的关键.8.如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.6【考点】反比例函数与一次函数的交点问题.【专题】用函数的观点看方程(组)或不等式.【分析】因为直线与双曲线的交点坐标就是直线解析式与双曲线的解析式联立而成的方程组的解,故求出直线解析式与双曲线的解析式,然后将其联立解方程组,得点B与C的坐标,再根据三角形的面积公式及坐标的意义求解.【解答】解:∵直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3),∴﹣m=3,,∴m=﹣3,n=﹣3,∴直线的解析式为:y=﹣3x,双曲线的解析式为:y=﹣解方程组得:,则点A的坐标为(﹣1,3),点B的坐标为(1,﹣3)∴点C的坐标为(1,0)∴S△ABC=×1×(3+3)=3故:选A【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是理解函数的图象的交点与两函数解析式之间的关系.9.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【考点】旋转的性质;平行线的判定.【专题】计算题.【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】二次函数与不等式(组);二次函数图象与系数的关系;抛物线与x轴的交点.【分析】逐一分析5条结论是否正确:(1)由抛物线与x轴有两个不相同的交点结合根的判别式即可得出该结论正确;(2)根据抛物线的对称轴为x=﹣1,即可得出b=2a,即(2)正确;(3)根据抛物线的对称性找出点(﹣,y3)在抛物线上,再结合抛物线对称轴左边的单调性即可得出(3)错误;(4)由x=﹣3时,y<0,即可得出3a+c<0,结合b=2a即可得出(4)正确;(5)由方程at2+bt+a=0中△=b2﹣4a•a=0结合a<0,即可得出抛物线y=at2+bt+a中y≤0,由此即可得出(5)正确.综上即可得出结论.【解答】解:(1)由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴(1)正确;(2)∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴(2)正确;(3)∵抛物线的对称轴为x=﹣1,点(,y3)在抛物线上,∴(﹣,y3).∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴(3)错误;(4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴(4)正确;(5)∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与x轴只有一个交点,∵图中抛物线开口向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴(5)正确.故选C.【点评】本题考查了二次函数图象与系数的关系、二次函数与不等式以及抛物线与x轴的交点,解题的关键是逐一分析5条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,熟练掌握二次函数的图象是关键.二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.函数y=的自变量x的取值范围是x≥2且x≠3 .【考点】函数自变量的取值范围;零指数幂.【分析】根据分式、二次根式以及零指数幂有意义的条件解不等式组即可.【解答】解:由题意得,,解得x≥2且x≠3,故答案为x≥2且x≠3.【点评】本题考查了函数自变量的取值范围问题,以及零指数幂有意义的条件:底数不为零.12.已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为(1,2)或(﹣1,﹣2).【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.13.若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是a<m<n<b .【考点】抛物线与x轴的交点.【分析】由方程可得x﹣m和x﹣n同号,根据方程根的定义代入可得到a、b与m、n的关系,从而可得出其大小关系.【解答】解:∵(x﹣m)(x﹣n)=3,∴可得或,∵m<n,∴可解得x>n或x<m,∵方程的两根为a和b,∴可得到a>n或a<m,b>n或b<m,又a<b,综合可得a<m<n<b,故答案为:a<m<n<b.【点评】本题考查了一元二次方程的根与系数之间的关系,难度较大,关键是对m,n,a,b大小关系的讨论是此题的难14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是(﹣10,3).【考点】勾股定理的应用;矩形的性质;坐标与图形变化-对称;翻折变换(折叠问题).【分析】根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E的坐标.【解答】解:设CE=a,则BE=8﹣a,由题意可得,EF=BE=8﹣a,∵∠ECF=90°,CF=4,∴a2+42=(8﹣a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(﹣10,3),故答案为(﹣10,3).【点评】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化﹣对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为﹣1 .【考点】根与系数的关系;根的判别式.【分析】由方程的有两个实数根x1、x2可得△=k2﹣4(k+1)≥0,求得k的范围,又由x1+x2=﹣k,x1x2=k+1及x12+x22=1可求得k的值.【解答】解:∵x1,x2为一元二次方程x2+kx+k+1=0的两实数根,∴△=k2﹣4(k+1)≥0,且x1+x2=﹣k,x1x2=k+1,解得:k≤2﹣2或k≥2+2,又∵x12+x22=1,即(x1+x2)2﹣x1x2=1,∴(﹣k)2﹣(k+1)=1,即k2﹣k﹣2=0,解得:k=﹣1或k=2(舍),故答案为:﹣1.【点评】本题主要考查一元二次方程的根与系数的关系及根的判别式,熟练掌握根的判别式及根与系数的关系的是关键.16.如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=CG2;(5)若AF=2DF,则BF=7GF.其中正确结论的序号为(1)(3)(4)(5).【考点】四边形综合题.【分析】(1)正确,先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;(2)错误,只要证明△GDC≌△BGC,利用等腰三角形性质即可解决问题.(3))正确,由△AED≌△DFB,推出∠ADE=∠DBF,所以∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,(4)正确,证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积.(5)正确,过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF,BF=7FG.【解答】解:(1)∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,在△AED和△DFB中,,∴△AED≌△DFB,故本小题正确;(2)当点E,F分别是AB,AD中点时(如图1),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;(3)∵△AED≌△DFB,∴∠ADE=∠DBF,∴∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,故本选项正确.(4)∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.(如图2)则△CBM≌△CDN,(AAS)∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2,故本小题正确;(5)过点F作FP∥AE于P点.(如图3)∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF,∴BF=7GF,故本小题正确.综上所述,正确的结论有(1)(3)(4)(5).故答案为:(1)(3)(4)(5).【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据零指数幂和负整数指数幂的运算法则、特殊角的锐角三角函数值计算即可.【解答】解:运算=1+2×﹣4+1=1+1﹣4+1=﹣1.【点评】本题考查的是实数的运算,掌握零指数幂和负整数指数幂的运算法则、熟记特殊角的锐角三角函数值是解题的关键.18.先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,由﹣1≤x<3,x为整数,得到x=﹣1,0,1,2,经检验x=﹣1,0,1不合题意,舍去,则当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【考点】一元二次方程的应用.【专题】销售问题.【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B 点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)【考点】解直角三角形的应用-方向角问题.【分析】根据题意可知,实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D点,求CD的长.【解答】解:作CD⊥AB于D,根据题意,∠CAD=30°,∠CBD=45°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=2(海里),解得:CD=+1≈2.732>2.5,答:渔船继续追赶鱼群没有触礁危险.【点评】本题考查了解直角三角形的应用,“化斜为直”是解三角形的常规思路,常需作垂线(高),构造直角三角形.原则上不破坏特殊角(30°、45°、60°).21.为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.【考点】直线与圆的位置关系;相似三角形的判定与性质.【分析】(1)连接OD,得到∠DOE=2∠DAE,由角平分线得到∠BAC=2∠DAE,得出∠DOE=∠BAC,得到OD∥AC即可;(2)由OD∥AC一个A型和一个X型相似图形,先求出BD,作出DH⊥AB,利用三角函数求出∠B,进而得出OB,利用角平分线的性质得出DH=3,从而求出圆的半径,即可.【解答】解:(1)BC是⊙O的切线,理由:如图,连接OD,∵AD为∠BAC的平分线,∴∠BAC=2∠BAD,∵∠DOE=2∠BAD,∴∠DOE=∠BAC,∴OD∥AC,∴∠ODB=∠ACB=90°,∵点D在⊙O上,∴BC是⊙O的切线.(2)如图2,连接OD,由(1)知,OD∥AC,∴,∵,∴,∵OD∥AC,∴,∴∵CD=3,∴DB=6,过点D作DH⊥AB,∵AD是∠BAC的角平分线,∠ACB=90°,∴DH=CD=3,在Rt△BDH中,DH=3,BD=6,∴sin∠B==,∴∠B=30°,BO==4,∴∠BOD=60°,在Rt△ODB中,sin∠DOH=,∴,∴OD=2∴BE═OB﹣OE=OB﹣OD=4﹣2=2.【点评】此题是直线和圆的位置关系,主要考查了圆的性质,切线的判定,锐角三角函数,相似三角形,解本题的关键是求出BD.23.为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【考点】二次函数的应用.【分析】(1)根据此时抛物线顶点坐标为(7,3.2),设解析式为y=a(x﹣7)2+3.2,再将点C坐标代入即可求得;(2)由(1)中解析式求得x=9.5时y的值,与他起跳后的最大高度为3.1米比较即可得;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.43且x=18时,y≤0得出关于h的不等式组,解之即可得.【解答】解:(1)根据题意知此时抛物线的顶点G的坐标为(7,3.2),设抛物线解析式为y=a(x﹣7)2+3.2,将点C(0,1.8)代入,得:49a+3.2=1.8,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣7)2+;(2)由题意当x=9.5时,y=﹣(9.5﹣7)2+≈3.02<3.1,故这次她可以拦网成功;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C(0,1.8)代入,得:49a+h=1.8,即a=,∴此时抛物线解析式为y=(x﹣7)2+h,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.【点评】此题主要考查了二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,再根据题意确定范围.24.小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.【考点】几何变换综合题.【分析】(1)将△ACP绕点A逆时针旋转60°得到△ADE,可得PC=DE,再证△APD为等边三角形得PA=PD、∠APD=∠ADP=60°,由∠APB=∠BPC=120°知B、P、D、E四点共线,根据两点间线段最短即可得答案;(2)分别以AB、BC为边在△ABC外作等边三角形,连接CD、AE交于点P,先证△ABE≌△DBC可得CD=AE、∠BAE=∠BDC,继而知∠APO=∠OBD=60°,在DO上截取DQ=AP,再证△ABP≌△DBQ可得BP=BQ、∠PBA=∠QBD,从而可证△PBQ为等边三角形,得PB=PQ,由PA+PB+PC=DQ+PQ+PC=CD=AE,Rt△ACE中根据勾股定理即可得AE的长,从而可得答案.【解答】解:(1)如图1,将△ACP绕点A逆时针旋转60°得到△ADE,∴∠PAD=60°,△PAC≌△DAE,∴PA=DA、PC=DE、∠APC=∠ADE=120°,∴△APD为等边三角形,∴PA=PD,∠APD=∠ADP=60°,∴∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,∴PA+PB+PC=PD+PB+DE=BE.∴PA+PB+PC的值最小.。
辽宁省朝阳市2019-2020学年中考第一次质量检测数学试题含解析
辽宁省朝阳市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒2.如图,在平面直角坐标系中,△ABC 位于第二象限,点B 的坐标是(﹣5,2),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于于x 轴对称的△A 2B 2C 2,则点B 的对应点B 2的坐标是( )A .(﹣3,2)B .(2,﹣3)C .(1,2)D .(﹣1,﹣2)3.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .19B .14C .16D .134.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( )A .B .C .D .5.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )A.20 B.24 C.28 D.306.下列各数是不等式组32123xx+⎧⎨--⎩fp的解是()A.0 B.1-C.2 D.37.下列运算正确的是( )A.4x+5y=9xy B.(−m)3•m7=m10C.(x3y)5=x8y5D.a12÷a8=a48.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°9.平面直角坐标系中的点P(2﹣m ,12m )在第一象限,则m的取值范围在数轴上可表示为()A .B.C.D.10.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)11.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A.2人B.16人C.20人D.40人12.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x+y=8,xy=2,则x2y+xy2=_____.14.对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:3122⊕=-,3212⊕=,()212510-⊕=,()21525⊕-=-,…,则a⊕b=.15.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.16.如图,点A、B、C 在⊙O 上,⊙O 半径为1cm,∠ACB=30°,则»AB的长是________.17.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.18.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|20.(6分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)21.(6分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.22.(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC n的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.23.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.24.(10分)已知:关于x的方程x2﹣(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.25.(10分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)26.(12分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?27.(12分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选:C .【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.2.D【分析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【点睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.3.A【解析】【分析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是1 9 ,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.4.C【解析】11.详解:49 911,4 <<Q由被开方数越大算术平方根越大,49911,4<<即7 311,2 <<故选C.的大小.【分析】【详解】 试题解析:根据题意得9n=30%,解得n=30, 所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D .考点:利用频率估计概率.6.D【解析】【分析】求出不等式组的解集,判断即可.【详解】32123x x ①②+>⎧⎨-<-⎩, 由①得:x >-1,由②得:x >2,则不等式组的解集为x >2,即3是不等式组的解,故选D .【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.7.D【解析】【分析】各式计算得到结果,即可作出判断.【详解】解:A 、4x+5y=4x+5y ,错误;B 、(-m )3•m 7=-m 10,错误;C 、(x 3y )5=x 15y 5,错误;D 、a 12÷a 8=a 4,正确;故选D .【点睛】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.9.B【解析】【分析】【详解】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征10.A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.11.C【分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【详解】 400×2201216102=+++人. 故选C .【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.12.B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×(62)2=9π,圆锥的侧面积=12×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B .点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】将所求式子提取xy 分解因式后,把x+y 与xy 的值代入计算,即可得到所求式子的值.【详解】∵x+y=8,xy=2,∴x 2y+xy 2=xy (x+y )=2×8=1.故答案为:1.【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式. 14.22a b ab- 【解析】试题分析:根据已知数字等式得出变化规律,即可得出答案: ∵2231212212-⊕=-=⨯,2232121221-⊕==⨯,()()()222521251025---⊕==-⨯,()()()22522152552--⊕-=-=⨯-,…, ∴22a b a b ab-⊕=。
2019年辽宁省朝阳市建平县实验初中中考数学考试试卷(4月)(解析版)
2019年辽宁省朝阳市建平县实验初中中考数学试卷(4月)一.选择题(共10小题,满分30分,每小题3分)1.﹣的倒数是()A.B.2C.﹣D.﹣22.三个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.3.下列计算正确的是()A.2a2+4a2=6a4B.(a+1)2=a2+1C.(a2)3=a5D.x÷x2=4.下列事件中,是必然事件的是()A.掷一枚硬币,正面朝上B.购买一张彩票,一定中奖C.任意画一个三角形,它的内角和等于180°D.掷两枚质地均匀的正方体骰子,点数之和一定大于75.如图,DE∥BC,AD:DB=2:3,EC=6,则AE的长是()A.3B.4C.6D.106.元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯、吊灯等.若购买1个宫灯和1个纱灯共需75元,小田用690元购买了6个同样的宫灯和10个纱灯.若设每个宫灯x元,每个纱灯为y元,由题可列二元一次方程组得()A.B.C.D.7.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分8.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD 是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④9.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论错误的是()A.该函数有最大值B.该函数图象的对称轴为直线x=1C.当x>2时,函数值y随x增大而减小D.方程ax2+bx+c=0有一个根大于310.如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于E,F两点,且∠MAN=45°,则下列结论:①MN=BM+DN;②△AEF∽△BEM;③;④△FMC是等腰三角形.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.58万千米用科学记数法表示为:千米.12.如图,⊙O的两条弦AB和CD相交于点P,若弧AC、弧BD的度数分别为60°、40°,则∠APC的度数为.13.七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD中,BD为对角线,E,F 分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.在剪开之前,随机向正方形ABCD内投一粒米,则米粒落在四边形BMPE内的概率为.14.观察以下一列数:3,,,,,…则第20个数是.15.如图,y=x+b(b为常数)的图象与x轴,y轴分别交于点A,B与反比例函数y=(x>0)的图象交于点C.若AC•BC=4,则k的值为.16.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有(请写出所有正确判断的序号)三.解答题(共9小题,满分72分)17.(5分)计算:﹣12018+﹣(π﹣3)0﹣|tan60°﹣2|.18.(5分)(1)求不等式组的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.19.(7分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它、等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题(1)本次调查共抽取了学生多少人?(2)求本次调查中喜欢踢足球人数,并补全条形统计图;(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.20.(7分)如图,某轮船在海上向正东方向航行,上午8:00在点A处测得小岛O在北偏东60°方向的16km处;上午8:30轮船到达B处,测得小岛O在北偏东30°方向.(1)求轮船从A处到B处的航速;(2)如果轮船按原速继续向东航行,还需经过多少时间轮船才恰好位于小岛的东南方向?21.(8分)有四张正面分别标有数字1,2,﹣3,﹣4的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机地抽取一张不放回,将该卡片上的数字记为m,再随机地抽取一张,将卡片上的数字记为n.(1)请用画树状图或列表法写出(m,n)所有的可能情况;(2)求所选的m,n能使一次函数y=mx+n的图象经过第一、三、四象限的概率.22.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的直线PC垂直,垂足为点D,直线DC与AB的延长线相交于点P,AC平分∠DAB,弦CE平分∠ACB,交AB于点F.(1)求证:直线PC是⊙O的切线;(2)当∠P=30°,AB=10时,求PF的长.23.(10分)某公司设计了一款产品,每件成本是50元,在试销期间,据市场调查,销售单价是60元时,每天的销量是250件,而销售单价每增加1元,每天会少售出5件,公司决定销售单价x(元)不低于60元,而市场要求x不得超过100元.(1)求出每天的销售量y(件)与销售单价x(元)之间的函数关系式,并写出x的取值范围;(2)求出每天的销售利润W(元)与销售单价x(元)之间的函数关系式,并求出当x为多少时,每天的销售利润最大,并求出最大值;(3)若该公司要求每天的销售利润不低于4000元,但每天的总成本不超过6250元,则销售单价x最低可定为多少元?24.(10分)如图,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,点E、F分别在线段BD、CD上,DE=DF=5.AE的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.(1)求证:BG=CH;(2)设AD=x,△ADN的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)联结FG,当△HFG与△ADN相似时,求AD的长.25.(12分)如图1,抛物线y=﹣x2+bx+c交x轴于点A(,0)和点B,交y轴于点C(0,4),一次函数y=kx+m的图象经过点B,C,点P是抛物线上第二象限内一点.(1)求二次函数和一次函数的表达式;(2)过点P作x轴的平行线交BC于点D,作BC的垂线PM交BC于点M,设点P的横坐标为t,△PDM的周长为l.①求l关于t的函数表达式;②求△PDM的周长的最大值及此时点P的坐标;(3)如图2,连接PC,是否存在点P,使得以P,M,C为顶点的三角形与△CBO相似?若存在,直接写出点P的横坐标;若不存在,请说明理由.2019年辽宁省朝阳市建平县实验初中中考数学试卷(4月)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据乘积为1的两个数互为倒数,直接解答即可.【解答】解:∵﹣×(﹣2)=1,∴﹣的倒数是﹣2,故选:D.【点评】本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.【分析】根据俯视图的定义和空间想象,得出图形即可.【解答】解:俯视图从左到右分别是,1,个正方形,如图所示:.故选:C.【点评】此题考查了简单组合体的俯视图,关键是对几何体的三种视图的空间想象能力.3.【分析】直接利用合并同类项法则以及幂的乘方运算法则、完全平方公式分别分析得出答案.【解答】解:A、2a2+4a2=6a2,故此选项错误;B、(a+1)2=a2+2a+1,故此选项错误;C、(a2)3=a6,故此选项错误;D、x÷x2=,故此选项正确;故选:D.【点评】此题主要考查了合并同类项以及幂的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.4.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.根据定义即可解决.【解答】解:A.掷一枚硬币,正面朝上是随机事件;B.购买一张彩票,一定中奖是随机事件;C.任意画一个三角形,它的内角和等于180°是必然事件;D.掷两枚质地均匀的正方体骰子,点数之和一定大于7是不可能事件;故选:A.【点评】该题考查的是对必然事件的概念的理解;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【分析】利用平行线分线段成比例定理得到=,然后利用比例的性质可计算出AE的长.【解答】解:∵DE∥BC,∴=,即=,∴AE=4.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了平行线分线段成比例定理.6.【分析】设每个宫灯x元,每个纱灯y元,根据“购买1个宫灯和1个纱灯共需75元,购买6个宫灯和10个纱灯共需690元”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设每个宫灯x元,每个纱灯y元,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.8.【分析】根据矩形的性质得到∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△AEB≌△CED,根据等腰三角形的性质即可得到结论,依此可得①③④正确;无法判断∠ABE和∠CBD是否相等.【解答】解:∵四边形ABCD为矩形,∴∠BAE=∠DCE,AB=CD,在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,∴△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形,无法判断∠ABE和∠CBD是否相等.故其中正确的是①③④.故选:B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.9.【分析】已知函数的三点,代入y=ax2+bx+c分别求出a,b,c对应的值,解出解析式即可以判断【解答】解:依题意,已知点(﹣1,1),(0,2)(2,2)在y=ax2+bx+c上,则有,解得故,二次函数解析式为:选项A,∵a<0,∴该函数有最大值,选项正确选项B,对称轴x==,选项正确选项C,∵a<0,函数先增大后减小,对称轴x=1,∴当x>2时,函数值y随x增大而减小.选项正确选项D,,可解得方程两根,两根均小于3,选项错误故选:D.【点评】此题考查的是二次函数与一元二次方程的应用,二次函数中由a的情况即可判断是否存在最大(小)值.要熟记一元二次方程的求根公式.10.【分析】将△ABM绕点A逆时针旋转90°至△ADM′,根据正方形的性质和且∠MAN=45°可证明MN=BM+DN;根据三角形的内角和得到∠M′+∠AFD=180°,得到∠AFE=∠M′,推出∠AMB=∠AFE,于是得到△AEF∽△BEM,故②正确;根据相似三角形的判定定理得到△AEB∽△FEM,根据相似三角形的性质得到∠EMF=∠ABE=45°,推出△AFM是等腰直角三角形,于是得到;故③正确;根据全等三角形的性质得到AF=CF,等量代换得到△FMC 是等腰三角形,故④正确.【解答】解:将△ABM绕点A逆时针旋转90°至△ADM′,∵∠M′AN=∠DAN+∠MAB=45°,AM′=AM,BM=DM′,∵∠M′AN=∠MAN=45°,AN=AN,∴△AMN≌△AM′N′(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正确;∵∠FDM′=135°,∠M′AN=45°,∴∠M′+∠AFD=180°,∵∠AFE+∠AFD=180°,∴∠AFE=∠M′,∵∠AMB=∠M′,∴∠AMB=∠AFE,∵∠EAF=∠EBM=45°,∴△AEF∽△BEM,故②正确;∴,即=,∵∠AEB=∠MEF,∴△AEB∽△FEM,∴∠EMF=∠ABE=45°,∴△AFM是等腰直角三角形,∴;故③正确;在△ADF与△CDF中,,∴△ADF≌△CDF(SAS),∴AF=CF,∵AF=MF,∴FM=FC,∴△FMC是等腰三角形,故④正确;故选:D.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,旋转的性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:根据58万=580000,用科学记数法表示为:5.8×105.故答案为:5.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】连接AD,根据三角形的外角的性质、圆周角定理计算即可【解答】解:连接AD,∵∠APC=∠BAD+∠ADC=×(+)的度数,∴∠APC=(40°+60°)=50°.故答案为50°.【点评】本题考查的是圆周角定理、三角形的外角的性质,掌握圆周角定理和三角形的外角的性质定理是解题的关键.13.【分析】设BE=a,根据三角形的中位线的性质得到EF∥BD,EF=BD,推出点P在AC上,得到PE=EF,得到四边形BMPES平行四边形,过M作MH⊥BC于H,于是得到结论.【解答】解:设BE=a,∵E,F分别为BC,CD的中点,∴EF∥BD,EF=BD,BC=2a,∴BD=2a,∵AP⊥EF,∴AP⊥BD,∴BO=OD,∴点P在AC上,∴PE=EF,∴PE=BM,∴四边形BMPE 是平行四边形,∴BO =BD ,∵M 为BO 的中点,∴BM =BD ,∵E 为BC 的中点,∴BC =2a ,∴BD =2a ,∴BM =a ,过M 作MH ⊥BC 于H ,∴MH =BM =a ,∴S 正方形ABCD =4a 2,S 四边形BMPE =a 2,∴米粒落在四边形BMPE 内的概率为=,故答案为:.【点评】本题考查了几何概率,七巧板,正方形的性质,平行四边形的判定和性质,三角形的中位线的性质,正确的识别图形是解题的关键.14.【分析】观察已知数列得到一般性规律,写出第20个数即可.【解答】解:观察数列得:第n 个数为,则第20个数是,故答案为: 【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.15.【分析】作CD⊥x轴于D,则OB∥CD,得出=,进一步得出=,由勾股定理得出AC2=AD2+CD2=2(x+b)2,整理得出,即可得出k=x(x+b)=2.【解答】解:作CD⊥x轴于D,则OB∥CD,∴=,∵y=x+b(b为常数)的图象与x轴,y轴分别交于点A,B,∴A(﹣b,0),B(0,b),∴OA=OB=b,∵△AOB是等腰直角三角形,∴△ADC也是等腰直角三角形,∴AD=CD,∴C(x,x+b),∴k=x(x+b),∴=,∵AC•BC=4,∴BC=,∴=,∴=,∵AC2=AD2+CD2=2(x+b)2,∴=,即,∴x(x+b)=2,∴k=2.故答案为2.【点评】本题属于反比例函数与一次函数的交点问题,涉及的知识有:平行线分线段成比例定理,勾股定理的应用,熟练掌握图象上点的坐标特征是解本题的关键.16.【分析】根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,此时a=3,故①正确;根据相遇可知y1=y2,列方程求解可得x的值为,故②正确;分两种情况考虑,相遇前和相遇后两车相距60km,是相遇前的时间,故③不正确;先确定b的值,根据函数的图象可以得到C的点的坐标,故④正确;分两车相遇前和两车相遇后两种情况讨论,即可求得x的值,故⑤正确.【解答】解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,故①正确;设y1=kx+b,将(0,300)、(3,0)代入,得:,解得:,∴y1=﹣100x+300,设y2=mx,将点(5,300)代入,得:5m=300,解得:m=60,∴慢车离乙地的距离y2解析式为:y2=60x;∴当y1=y2时,两车相遇,可得:﹣100x+300=60x,解得:x=h,故②正确;分两种情况考虑,相遇前两车相距60km,﹣100x+300﹣60x=60,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=60,解得,h,∴当x=h或h时,两车相距60km,故③不正确;快车每小时行驶=100千米,慢车每小时行驶60千米,两地之间的距离为300千米,∴b=300÷(100+60)=,由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为3×60=180千米,∴C点坐标为(3,180),故④正确;分两种情况考虑,相遇前两车相距200km,﹣100x+300﹣60x=200,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=200,解得,h,∴当x=h或h时,两车相距200km,故⑤正确.故答案为:①②④⑤.【点评】本题考查了一次函数的应用、二元一次方程组的解法、一次函数解析式的求法;主要根据待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键,要注意要分情况讨论.三.解答题(共9小题,满分72分)17.【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质分别化简得出答案.【解答】解:原式===3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】(1)分别解每个不等式,再根据“大小小大中间找”确定不等式组的解集,从而得出答案;(2)先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1、0;(2)原式=(﹣)÷=•=,当a=+1时,原式==.【点评】本题主要考查分式的化简求值与解一元一次不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式的能力.19.【分析】(1)根据打篮球的人数和百分比即可解决问题;(2)求出本次调查中喜欢踢足球人数即可解决问题;(3)总人数乘以样本中喜欢跳绳学生人数所占比例可得;【解答】解:(1)总人数=5÷10%=50(人);(2)本次调查中喜欢踢足球人数=50﹣5﹣20﹣8﹣5=12(人),条形图如图所示:(3)估计我校喜欢跳绳学生有1200×=192(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【分析】(1)过点O作OD⊥AB,垂足为D,构造直角三角形利用特殊角的三角函数值先求出AB,再利用路程、速度和时间间关系求出轮船的航速;(2)过点O作∠DOE=45°交AD的延长线与点E.求出BE的长,再求轮船航行的时间.【解答】解:(1)如图,过点O作OD⊥AB,垂足为D.有题意知:∠OAD=30°,∠OBD=60°.在Rt△OAD中,∵OA=16,∠OAD=30°,∴OD=8,AD=24.在Rt△OBD中,∵OD=8,∠OBD=60°.∴BD===8,∴AB=AD﹣BD=24﹣8=16(km),∴v==32(km/h)答:轮船从A处到B处的航速为32km/h.(2)过点O作∠DOE=45°交AD的延长线与点E.∵∠DOE=45°,∠ODE=90°,∴DE=OD=8km,BE=BD+DE=8+8(km),∵=(h),答:轮船按原速继续向东航行,还需要航行小时才恰好位于小岛的东南方向.【点评】本题考查的是解直角三角形的应用﹣方向角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数求解是解答此题的关键.21.【分析】(1)根据题意画出树状图,即可求出(m,n)所有的可能情况;(2)求出所选的m,n能使一次函数y=mx+n的图象经过第一、三、四象限的情况数,再根据概率公式列式计算即可.【解答】解:(1)画树状图如下:则(m,n)所有的可能情况是(1,2)(1,﹣3)(1,﹣4)(2,1)(2,﹣3)(2,﹣4)(﹣3,1)(﹣3,2)(﹣3,﹣4)(﹣4,1)(﹣4,2);(﹣4,﹣3).(2)所选的m,n能使一次函数y=mx+n的图象经过第一、三、四象限的情况有:(1,﹣3)(1,﹣4)(2,﹣3)(2,﹣4)共4种情况,则能使一次函数y=mx+n的图象经过第一、三、四象限的概率是=.【点评】此题考查的是用列表法或树状图法求概率和一次函数的性质.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)连接OC,根据角平分线的定义和等腰三角形的性质得到∠DAC=∠ACO,推出AD∥OC,求得OC⊥CD,于是得到直线PC是⊙O的切线;(2)连接AE,BE,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠ACE=∠BCE =45°,求得∠POC=60°,推出∠CAB=∠ACO=30°,证得PC=PF,得到△OBC是等边三角形,求得PB=OB=5,根据相似三角形性质即可得到结论.【解答】(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴直线PC是⊙O的切线;(2)解:连接AE,BE,∵AB是⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠ACE=∠BCE=45°,∵∠P=30°,∠PCO=90°,∴∠POC=60°,∴∠CAB=∠ACO=30°,∴∠OCF=15°,∴∠PCF=∠PFC=75°,∴PC=PF,∵∠BOC=60°,OC=OB,∴△OBC是等边三角形,∴BC=OB=OC=OP,∴PB=OB=5,∵∠P=∠P,∠PCB=∠PAC,∴△PCB∽△PAC,∴,∴PC==5,∴PF=5.【点评】本题考查了切线的判定定理,相似三角形的判定和性质,等边三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.23.【分析】(1)由“每增加1元,销量减少5件”可知,单价为x元时增加5(x﹣60)件,用增加的件数加上原销量即可表示出销售量y;(2)根据“每天利润=(售价﹣成本)×销售量”列出函数解析式,再对二次函数进行配方即可求出利润的最大值;(3)令W=400求出x的值,再根据抛物线图象写出W≤4000时x的取值范围;再根据总成本不超过5250列出不等式,联立两个不等式即可求出x的取值范围,从而确定x的最小值.【解答】解:(1)y=250﹣5(x﹣60),即y=﹣5x+550.(60≤x≤100);(2)W=(x﹣50)(﹣5x+550),即y=﹣5x2+800x﹣27500.配方得,W=﹣5(x﹣80)2+4500.∵a=﹣5,∴抛物线开口向下,∴当x=80时,y有最大值为4500元;(3)令W=4000时,﹣5(x﹣80)2+4500=4000,解得,x1=70,x2=90.由抛物线图象可知,当W≥4000元时,x的取值范围为70≤x≤90.又∵50(﹣5x+550)≤6250,解得,x≥85.∴x取值范围为85≤x≤90,∴单价x最低可定为85元.【点评】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.24.【分析】(1)由AD∥BC知,,结合DB=DC=15,DE=DF=5知,从而得,据此可得答案;(2)作DP⊥BC,NQ⊥AD,求得BP=CP=9,DP=12,由知BG=CH=2x,BH=18+2x,根据得,即,再根据知,由三角形的面积公式可得答案;(3)分∠ADN=∠FGH和∠ADN=∠GFH两种情况分别求解可得.【解答】解:(1)∵AD∥BC,∴,.∵DB=DC=15,DE=DF=5,∴,∴.∴BG=CH.(2)过点D作DP⊥BC,过点N作NQ⊥AD,垂足分别为点P、Q.∵DB=DC=15,BC=18,∴BP=CP=9,DP=12.∵,∴BG=CH=2x,∴BH=18+2x.∵AD∥BC,∴,∴,∴,∴.∵AD∥BC,∴∠ADN=∠DBC,∴sin∠ADN=sin∠DBC,∴,∴.∴.(3)∵AD∥BC,∴∠DAN=∠FHG.(i)当∠ADN=∠FGH时,∵∠ADN=∠DBC,∴∠DBC=∠FGH,∴BD∥FG,∴,∴,∴BG=6,∴AD=3.(ii)当∠ADN=∠GFH时,∵∠ADN=∠DBC=∠DCB,又∵∠AND=∠FGH,∴△ADN∽△FCG.∴,∴,整理得x2﹣3x﹣29=0,解得,或(舍去).综上所述,当△HFG与△ADN相似时,AD的长为3或.【点评】本题是相似三角形的综合问题,解题的关键是掌握平行线分线段成比例定理及相似三角形的判定与性质、分类讨论思想的运用等知识点.25.【分析】(1)把点A、B、C的坐标代入抛物线或直线表达式,即可求解;(2)设点P坐标为(t,﹣t2﹣t+4),令﹣t2﹣t+4=x+4,解得:x=,PD=,利用△PDM∽△CBO,即可求解;(3)分∠PCM=∠CBO、∠PCM=∠BCO,两种情况求解即可.【解答】解:(1)把点A、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2﹣x+4…①,令y=0,则x=﹣3或,则点B(﹣3,0),把B、C的坐标代入一次函数表达式:y=mx+n得:,解得:,故直线BC的表达式为:y=x+4;(2)由题意得:OB=3,OC=4,则BC=5,设点P坐标为(t,﹣t2﹣t+4),令﹣t2﹣t+4=x+4,解得:x=,∴PD=﹣t=,∵PD∥x轴,∴∠PDM=∠CBO,∵PM⊥BC,∴∠PMD=∠COB=90°,∴△PDM∽△CBO,∴,l=﹣t2﹣t=﹣(t+)2+,∴当t=﹣时,△PDM的周长的最大值为,此时点P(﹣,);(3)存在,理由:①如图,当∠PCM=∠CBO时,即:△PCM∽△CBO,则PC∥AB,令4=﹣x2﹣x+4,解得:x=0或﹣(舍去0);②如图,当∠PCM=∠BCO时,即:△PCM∽△BCO,作点O关于直线BC的对称点D,直线CD与抛物线的另外一个点即为P点,作DH⊥x轴于点H,则OD=2OC sin∠BCO=2OC×=2×4×=,DH=OD sin∠DCH=OD sin∠DOH=OD sin∠BCO=×=,同理可得:OH=,即点D的坐标为(﹣,),将CD坐标代入一次函数表达式并解得:直线CD的表达式为:y=x+4…②,联立①②并解得:x=﹣,故:点P的横坐标为:﹣或﹣.【点评】本题考查的是二次函数综合运用,涉及到三角形相似、点的对称性,解直角三角形等知识,其中(3)②,用点的对称性求解是本题解题的新颖点.。
辽宁省朝阳市2019届九年级数学中考模拟试卷(3月)及参考答案
组别
正确字数x
人数
A
0≤x<8
10
B
8≤x<16
15
C
16≤x<24
25
D
24≤x<32
m
E
32≤x<40
n
根据以上信息完成下列问题:
(1) 统计表中的m=,n=,并补全条形统计图;
(2) 扇形统计图中“C组”所对应的圆心角的度数是;
(3) 已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的
9. 若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是( )
A . 无实数根 B . 有两个正根 C . 有两个根,且都大于﹣3m D . 有两个根,其中一根大于﹣m
10. 矩形
中,
, 是 的中点,
顶点与点 重合,将
绕点
的两边分别交
(或它们的延长线)于点
,设
,有下列结论:①
金额/元
5
10
20
50
100
人数
4
16
15
9
6
A . 20.6元和10元 B . 20.6元和20元 C . 30.6元和10元 D . 30.6元和20元
7. 如图, 的半径为5,
是圆上任意两点,且
,以
).若 边绕点 旋转一周,则 边扫过的面积为( )
为边作正方形
(点
在直线 两侧
A. B. C. D. 8. “凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共 互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( ) A . x(x+1)=210 B . x(x﹣1)=210 C . 2x(x﹣1)=210 D . x(x﹣1)=210
2019年辽宁朝阳中考数学试卷及答案
【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,辽宁朝阳2019年中考将于6⽉中旬陆续开始举⾏,辽宁朝阳中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年辽宁朝阳中考数学试卷及答案信息。
考⽣可点击进⼊辽宁朝阳中考频道《、》栏⽬查看辽宁朝阳中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取辽宁朝阳中考数学试卷答案信息,特别整理了《2019辽宁朝阳中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年辽宁朝阳中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
2019年辽宁省朝阳市中考数学试卷-学生版+解析版(无水印)
2019年辽宁省朝阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•朝阳)3的相反数是( ) A .3B .3-C .13D .13-2.(3分)(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .3.(3分)(2019•朝阳)一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断4.(3分)(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查 B .对2019年央视春节联欢晚会收视率的调查 C .对一批飞机零部件的合格情况的调查 D .对我市居民节水意识的调查5.(3分)(2019•朝阳)若点1(1,)A y -,2(2,)B y -,3(3,)C y 在反比例函数8y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<6.(3分)(2019•朝阳)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n+的值为( ) A .4B .2C .1D .07.(3分)(2019•朝阳)把Rt ABC ∆与Rt CDE ∆放在同一水平桌面上,摆放成如图所示形状,使两个直角顶点重合,两条斜边平行,若25B ∠=︒,58D ∠=︒,则BCE ∠的度数是()A .83︒B .57︒C .54︒D .33︒8.(3分)(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为( ) A .5,4B .3,5C .4,4D .4,59.(3分)(2019•朝阳)如图,在矩形ABCD 中对角线AC 与BD 相交于点O ,CE BD ⊥,垂足为点E ,5CE =,且2EO DE =,则AD 的长为( )A .B .C .10D .10.(3分)(2019•朝阳)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>. 其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2019•朝阳)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为 . 12.(3分)(2019•朝阳)因式分解:2122x -+= .13.(3分)(2019•朝阳)从点(1,6)M -,1(2N ,12),(2,3)E -,(3,2)F --中任取一点,所取的点恰好在反比例函数6y x=的图象上的概率为 . 14.(3分)(2019•朝阳)不等式组620240x x -⎧⎨+>⎩…的解集是 .15.(3分)(2019•朝阳)如图,把三角形纸片折叠,使点A 、点C 都与点B 重合,折痕分别为EF ,DG ,得到60BDE ∠=︒,90BED ∠=︒,若2DE =,则FG 的长为 .16.(3分)(2019•朝阳)如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形1ABCA ,延长1A C 交x 轴于点1B ,以11A B 为边在11A B 的右侧作正方形1112A B C A ⋯按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形1ABCA ,1112A B C A ,⋯,111n n n n A B C A ---中的阴影部分的面积分别为1S ,2S ,⋯,n S ,则n S 可表示为 .三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(5分)(2019•朝阳)先化简,再求值:2232624288a a a a a a a ++-÷+--+,其中11|6|()2a -=--.18.(6分)(2019•朝阳)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?19.(7分)(2019•朝阳)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:(1)本次被抽查的书籍有册.(2)补全条形统计图.(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.20.(7分)(2019•朝阳)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.21.(7分)(2019•朝阳)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60︒,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30︒.已知山坡坡度3:4i=,即3tan4θ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m 1.732)≈22.(8分)(2019•朝阳)如图,四边形ABCD为菱形,以AD为直径作O交AB于点F,连接DB交O于点H,E是BC上的一点,且BE BF=,连接DE.(1)求证:DE 是O 的切线.(2)若2BF =,DH =O 的半径.23.(10分)(2019•朝阳)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量()y kg 与销售单价x (元)满足如图所示的函数关系(其中1030)x <….(1)直接写出y 与x 之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x 应定为多少元? (3)设每天销售该特产的利润为W 元,若1430x <…,求:销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)(2019•朝阳)如图,四边形ABCD 是正方形,连接AC ,将ABC ∆绕点A 逆时针旋转α得AEF ∆,连接CF ,O 为CF 的中点,连接OE ,OD .(1)如图1,当45α=︒时,请直接写出OE 与OD 的关系(不用证明). (2)如图2,当4590α︒<<︒时,(1)中的结论是否成立?请说明理由.(3)当360α=︒时,若AB =O 经过的路径长.25.(12分)(2019•朝阳)如图,在平面直角坐标系中,直线26y x =+与x 轴交于点A ,与y 轴交点C ,抛物线22y x bx c =-++过A ,C 两点,与x 轴交于另一点B . (1)求抛物线的解析式.(2)在直线AC 上方的抛物线上有一动点E ,连接BE ,与直线AC 相交于点F ,当12E F B F=时,求sin EBA ∠的值.(3)点N 是抛物线对称轴上一点,在(2)的条件下,若点E 位于对称轴左侧,在抛物线上是否存在一点M ,使以M ,N ,E ,B 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.2019年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•朝阳)3的相反数是( ) A .3B .3-C .13D .13-【解答】解:根据相反数的概念及意义可知:3的相反数是3-. 故选:B .2.(3分)(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C .3.(3分)(2019•朝阳)一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断【解答】解:△2(1)4(1)50=--⨯-=>,∴方程有两个不相等的两个实数根.故选:A .4.(3分)(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查【解答】解:A 、对全国初中学生视力情况的调查,适合用抽样调查,A 不合题意;B 、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B 不合题意;C 、对一批飞机零部件的合格情况的调查,适合全面调查,C 符合题意;D 、对我市居民节水意识的调查,适合用抽样调查,D 不合题意;故选:C .5.(3分)(2019•朝阳)若点1(1,)A y -,2(2,)B y -,3(3,)C y 在反比例函数8y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<【解答】解:点1(1,)A y -、2(2,)B y -、3(3,)C y 在反比例函数8y x =-的图象上,1881y ∴=-=-,2842y =-=-,383y =-, 又8483-<<,321y y y ∴<<.故选:D .6.(3分)(2019•朝阳)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n+的值为( ) A .4B .2C .1D .0【解答】解:把02x y =⎧⎨=⎩代入得:222n n m =⎧⎨-=⎩,解得:22m n =-⎧⎨=⎩,则0m n +=, 故选:D .。
辽宁省朝阳市中考数学试卷及答案
辽宁省朝阳市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。
辽宁省朝阳市2019-2020学年中考数学教学质量调研试卷含解析
辽宁省朝阳市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.cos45°的值是( )A .12B .32C .22D .1 2.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相平分的四边形是正方形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形3.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥4.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一枚质地均匀的正六面体骰子,向上一面的点数是4C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D .抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上5.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③2CD ;④△DCE 与△BDF 的周长相等.A.1个B.2个C.3个D.4个6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同7.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A.B.C.D.8.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC9.-2的绝对值是()A.2 B.-2 C.±2 D.1 210.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×101311.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan 3CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2πB .2π或3πC .3π或πD .4π或3π 12.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,线段 AB 是⊙O 的直径,弦 CD ⊥AB ,AB=8,∠CAB=22.5°,则 CD 的长等于___________________________.14.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.15.如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,cos ∠C=45,那么GE=_______.16.已知n >1,M =1n n -,N =1n n-,P =1n n +,则M 、N 、P 的大小关系为 . 17.如图,矩形ABCD 中,AB=2AD ,点A(0,1),点C 、D 在反比例函数y=k x (k >0)的图象上,AB 与x 轴的正半轴相交于点E ,若E 为AB 的中点,则k 的值为_____.18.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.20.(6分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO 交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.(1)如图1,当0<t<2时,求证:DF∥CB;(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的58倍时,直接写出此时点E的坐标.21.(6分)在“双十二”期间,,A B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)22.(8分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.。
2019年辽宁省朝阳市中考数学试卷及解析
2019年辽宁省朝阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、(3分)3的相反数是()A、3B、﹣3C、D、﹣2、(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是()A、B、C、D、3、(3分)一元二次方程x2﹣x﹣1=0的根的情况是()A、有两个不相等的实数根B、有两个相等的实数根C、没有实数根D、无法判断4、(3分)下列调查中,调查方式最适合普查(全面调查)的是()A、对全国初中学生视力情况的调查B、对2019年央视春节联欢晚会收视率的调查C、对一批飞机零部件的合格情况的调查D、对我市居民节水意识的调查5、(3分)若点A(﹣1,y1),B(﹣2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A、y1<y2<y3B、y2<y1<y3C、y1<y3<y2D、y3<y2<y16、(3分)关于x,y的二元一次方程组的解是,则m+n的值为()A、4B、2C、1D、07、(3分)把Rt△ABC与Rt△CDE放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B=25°,∠D=58°,则∠BCE的度数是()A、83°B、57°C、54°D、33°8、(3分)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损、已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A、5,4B、3,5C、4,4D、4,59、(3分)如图,在矩形ABCD中对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则AD的长为()A、5B、6C、10D、610、(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0、其中正确结论的个数是()A、1B、2C、3D、4二、填空题(本大题共6小题,每小题3分,共18分)11、(3分)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕、短短5天时间,有7800000人次参观数据7800000用科学记数法表示为、12、(3分)因式分解:﹣x2+2=、13、(3分)从点M(﹣1,6),N(,12),E(2,﹣3),F(﹣3,﹣2)中任取一点,所取的点恰好在反比例函数y=的图象上的概率为、14、(3分)不等式组的解集是、15、(3分)如图,把三角形纸片折叠,使点A、点C都与点B重合,折痕分别为EF,DG,得到∠BDE=60°,∠BED=90°,若DE=2,则FG的长为、16、(3分)如图,直线y=x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为、三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17、(5分)先化简,再求值:﹣÷,其中a=|﹣6|﹣()﹣1、18、(6分)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%、已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A 种笔袋的数量比B种笔袋多20个、请问:文具店购进A,B两种款式的笔袋各多少个?19、(7分)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图、已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同、请根据以上信息,解答下列问题:(1)本次被抽查的书籍有册、(2)补全条形统计图、(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册、20、(7分)有5张不透明的卡片,除正面上的图案不同外,其他均相同、将这5张卡片背面向上洗匀后放在桌面上、(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为、(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率、21、(7分)小明同学在综合实践活动中对本地的一座古塔进行了测量、如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M 的仰角为30°、已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME、(结果精确到0.1m,参考数据:≈1.732)22、(8分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE、(1)求证:DE是⊙O的切线、(2)若BF=2,DH=,求⊙O的半径、23、(10分)网络销售是一种重要的销售方式、某乡镇农贸公司新开设了一家网店,销售当地农产品、其中一种当地特产在网上试销售,其成本为每千克10元、公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)、(1)直接写出y与x之间的函数关系式及自变量的取值范围、(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若14<x≤30,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?24、(10分)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD、(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明)、(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由、(3)当α=360°时,若AB=4,请直接写出点O经过的路径长、25、(12分)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c过A,C两点,与x轴交于另一点B、(1)求抛物线的解析式、(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF =BF时,求sin∠EBA的值、(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由、参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、(3分)3的相反数是()A、3B、﹣3C、D、﹣试题分析:根据相反数的意义,3的相反数即是在3的前面加负号、试题解答:解:根据相反数的概念及意义可知:3的相反数是﹣3、故选:B、点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0、2、(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是()A、B、C、D、试题分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可、试题解答:解:从左边看,从左往右小正方形的个数依次为:2,1、左视图如下:故选:C、点评:本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上、3、(3分)一元二次方程x2﹣x﹣1=0的根的情况是()A、有两个不相等的实数根B、有两个相等的实数根C、没有实数根D、无法判断试题分析:先计算判别式的值,然后根据判别式的意义进行判断、试题解答:解:∵△=(﹣1)2﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根、故选:A、点评:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根、4、(3分)下列调查中,调查方式最适合普查(全面调查)的是()A、对全国初中学生视力情况的调查B、对2019年央视春节联欢晚会收视率的调查C、对一批飞机零部件的合格情况的调查D、对我市居民节水意识的调查试题分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可、试题解答:解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C、点评:本题考查的是普查和抽样调查的选择、调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查、5、(3分)若点A(﹣1,y1),B(﹣2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A、y1<y2<y3B、y2<y1<y3C、y1<y3<y2D、y3<y2<y1试题分析:根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论、试题解答:解:∵点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)在反比例函数y=﹣的图象上,∴y1=﹣=8,y2=﹣=4,y3=﹣,又∵﹣<4<8,∴y3<y2<y1、故选:D、点评:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键、6、(3分)关于x,y的二元一次方程组的解是,则m+n的值为()A、4B、2C、1D、0试题分析:把x与y的值代入方程计算求出m与n的值,代入原式计算即可求出值、试题解答:解:把代入得:,解得:,则m+n=0,故选:D、点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值、7、(3分)把Rt△ABC与Rt△CDE放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B=25°,∠D=58°,则∠BCE的度数是()A、83°B、57°C、54°D、33°试题分析:过点C作CF∥AB,易知CF∥DE,所以可得∠BCF=∠B,∠FCE=∠E,根据∠BCE=∠BCF+∠FCE即可求解、试题解答:解:过点C作CF∥AB,∴∠BCF=∠B=25°、又AB∥DE,∴CF∥DE、∴∠FCE=∠E=90°﹣∠D=90°﹣58°=32°、∴∠BCE=∠BCF+∠FCE=25°+32°=57°、故选:B、点评:本题主要考查了平行线的判定和性质,解决角度问题一般借助平行线转化角,此题属于“拐点”问题,过拐点处作平行线是此类问题常见辅助线、8、(3分)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损、已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A、5,4B、3,5C、4,4D、4,5试题分析:设被污损的数据为x,根据这组数据的平均数为4求出x的值,再依据众数和中位数的定义求解可得、试题解答:解:设被污损的数据为x,则4+x+2+5+5+4+3=4×7,解得x=5,∴这组数据中出现次数最多的是5,即众数为5篇,将这7个数据从小到大排列为2、3、4、4、5、5、5,∴这组数据的中位数为4篇,故选:A、点评:考查了确定一组数据的中位数和众数的能力、一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项、注意找中位数的时候一定要先从小到大或从大到小顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求、如果是偶数个则找中间两位数的平均数、9、(3分)如图,在矩形ABCD中对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则AD的长为()A、5B、6C、10D、6试题分析:由矩形的性质得到∠ADC=90°,BD=AC,OD=BD,OC=AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,AC=6x,根据勾股定理即可得到结论、试题解答:解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,AC=6x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,∵x>0,∴DE=,AC=6,∴CD===,∴AD===5,故选:A、点评:本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键、10、(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0、其中正确结论的个数是()A、1B、2C、3D、4试题分析:根据二次函数的图象与系数的关系即可求出答案、试题解答:解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,∴4ac﹣b2<﹣8a,即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C、点评:本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型、二、填空题(本大题共6小题,每小题3分,共18分)11、(3分)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕、短短5天时间,有7800000人次参观数据7800000用科学记数法表示为7.8×106、试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数、确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同、当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数、试题解答:解:数据7800000用科学记数法表示为7.8×106、故答案为:7.8×106、点评:此题考查科学记数法的表示方法、科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值、12、(3分)因式分解:﹣x2+2=﹣(x+2)(x﹣2)、试题分析:先提取公因式,再利用平方差公式分解即可、试题解答:解:﹣x2+2=(x2﹣4)=(x+2)(x﹣2)故答案为:(x+2)(x﹣2)、点评:本题考查了因式分解,在进行因式分解时,有公因式要先提公因式,然后再看是否可以用公式法或其他方法分解,分解的结果要做到不能再分解为止、13、(3分)从点M(﹣1,6),N(,12),E(2,﹣3),F(﹣3,﹣2)中任取一点,所取的点恰好在反比例函数y=的图象上的概率为、试题分析:根据反比例函数的性质,找出符合点在函数y=图象上的点的个数,即可根据概率公式求解、试题解答:解:∵k=6,﹣1×6=﹣6≠6,×12=6,2×(﹣3)=﹣6≠6,﹣3×(﹣2)=6,∴N、F两个点在反比例函数y=的图象上,故所取的点在反比例函数y=的图象上的概率是=、故答案为、点评:本题考查了反比例函数图象上点的坐标特点、用到的知识点还有:概率=所求情况数与总情况数之比、14、(3分)不等式组的解集是﹣2<x≤3、试题分析:根据解一元一次不等式组的方法可以解答本题、试题解答:解:,由不等式①,得x≤3,由不等式②,得x>﹣2,故原不等式组的解集是﹣2<x≤3,故答案为:﹣2<x≤3、点评:本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法、15、(3分)如图,把三角形纸片折叠,使点A、点C都与点B重合,折痕分别为EF,DG,得到∠BDE=60°,∠BED=90°,若DE=2,则FG的长为3、试题分析:根据折叠的性质得到AF=BF,AE=BE,BG=CG,DC=DB,根据三角形的中位线定理得到FG=AC,求得∠EBD=30°,得到DB=2DE=4,根据勾股定理得到BE===2,求得AE=BE=2,DC=DB=4,于是得到结论、试题解答:解:∵把三角形纸片折叠,使点A、点C都与点B重合,∴AF=BF,AE=BE,BG=CG,DC=DB,∴FG=AC,∵∠BDE=60°,∠BED=90°,∴∠EBD=30°,∴DB=2DE=4,∴BE===2,∴AE=BE=2,DC=DB=4,∴AC=AE+DE+DC=2+2+4=6+2,∴FG=AC=3+,故答案为:3+、点评:此题考查了翻折变换的性质、等腰三角形的性质、直角三角形的性质;根据折叠的性质得出相等的边和角是解题关键、16、(3分)如图,直线y=x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为、试题分析:根据直线y=x+1与x轴交于点M,与y轴交于点A,可分别求出OA、OM 的长,得出tan∠AMO=,根据同角的余角相等可得∠OAB=∠AMO,得出tan∠OAB =,进而得出OB=,进而表示出S1,S2,…,S n、试题解答:解:在直线y=x+1中,当x=0时,y=1;当y=0时,x=﹣3;∴OA=1,OM=3,∴tan∠AMO=,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB=,∴OB=、∵,∴,易得tan,∴,∴,∴,同理可得,,…,=、故答案为:、点评:本题考查规律型问题、解直角三角形以及点的坐标,解题的关键是学会探究规律的方法,属于中考常考题型、三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17、(5分)先化简,再求值:﹣÷,其中a=|﹣6|﹣()﹣1、试题分析:先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得、试题解答:解:原式=﹣×=﹣•=﹣=,当a=|﹣6|﹣()﹣1=6﹣2=4时,原式==、点评:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则、18、(6分)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%、已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A 种笔袋的数量比B种笔袋多20个、请问:文具店购进A,B两种款式的笔袋各多少个?试题分析:设文具店购进B种款式的笔袋x个,则购进A种款式的笔袋(x+20)个,根据单价=总价÷数量结合A种笔袋的单价比B种袋的单价低10%,即可得出关于x的分式方程,解之经检验后即可得出结论、试题解答:解:设文具店购进B种款式的笔袋x个,则购进A种款式的笔袋(x+20)个,依题意,得:=(1﹣10%),解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴x+20=60、答:文具店购进A种款式的笔袋60个,B种款式的笔袋40个、点评:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键、19、(7分)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图、已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同、请根据以上信息,解答下列问题:(1)本次被抽查的书籍有60册、(2)补全条形统计图、(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册、试题分析:(1)根据统计图中的数据可以求得本次被抽查的书籍;(2)根据(1)中的结果和统计图中的数据可以将条形统计图补充完整;(3)根据统计图中的数据可以计算出所捐赠的科普类书籍有多少册、试题解答:解:(1)∵捐赠的哲学故事类书籍和文学类书籍的数量相同,∴本次被抽查的书籍有:(3+9+12)÷(1﹣30%﹣30%)=60(册),故答案为:60;(2)文学类有60×30%=18(册),则哲学故事类18册,补全的条形统计如右图所示;(3)1200×=180(册),答:所捐赠的科普类书籍有180册、点评:本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答、20、(7分)有5张不透明的卡片,除正面上的图案不同外,其他均相同、将这5张卡片背面向上洗匀后放在桌面上、(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为、(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率、试题分析:(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得、试题解答:解:(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为,故答案为:;(2)画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,∴两次所抽取的卡片恰好都是轴对称图形的概率为、点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率、21、(7分)小明同学在综合实践活动中对本地的一座古塔进行了测量、如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M 的仰角为30°、已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME、(结果精确到0.1m,参考数据:≈1.732)试题分析:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,根据坡度的定义分别求出DC、CP,设MF=ym,根据正切的定义用y分别表示出DF、PE,根据题意列方程,解方程得到答案、试题解答:解:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,则DC=PH=FE,DH=CP,HF=PE,设DC=3x,∵tanθ=,∴CP=4x,由勾股定理得,PD2=DC2+CP2,即252=(3x)2+(4x)2,解得,x=5,则DC=3x=15,CP=4x=20,∴DH=CP=20,PH=FE=DC=15,设MF=ym,则ME=(y+15)m,在Rt△MDF中,tan∠MDF=,则DF==y,在Rt△MPE中,tan∠MPE=,则PE==(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=20,解得,y=7.5+10,∴ME=MF+FE=7.5+10+15≈39.8,答:古塔的高度ME约为39.8m、点评:本题考查的是解直角三角形的应用﹣仰角俯角、坡度坡角问题,掌握仰角俯角、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键、22、(8分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE、(1)求证:DE是⊙O的切线、(2)若BF=2,DH=,求⊙O的半径、试题分析:(1)证明△DAF≌△DCE,可得∠DF A=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线、(2)连接AH,求出DB=2DH=2,在Rt△ADF和Rt△BDF中,可得AD2﹣(AD﹣BF)2=DB2﹣BF2,解方程可求出AD的长、则OA可求出、试题解答:(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DF A=∠DEC,∵AD是⊙O的直径,∴∠DF A=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DF A=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴,∴AD=5、∴⊙O的半径为、点评:本题考查了圆的综合,涉及了圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题、23、(10分)网络销售是一种重要的销售方式、某乡镇农贸公司新开设了一家网店,销售当地农产品、其中一种当地特产在网上试销售,其成本为每千克10元、公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)、(1)直接写出y与x之间的函数关系式及自变量的取值范围、(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若14<x≤30,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?试题分析:(1)由图象知,当10<≤14时,y=640;当14<x≤30时,设y=kx+b,将(14,640),(30,320)解方程组即可得到结论;(2)根据题意列方程,解方程即可得到结论;(3)当14<x≤30时,求得函数解析式为W=(x﹣10)(﹣20x+920)=﹣20(x﹣28)2+6480,根据二次函数的性质即可得到结论、试题解答:解:(1)由图象知,当10<x≤14时,y=640;当14<x≤30时,设y=kx+b,将(14,640),(30,320)代入得,解得,∴y与x之间的函数关系式为y=﹣20x+920;综上所述,y=;(2)(14﹣10)×640=2560,∵2560<3100,∴x>14,∴(x﹣10)(﹣20x+920)=3100,解得:x1=41(不合题意舍去),x2=15,答:销售单价x应定为15元;(3)当14<x≤30时,W=(x﹣10)(﹣20x+920)=﹣20(x﹣28)2+6480,∵﹣20<0,14<x≤30,∴当x=28时,每天的销售利润最大,最大利润是6480元、点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法、24、(10分)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD、(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明)、(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由、(3)当α=360°时,若AB=4,请直接写出点O经过的路径长、试题分析:(1)由旋转的性质得:AF=AC,∠AFE=∠ACB,由正方形的性质得出∠ACB =∠ACD=∠F AC=45°,得出∠ACF=∠AFC=67.5°,因此∠DCF═∠EFC=22.5°,由直角三角形斜边上的中线性质得出OE=CF=OC=OF,同理:OD=CF,得出OE =OD=OC=OF,证出∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,得出∠DOE =90°即可;(2)延长EO到点M,使OM=EO,连接DM、CM、DE,证明△COM≌△FOE(SAS),得出∠MCF=∠EFC,CM=EF,由正方形的性质得出AB=BC=CD,∠BAC=∠BCA =45°,由旋转的性质得出AB=AE=EF=CD,AC=AF,得出CD=CM,∠ACF=∠AFC,证明△ADE≌△CDM(SAS),得出DE=DM,再证明△COM≌△COD(SAS),得出OM=OD,即可得出结论;(3)连接AO,由等腰三角形的性质得出AO⊥CF,∠AOC=90°,得出点O在以AC 为直径的圆上运动,证出点O经过的路径长等于以AC为直径的圆的周长,求出AC=AB=8,即可得出答案、试题解答:解:(1)OE=OD,OE⊥OD;理由如下:由旋转的性质得:AF=AC,∠AFE=∠ACB,∵四边形ABCD是正方形,∴∠ACB=∠ACD=∠F AC=45°,∴∠ACF=∠AFC=(180°﹣45°)=67.5°,∴∠DCF═∠EFC=22.5°,∵∠FEC=90°,O为CF的中点,∴OE=CF=OC=OF,同理:OD=CF,∴OE=OD=OC=OF,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:延长EO到点M,使OM=EO,连接DM、CM、DE,如图2所示:∵O为CF的中点,∴OC=OF,在△COM和△FOE中,,∴△COM≌△FOE(SAS),∴∠MCF=∠EFC,CM=EF,∵四边形ABCD是正方形,∴AB=BC=CD,∠BAC=∠BCA=45°,∵△ABC绕点A逆时针旋转α得△AEF,∴AB=AE=EF=CD,AC=AF,∴CD=CM,∠ACF=∠AFC,∵∠ACF=∠ACD+∠FCD,∠AFC=∠AFE+∠CFE,∠ACD=∠AFE=45°,∴∠FCD=∠CFE=∠MCF,∵∠EAC+∠DAE=45°,∠F AD+∠DAE=45°,∴∠EAC=∠F AD,在△ACF中,∵∠ACF+∠AFC+∠CAF=180°,∴∠DAE+2∠F AD+∠DCM+90°=180°,∵∠F AD+∠DAE=45°,∴∠F AD+∠DCM=45°,∴∠DAE=∠DCM,在△ADE和△CDM中,,∴△ADE≌△CDM(SAS),。
2019辽宁朝阳中考试题-数学
2019辽宁朝阳中考试题-数学〔本试卷总分值150分,考试时间120分钟〕【一】选择题〔共8小题,每题3分,共24分〕1.有理数15-的绝对值为【】 A.15B.-5C.15- D.5【答案】A 。
2.以下运算正确的选项是【】A.3412a a =a ⋅B.()323692a b =2a b -- C.633a a =a ÷ D.()222a+b =a +b 【答案】C 。
3.如图,C 、D 分别EA 、EB 为的中点,∠E =300,∠1=1100,那么∠2的度数为【】A.080B.090C.0100D.0110【答案】A 。
4.为鼓励大学生创业,我市为在开发区创业的每位大学生提供无息贷款125000元, 这个数据用科学计数法表示为〔保留两位有效数字〕【】A.51.2510⨯B.51.210⨯C.51.310⨯D.61.310⨯【答案】C 。
5.两个大小不同的球在水平面上靠在一起,组成如下图的几何体,那么该几何体 的俯视图是【】A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆【答案】C 。
6.某市5月上旬的最高气温如下〔单位:℃〕:28、29、31、29、33,对这组数据,以下说法错误的选项是【】A.平均数是30B.众数是29C.中位数是31D.极差是5【答案】C 。
7.以下图形中,既是轴对称图形又是中心对称图形的是【】【答案】A 。
8.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数2k +4k+1y=x 的图象上,假设点A 的坐标为〔-2,-3〕,那么K 的值为【】A.1B.-5C.4D.1或-5【答案】D 。
【二】填空题〔共8小题,每题3分,共24分〕9.函数中,自变量X 的取值范围是▲。
【答案】x 3x 1≥-≠且。
10.分解因式32x 9xy =-▲。
【答案】()()x x+3y x 3y -。
11.如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD ⊥AB ,垂足为E ,CD =6,AE =1,那么⊙O 的半径为▲。
辽宁省朝阳市中考数学试卷及答案
辽宁省朝阳市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)1.在下列各组根式中,是同类二次根式的是()2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()5.已知2 是关于x 的方程的一个根,则2a- 1的值是()A.3 B.4 C.5 D.66.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥07.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()A.4π B.2π C.D.π8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定二、填空题(每小题2 分,共20 分)11.在函数中,自变量x 的取值范围是_______________ .12.若方程的两根分别为13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.17.用换元法解方程,若设,则原方程可化成关于y 的整式方程为__________.18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P,则BP 的长为__________ .19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是__________.20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度数为__________.三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)21.当x=2,y=3 时,求代数式的值.22.如图,已知:AB.求作:(1)确定AB 的圆心O.(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:_____________________________________________ .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:_____________________________________________ .(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?答:_____________________________________________ .四、(10 分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).五、(10 分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;(3)求第8 个月公司所获利润是多少万元?六、(12 分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?七、(12 分)27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明八、(14 分)28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:与y 轴交于P.(1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。
2019年辽宁省朝阳市中考数学试卷
2019年辽宁省朝阳市中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分) 1. 3的相反数是( )A. 3B. −3C. 13D. −132. 如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A. B. C.D.3. 一元二次方程x 2−x −1=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断 4. 下列调查中,调查方式最适合普查(全面调查)的是( )A. 对全国初中学生视力情况的调查B. 对2019年央视春节联欢晚会收视率的调查C. 对一批飞机零部件的合格情况的调查D. 对我市居民节水意识的调查5. 若点A(−1,y 1),B(−2,y 2),C(3,y 3)在反比例函数y =−8x 的图象上,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 1<y 3C. y 1<y 3<y 2D. y 3<y 2<y 16. 关于x ,y 的二元一次方程组{mx +y =n x −ny =2m 的解是{x =0y =2,则m +n 的值为( )A. 4B. 2C. 1D. 07. 把Rt △ABC 与Rt △CDE 放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B =25°,∠D =58°,则∠BCE 的度数是( )A. 83°B. 57°C. 54°D. 33°8. 李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为( )A. 5,4B. 3,5C. 4,4D. 4,59.如图,在矩形ABCD中对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则AD的长为()A. 5√6B. 6√5C. 10D. 6√310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2−4ac<8a;④5a+b+c>0.其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11.2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为______.x2+2=______.12.因式分解:−12,12),E(2,−3),F(−3,−2)中任取一点,所取的点恰好在反比13.从点M(−1,6),N(12的图象上的概率为______.例函数y=6x14.不等式组{6−2x≥02x+4>0的解集是______.15.如图,把三角形纸片折叠,使点A、点C都与点B重合,折痕分别为EF,DG,得到∠BDE=60°,∠BED=90°,若DE=2,则FG的长为______.x+1与x轴交于点M,与y轴交于16.如图,直线y=13点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n−1B n−1C n−1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为______.三、解答题(本大题共8小题,共60.0分)17.先化简,再求值:aa+2−a+3a2−4÷2a+62a2−8a+8,其中a=|−6|−(12)−1.18.佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?19.某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:(1)本次被抽查的书籍有______册.(2)补全条形统计图.(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.20.有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为______.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.21.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=3,请你帮助小明计算古塔的高度ME.(结果4精确到0.1m,参考数据:√3≈1.732)22.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=√5,求⊙O的半径.23.网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30).(1)直接写出y与x之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若14<x≤30,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?24.如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4√2,请直接写出点O经过的路径长.25.如图,在平面直角坐标系中,直线y=2x+6y=2x+6与xx轴交于点AA,与yy轴交点CC,抛物线y=−2x2+bx+cy=−2x2+bx+c过AA,CC两点,与xx轴交于另一点BB.(1)(1)求抛物线的解析式.(2)(2)在直线ACAC上方的抛物线上有一动点EE,连接BEBE,与直线ACAC 相交于点FF,当EF=12BFEF=12BF时,求sin∠EBAsin∠EBA的值.(3)(3)点NN是抛物线对称轴上一点,在(2)(2)的条件下,若点EE位于对称轴左侧,在抛物线上是否存在一点MM,使以MM,NN,EE,BB为顶点的四边形是平行四边形?若存在,直接写出点MM的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:根据相反数的概念及意义可知:3的相反数是−3.故选:B.根据相反数的意义,3的相反数即是在3的前面加负号.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】C【解析】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3.【答案】A【解析】解:∵△=(−1)2−4×(−1)=5>0,∴方程有两个不相等的两个实数根.故选:A.先计算判别式的值,然后根据判别式的意义进行判断.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.4.【答案】C【解析】解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.5.【答案】D【解析】解:∵点A(−1,y 1)、B(−2,y 2)、C(3,y 3)在反比例函数y =−8x 的图象上, ∴y 1=−8−1=8,y 2=−8−2=4,y 3=−83, 又∵−83<4<8,∴y 3<y 2<y 1.故选:D .根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论. 本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值是解题的关键. 6.【答案】D【解析】解:把{x =0y =2代入得:{n =2−2n =2m ,解得:{m =−2n =2,则m +n =0, 故选:D .把x 与y 的值代入方程计算求出m 与n 的值,代入原式计算即可求出值. 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7.【答案】B【解析】解:过点C 作CF//AB , ∴∠BCF =∠B =25°. 又AB//DE , ∴CF//DE .∴∠FCE =∠E =90°−∠D =90°−58°=32°. ∴∠BCE =∠BCF +∠FCE =25°+32°=57°.故选:B .过点C 作CF//AB ,易知CF//DE ,所以可得∠BCF =∠B ,∠FCE =∠E ,根据∠BCE =∠BCF +∠FCE 即可求解.本题主要考查了平行线的判定和性质,解决角度问题一般借助平行线转化角,此题属于“拐点”问题,过拐点处作平行线是此类问题常见辅助线. 8.【答案】A【解析】解:设被污损的数据为x , 则4+x +2+5+5+4+3=4×7, 解得x =5,∴这组数据中出现次数最多的是5,即众数为5篇,将这7个数据从小到大排列为2、3、4、4、5、5、5,∴这组数据的中位数为4篇,故选:A.设被污损的数据为x,根据这组数据的平均数为4求出x的值,再依据众数和中位数的定义求解可得.考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.【答案】A【解析】解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=12BD,OC=12AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,AC=6x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,∵x>0,∴DE=√5,AC=6√5,∴CD=√DE2+CE2=√(√5)2+52=√30,∴AD=√AC2−CD2=√(6√5)2−(√30)2=5√6,故选:A.由矩形的性质得到∠ADC=90°,BD=AC,OD=12BD,OC=12AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,AC=6x,根据勾股定理即可得到结论.本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.10.【答案】C【解析】解:①由图象可知:a>0,c<0,∴由于对称轴−b2a>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(−b2a ,4ac−b24a)由图象可知:4ac−b24a<−2,∵a>0,∴4ac−b2<−8a,即b2−4ac>8a,故③错误;④由图象可知:−b2a>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=−9a−3b,∴5a+b+c=5a+b−9a−3b=−4a−2b=−2(2a+b)>0,故④正确;故选:C.根据二次函数的图象与系数的关系即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.11.【答案】7.8×106【解析】解:数据7800000用科学记数法表示为7.8×106.故答案为:7.8×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】−12(x+2)(x−2)【解析】解:−12x2+2=−12(x2−4)=−12(x+2)(x−2)故答案为:−12(x+2)(x−2).先提取公因式−12,再利用平方差公式分解即可.本题考查了因式分解,在进行因式分解时,有公因式要先提公因式,然后再看是否可以用公式法或其他方法分解,分解的结果要做到不能再分解为止.13.【答案】12【解析】解:∵k=6,−1×6=−6≠6,12×12=6,2×(−3)=−6≠6,−3×(−2)=6,∴N、F两个点在反比例函数y=6x 的图象上,故该点在反比例函数y=6x的图象上的概率是24=12.故答案为12.根据反比例函数的性质,找出符合点在函数y=6x图象上的点的个数,即可根据概率公式求解.本题考查了反比例函数图象上点的坐标特点.用到的知识点还有:概率=所求情况数与总情况数之比.14.【答案】−2<x≤3【解析】解:{6−2x≥0 ①2x+4>0 ②,由不等式①,得x≤3,由不等式②,得x>−2,故原不等式组的解集是−2<x≤3,故答案为:−2<x≤3.根据解一元一次不等式组的方法可以解答本题.本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.15.【答案】3+√3【解析】解:∵把三角形纸片折叠,使点A、点C都与点B重合,∴AF=BF,AE=BE,BG=CG,DC=DB,∴FG=12AC,∵∠BDE=60°,∠BED=90°,∴∠EBD=30°,∴DB=2DE=4,∴BE=√DB2−DE2=√42−22=2√3,∴AE=BE=2√3,DC=DB=4,∴AC=AE+DE+DC=2√3+2+4=6+2√3,∴FG=12AC=3+√3,故答案为:3+√3.根据折叠的性质得到AF=BF,AE=BE,BG=CG,DC=DB,根据三角形的中位线定理得到FG=12AC,求得∠EBD=30°,得到DB=2DE=4,根据勾股定理得到BE=√DB2−DE2=√42−22=2√3,求得AE=BE=2√3,DC=DB=4,于是得到结论.此题考查了翻折变换的性质、等腰三角形的性质、直角三角形的性质;根据折叠的性质得出相等的边和角是解题关键.16.【答案】24n−232n【解析】解:在直线y=13x+1中,当x=0时,y=1;当y=0时,x=−3;∴OA=1,OM=3,∴tan∠AMO=13,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB=OBOA =13,∴OB=13.∵1−13=23,∴S 1=(23)2=49,易得tan∠CBB 1=B 1C BC =tan∠OAB =13, ∴B 1C =13BC =13A 1C =13AB ,∴A 1B 1=43AB , ∴S 2=(43)2=169S 1, 同理可得S 3=169S 2=(169)2S 1,S 4=169S 3=(169)3S 1,…,S n =(169)n−1S 1=(169)n−1×49=(2432)n−1×(23)=24n−432n−2×2232=24n−232n . 故答案为:24n−232n. 根据直线y =13x +1与x 轴交于点M ,与y 轴交于点A ,可分别求出OA 、OM 的长,得出tan∠AMO =13,根据同角的余角相等可得∠OAB =∠AMO ,得出tan∠OAB =OB OA =13,进而得出OB =13,进而表示出S 1,S 2,…,S n .本题考查规律型问题、解直角三角形以及点的坐标,解题的关键是学会探究规律的方法,属于中考常考题型. 17.【答案】解:原式=a a+2−a+3(a+2)(a−2)÷2(a−2)22(a+3)=a a +2−a +3(a +2)(a −2)⋅(a −2)2a +3=a a +2−a −2a +2 =2a+2,当a =|−6|−(12)−1=6−2=4时,原式=24+2=13.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.【答案】解:设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个, 依题意,得:810x+20=600x (1−10%),解得:x =40,经检验,x =40是所列分式方程的解,且符合题意,∴x +20=60.答:文具店购进A 种款式的笔袋60个,B 种款式的笔袋40个.【解析】设文具店购进B种款式的笔袋x个,则购进A种款式的笔袋(x+20)个,根据单价=总价÷数量结合A种笔袋的单价比B种袋的单价低10%,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】60【解析】解:(1)∵捐赠的哲学故事类书籍和文学类书籍的数量相同,∴本次被抽查的书籍有:(3+9+12)÷(1−30%−30%)=60(册),故答案为:60;(2)文学类有60×30%=18(册),则哲学故事类18册,补全的条形统计如右图所示;=180(册),(3)1200×960答:所捐赠的科普类书籍有180册.(1)根据统计图中的数据可以求得本次被抽查的书籍;(2)根据(1)中的结果和统计图中的数据可以将条形统计图补充完整;(3)根据统计图中的数据可以计算出所捐赠的科普类书籍有多少册.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】25,【解析】解:(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为25;故答案为:25(2)画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,∴两次所抽取的卡片恰好都是轴对称图形的概率为3.10(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.21.【答案】解:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,则DC=PH=FE,DH=CP,HF=PE,设DC=3x,∵tanθ=34,∴CP=4x,由勾股定理得,PD2=DC2+CP2,即252=(3x)2+(4x)2,解得,x=5,则DC=3x=15,CP=4x=20,∴DH=CP=20,PH=FE=DC=15,设MF=ym,则ME=(y+15)m,在Rt△MDF中,tan∠MDF=MFDF,则DF=MF√33=√3y,在Rt△MPE中,tan∠MPE=MEPE,则PE=MEtan∠MPE =√33(y+15),∵DH=DF−HF,∴√3y−√33(y+15)=20,解得,y=7.5+10√3,∴ME=MF+FE=7.5+10√3+15≈39.8,答:古塔的高度ME约为39.8m.【解析】作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,根据坡度的定义分别求出DC、CP,设MF=ym,根据正切的定义用y分别表示出DF、PE,根据题意列方程,解方程得到答案.本题考查的是解直角三角形的应用−仰角俯角、坡度坡角问题,掌握仰角俯角、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.22.【答案】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD//BC,∠DAB=∠C,∵BF=BE,∴AB−BF=BC−BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD//BC ,∴∠ADE =∠DEC =90°,∴OD ⊥DE ,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(2)解:如图2,连接AH ,∵AD 是⊙O 的直径,∴∠AHD =∠DFA =90°,∴∠DFB =90°,∵AD =AB ,DH =√5,∴DB =2DH =2√5,在Rt △ADF 和Rt △BDF 中,∵DF 2=AD 2−AF 2,DF 2=BD 2−BF 2,∴AD 2−AF 2=DB 2−BF 2,∴AD 2−(AD −BF)2=DB 2−BF 2,∴AD 2−(AD −2)2=(2√5)2−22,∴AD =5.∴⊙O 的半径为52.【解析】(1)证明△DAF≌△DCE ,可得∠DFA =∠DEC ,证出∠ADE =∠DEC =90°,即OD ⊥DE ,DE 是⊙O 的切线.(2)连接AH ,求出DB =2DH =2√5,在Rt △ADF 和Rt △BDF 中,可得AD 2−(AD −BF)2=DB 2−BF 2,解方程可求出AD 的长.则OA 可求出.本题考查了圆的综合,涉及了圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题. 23.【答案】解:(1)由图象知,当10<x ≤14时,y =640;当14<x ≤30时,设y =kx +b ,将(14,640),(30,320)代入得{14k +b =64030k +b =320, 解得{k =−20b =920, ∴y 与x 之间的函数关系式为y =−20x +920;综上所述,y ={640(10<x ≤14)−20x +920(14<x ≤30); (2)(14−10)×640=2560,∵2560<3100,∴x >14,∴(x −10)(−20x +920)=3100,解得:x 1=41(不合题意舍去),x 2=15,答:销售单价x应定为15元;(3)当14<x≤30时,W=(x−10)(−20x+920)=−20(x−28)2+6480,∵−20<0,14<x≤30,∴当x=28时,每天的销售利润最大,最大利润是6480元.【解析】(1)由图象知,当10<x≤14时,y=640;当14<x≤30时,设y=kx+b,将(14,640),(30,320)解方程组即可得到结论;(2)根据题意列方程,解方程即可得到结论;(3)当14<x≤30时,求得函数解析式为W=(x−10)(−20x+920)=−20(x−28)2+ 6480,根据二次函数的性质即可得到结论.本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.24.【答案】解:(1)OE=OD,OE⊥OD;理由如下:由旋转的性质得:AF=AC,∠AFE=∠ACB,∵四边形ABCD是正方形,∴∠ACB=∠ACD=∠FAC=45°,∴∠ACF=∠AFC=12(180°−45°)=67.5°,∴∠DCF═∠EFC=22.5°,∵∠FEC=90°,O为CF的中点,∴OE=12CF=OC=OF,同理:OD=12CF,∴OE=OD=OC=OF,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°−45°−45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:延长EO到点M,使OM=EO,连接DM、CM、DE,如图2所示:∵O为CF的中点,∴OC=OF,在△COM和△FOE中,{OM=EO∠COM=∠FOE OC=OF,∴△COM≌△FOE(SAS),∴∠MCF=∠EFC,CM=EF,∵四边形ABCD是正方形,∴AB=BC=CD,∠BAC=∠BCA=45°,∵△ABC绕点A逆时针旋转α得△AEF,∴AB=AE=EF=CD,AC=AF,∴CD=CM,∠ACF=∠AFC,∵∠ACF=∠ACD+∠FCD,∠AFC=∠AFE+∠CFE,∠ACD=∠AFE=45°,∴∠FCD=∠CFE=∠MCF,∵∠EAC+∠DAE=45°,∠FAD+∠DAE=45°,∴∠EAC=∠FAD,在△ACF中,∵∠ACF+∠AFC+∠CAF=180°,∴∠DAE+2∠FAD+∠DCM+90°=180°,∵∠FAD+∠DAE=45°,∴∠FAD+∠DCM=45°,∴∠DAE=∠DCM,在△ADE和△CDM中,{AE=CM∠DAE=∠DCM AD=CD,∴△ADE≌△CDM(SAS),∴DE=DM,∵OE=OM,∴OE⊥OD,在△COM和△COD中,{CM=CD∠MCF=∠FCD OC=OC,∴△COM≌△COD(SAS),∴OM=OD,∴OE=OD,∴OE=OD,OE⊥OD;(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=√2AB=√2×4√2=8,∴点O经过的路径长为:πd=8π.【解析】(1)由旋转的性质得:AF=AC,∠AFE=∠ACB,由正方形的性质得出∠ACB=∠ACD=∠FAC=45°,得出∠ACF=∠AFC=67.5°,因此∠DCF═∠EFC=22.5°,由直角三角形斜边上的中线性质得出OE=12CF=OC=OF,同理:OD=12CF,得出OE=OD=OC=OF,证出∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,得出∠DOE=90°即可;(2)延长EO到点M,使OM=EO,连接DM、CM、DE,证明△COM≌△FOE(SAS),得出∠MCF=∠EFC,CM=EF,由正方形的性质得出AB=BC=CD,∠BAC=∠BCA= 45°,由旋转的性质得出AB=AE=EF=CD,AC=AF,得出CD=CM,∠ACF=∠AFC,证明△ADE≌△CDM(SAS),得出DE=DM,再证明△COM≌△COD(SAS),得出OM= OD,即可得出结论;(3)连接AO,由等腰三角形的性质得出AO⊥CF,∠AOC=90°,得出点O在以AC为直径的圆上运动,证出点O经过的路径长等于以AC为直径的圆的周长,求出AC=√2AB= 8,即可得出答案.本题是四边形综合题目,考查了正方形的性质、旋转变换的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、圆周长等知识;本题综合性强,证明三角形全等是解题的关键.25.解:(1)在y=2x+6中,当x=0时y=6,当y=0时x=-3,∴C(0,6)、A(-3,0),∵抛物线y=-2x2+bx+c的图象经过A、C两点,∴,解得,∴抛物线的解析式为y=-2x2-4x+6;(2)令-2x2-4x+6=0,解得x1=-3,x2=1,∴B(1,0),∵点E的横坐标为t,∴E(t,-2t2-4t+6),如图,过点E作EH⊥x轴于点H,过点F作FG⊥x轴于点G,则EH∥FG,∵EF=BF,∴===,∵BH=1-t,∴BG=BH=-t,∴点F的横坐标为+t,∴F(+t,+t),∴-2t2-4t+6=(+t),∴t2+3t+2=0,解得t1=-2,t2=-1,当t=-2时,-2t2-4t+6=6,当t=-1时,-2t2-4t+6=8,∴E1(-2,6),E2(-1,8),当点E的坐标为(-2,6)时,在Rt△EBH中,EH=6,BH=3,∴BE===3,∴sin∠EBA===;同理,当点E的坐标为(-1,8)时,sin∠EBA==,∴sin∠EBA的值为或;(3)∵点N在对称轴上,∴xN==-1,①当EB为平行四边形的边时,分两种情况:(Ⅰ)点M在对称轴右侧时,BN为对角线,∵E(-2,6),xN=-1,-1-(-2)=1,B(1,0),∴xM=1+1=2,当x=2时,y=-2×22-4×2+6=-10,∴M(2,-10);(Ⅱ)点M在对称轴左侧时,BM为对角线,∵xN=-1,B(1,0),1-(-1)=2,E(-2,6),∴xM=-2-2=-4,当x=-4时,y=-2×(-4)2-4×(-4)+6=-10,∴M(-4,-10);②当EB为平行四边形的对角线时,∵B(1,0),E(-2,6),xN=-1,∴1+(-2)=-1+xM,∴xM=0,当x=0时,y=6,∴M(0,6);综上所述,M的坐标为(2,-10)或(-4,-10)或(0,6).。
2019年辽宁省朝阳市中考数学试卷
2019年辽宁省朝阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)3的相反数是( )A.3B.﹣3C.D.﹣2.(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A.B.C.D.3.(3分)一元二次方程x2﹣x﹣1=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.(3分)下列调查中,调查方式最适合普查(全面调查)的是( )A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查5.(3分)若点A(﹣1,y1),B(﹣2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y1 6.(3分)关于x,y的二元一次方程组的解是,则m+n的值为( )A.4B.2C.1D.07.(3分)把Rt△ABC与Rt△CDE放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B=25°,∠D=58°,则∠BCE的度数是( )A.83°B.57°C.54°D.33°8.(3分)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为( )A.5,4B.3,5C.4,4D.4,59.(3分)如图,在矩形ABCD中对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE =5,且EO=2DE,则AD的长为( )A.5B.6C.10D.610.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是( )A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为 .12.(3分)因式分解:﹣x2+2= .13.(3分)从点M(﹣1,6),N(,12),E(2,﹣3),F(﹣3,﹣2)中任取一点,所取的点恰好在反比例函数y=的图象上的概率为 .14.(3分)不等式组的解集是 .15.(3分)如图,把三角形纸片折叠,使点A、点C都与点B重合,折痕分别为EF,DG,得到∠BDE=60°,∠BED=90°,若DE=2,则FG的长为 .16.(3分)如图,直线y=x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为 .三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.(5分)先化简,再求值:﹣÷,其中a=|﹣6|﹣()﹣1.18.(6分)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A 种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?19.(7分)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:(1)本次被抽查的书籍有 册.(2)补全条形统计图.(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.20.(7分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为 .(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.21.(7分)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M 的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)22.(8分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O 于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=,求⊙O的半径.23.(10分)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30).(1)直接写出y与x之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若14<x≤30,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.25.(12分)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF=BF时,求sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.2019年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)3的相反数是( )A.3B.﹣3C.D.﹣【分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:C.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3.(3分)一元二次方程x2﹣x﹣1=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】先计算判别式的值,然后根据判别式的意义进行判断.【解答】解:∵△=(﹣1)2﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.4.(3分)下列调查中,调查方式最适合普查(全面调查)的是( )A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.5.(3分)若点A(﹣1,y1),B(﹣2,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y1【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)在反比例函数y=﹣的图象上,∴y1=﹣=8,y2=﹣=4,y3=﹣,又∵﹣<4<8,∴y3<y2<y1.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.6.(3分)关于x,y的二元一次方程组的解是,则m+n的值为( )A.4B.2C.1D.0【分析】把x与y的值代入方程计算求出m与n的值,代入原式计算即可求出值.【解答】解:把代入得:,解得:,则m+n=0,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7.(3分)把Rt△ABC与Rt△CDE放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B=25°,∠D=58°,则∠BCE的度数是( )A.83°B.57°C.54°D.33°【分析】过点C作CF∥AB,易知CF∥DE,所以可得∠BCF=∠B,∠FCE=∠E,根据∠BCE=∠BCF+∠FCE即可求解.【解答】解:过点C作CF∥AB,∴∠BCF=∠B=25°.又AB∥DE,∴CF∥DE.∴∠FCE=∠E=90°﹣∠D=90°﹣58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.【点评】本题主要考查了平行线的判定和性质,解决角度问题一般借助平行线转化角,此题属于“拐点”问题,过拐点处作平行线是此类问题常见辅助线.8.(3分)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为( )A.5,4B.3,5C.4,4D.4,5【分析】设被污损的数据为x,根据这组数据的平均数为4求出x的值,再依据众数和中位数的定义求解可得.【解答】解:设被污损的数据为x,则4+x+2+5+5+4+3=4×7,解得x=5,∴这组数据中出现次数最多的是5,即众数为5篇,将这7个数据从小到大排列为2、3、4、4、5、5、5,∴这组数据的中位数为4篇,故选:A.【点评】考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先从小到大或从大到小顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.(3分)如图,在矩形ABCD中对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE =5,且EO=2DE,则AD的长为( )A.5B.6C.10D.6【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=BD,OC=AC,求得OC =OD,设DE=x,OE=2x,得到OD=OC=3x,AC=6x,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,AC=6x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,∵x>0,∴DE=,AC=6,∴CD===,∴AD===5,故选:A.【点评】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是( )A.1B.2C.3D.4【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,∴4ac﹣b2<﹣8a,即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为 7.8×106 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据7800000用科学记数法表示为7.8×106.故答案为:7.8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)因式分解:﹣x2+2= ﹣(x+2)(x﹣2) .【分析】先提取公因式,再利用平方差公式分解即可.【解答】解:﹣x2+2=(x2﹣4)=(x+2)(x﹣2)故答案为:(x+2)(x﹣2).【点评】本题考查了因式分解,在进行因式分解时,有公因式要先提公因式,然后再看是否可以用公式法或其他方法分解,分解的结果要做到不能再分解为止.13.(3分)从点M(﹣1,6),N(,12),E(2,﹣3),F(﹣3,﹣2)中任取一点,所取的点恰好在反比例函数y=的图象上的概率为 .【分析】根据反比例函数的性质,找出符合点在函数y=图象上的点的个数,即可根据概率公式求解.【解答】解:∵k=6,﹣1×6=﹣6≠6,×12=6,2×(﹣3)=﹣6≠6,﹣3×(﹣2)=6,∴N、F两个点在反比例函数y=的图象上,故所取的点在反比例函数y=的图象上的概率是=.故答案为.【点评】本题考查了反比例函数图象上点的坐标特点.用到的知识点还有:概率=所求情况数与总情况数之比.14.(3分)不等式组的解集是 ﹣2<x≤3 .【分析】根据解一元一次不等式组的方法可以解答本题.【解答】解:,由不等式①,得x≤3,由不等式②,得x>﹣2,故原不等式组的解集是﹣2<x≤3,故答案为:﹣2<x≤3.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.15.(3分)如图,把三角形纸片折叠,使点A、点C都与点B重合,折痕分别为EF,DG,得到∠BDE=60°,∠BED=90°,若DE=2,则FG的长为 3 .【分析】根据折叠的性质得到AF=BF,AE=BE,BG=CG,DC=DB,根据三角形的中位线定理得到FG=AC,求得∠EBD=30°,得到DB=2DE=4,根据勾股定理得到BE===2,求得AE=BE=2,DC=DB=4,于是得到结论.【解答】解:∵把三角形纸片折叠,使点A、点C都与点B重合,∴AF=BF,AE=BE,BG=CG,DC=DB,∴FG=AC,∵∠BDE=60°,∠BED=90°,∴∠EBD=30°,∴DB=2DE=4,∴BE===2,∴AE=BE=2,DC=DB=4,∴AC=AE+DE+DC=2+2+4=6+2,∴FG=AC=3+,故答案为:3+.【点评】此题考查了翻折变换的性质、等腰三角形的性质、直角三角形的性质;根据折叠的性质得出相等的边和角是解题关键.16.(3分)如图,直线y=x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为 .【分析】根据直线y=x+1与x轴交于点M,与y轴交于点A,可分别求出OA、OM的长,得出tan∠AMO=,根据同角的余角相等可得∠OAB=∠AMO,得出tan∠OAB=,进而得出OB=,进而表示出S1,S2,…,S n.【解答】解:在直线y=x+1中,当x=0时,y=1;当y=0时,x=﹣3;∴OA=1,OM=3,∴tan∠AMO=,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB=,∴OB=.∵,∴,易得tan,∴,∴,∴,同理可得,,…,=.故答案为:.【点评】本题考查规律型问题、解直角三角形以及点的坐标,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.(5分)先化简,再求值:﹣÷,其中a=|﹣6|﹣()﹣1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=﹣×=﹣•=﹣=,当a=|﹣6|﹣()﹣1=6﹣2=4时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.(6分)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A 种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?【分析】设文具店购进B种款式的笔袋x个,则购进A种款式的笔袋(x+20)个,根据单价=总价÷数量结合A种笔袋的单价比B种袋的单价低10%,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设文具店购进B种款式的笔袋x个,则购进A种款式的笔袋(x+20)个,依题意,得:=(1﹣10%),解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴x+20=60.答:文具店购进A种款式的笔袋60个,B种款式的笔袋40个.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7分)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:(1)本次被抽查的书籍有 60 册.(2)补全条形统计图.(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.【分析】(1)根据统计图中的数据可以求得本次被抽查的书籍;(2)根据(1)中的结果和统计图中的数据可以将条形统计图补充完整;(3)根据统计图中的数据可以计算出所捐赠的科普类书籍有多少册.【解答】解:(1)∵捐赠的哲学故事类书籍和文学类书籍的数量相同,∴本次被抽查的书籍有:(3+9+12)÷(1﹣30%﹣30%)=60(册),故答案为:60;(2)文学类有60×30%=18(册),则哲学故事类18册,补全的条形统计如右图所示;(3)1200×=180(册),答:所捐赠的科普类书籍有180册.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(7分)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为 .(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为,故答案为:;(2)画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,∴两次所抽取的卡片恰好都是轴对称图形的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.21.(7分)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M 的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)【分析】作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,根据坡度的定义分别求出DC、CP,设MF=ym,根据正切的定义用y分别表示出DF、PE,根据题意列方程,解方程得到答案.【解答】解:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,则DC=PH=FE,DH=CP,HF=PE,设DC=3x,∵tanθ=,∴CP=4x,由勾股定理得,PD2=DC2+CP2,即252=(3x)2+(4x)2,解得,x=5,则DC=3x=15,CP=4x=20,∴DH=CP=20,PH=FE=DC=15,设MF=ym,则ME=(y+15)m,在Rt△MDF中,tan∠MDF=,则DF==y,在Rt△MPE中,tan∠MPE=,则PE==(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=20,解得,y=7.5+10,∴ME=MF+FE=7.5+10+15≈39.8,答:古塔的高度ME约为39.8m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角、坡度坡角问题,掌握仰角俯角、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.22.(8分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O 于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=,求⊙O的半径.【分析】(1)证明△DAF≌△DCE,可得∠DFA=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.(2)连接AH,求出DB=2DH=2,在Rt△ADF和Rt△BDF中,可得AD2﹣(AD﹣BF)2=DB2﹣BF2,解方程可求出AD的长.则OA可求出.【解答】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴,∴AD=5.∴⊙O的半径为.【点评】本题考查了圆的综合,涉及了圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.23.(10分)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30).(1)直接写出y与x之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若14<x≤30,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?【分析】(1)由图象知,当10<≤14时,y=640;当14<x≤30时,设y=kx+b,将(14,640),(30,320)解方程组即可得到结论;(2)根据题意列方程,解方程即可得到结论;(3)当14<x≤30时,求得函数解析式为W=(x﹣10)(﹣20x+920)=﹣20(x﹣28)2+6480,根据二次函数的性质即可得到结论.【解答】解:(1)由图象知,当10<x≤14时,y=640;当14<x≤30时,设y=kx+b,将(14,640),(30,320)代入得,解得,∴y与x之间的函数关系式为y=﹣20x+920;综上所述,y=;(2)(14﹣10)×640=2560,∵2560<3100,∴x>14,∴(x﹣10)(﹣20x+920)=3100,解得:x1=41(不合题意舍去),x2=15,答:销售单价x应定为15元;(3)当14<x≤30时,W=(x﹣10)(﹣20x+920)=﹣20(x﹣28)2+6480,∵﹣20<0,14<x≤30,∴当x=28时,每天的销售利润最大,最大利润是6480元.【点评】本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.24.(10分)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.【分析】(1)由旋转的性质得:AF=AC,∠AFE=∠ACB,由正方形的性质得出∠ACB=∠ACD=∠FAC=45°,得出∠ACF=∠AFC=67.5°,因此∠DCF═∠EFC=22.5°,由直角三角形斜边上的中线性质得出OE=CF=OC=OF,同理:OD=CF,得出OE=OD=OC=OF,证出∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,得出∠DOE=90°即可;(2)延长EO到点M,使OM=EO,连接DM、CM、DE,证明△COM≌△FOE(SAS),得出∠MCF=∠EFC,CM=EF,由正方形的性质得出AB=BC=CD,∠BAC=∠BCA=45°,由旋转的性质得出AB=AE=EF=CD,AC=AF,得出CD=CM,∠ACF=∠AFC,证明△ADE≌△CDM(SAS),得出DE=DM,再证明△COM≌△COD(SAS),得出OM=OD,即可得出结论;(3)连接AO,由等腰三角形的性质得出AO⊥CF,∠AOC=90°,得出点O在以AC为直径的圆上运动,证出点O经过的路径长等于以AC为直径的圆的周长,求出AC=AB=8,即可得出答案.【解答】解:(1)OE=OD,OE⊥OD;理由如下:由旋转的性质得:AF=AC,∠AFE=∠ACB,∵四边形ABCD是正方形,∴∠ACB=∠ACD=∠FAC=45°,∴∠ACF=∠AFC=(180°﹣45°)=67.5°,∴∠DCF═∠EFC=22.5°,∵∠FEC=90°,O为CF的中点,∴OE=CF=OC=OF,同理:OD=CF,∴OE=OD=OC=OF,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:延长EO到点M,使OM=EO,连接DM、CM、DE,如图2所示:∵O为CF的中点,∴OC=OF,在△COM和△FOE中,,∴△COM≌△FOE(SAS),∴∠MCF=∠EFC,CM=EF,∵四边形ABCD是正方形,∴AB=BC=CD,∠BAC=∠BCA=45°,∵△ABC绕点A逆时针旋转α得△AEF,∴AB=AE=EF=CD,AC=AF,∴CD=CM,∠ACF=∠AFC,∵∠ACF=∠ACD+∠FCD,∠AFC=∠AFE+∠CFE,∠ACD=∠AFE=45°,∴∠FCD=∠CFE=∠MCF,∵∠EAC+∠DAE=45°,∠FAD+∠DAE=45°,∴∠EAC=∠FAD,在△ACF中,∵∠ACF+∠AFC+∠CAF=180°,∴∠DAE+2∠FAD+∠DCM+90°=180°,∵∠FAD+∠DAE=45°,∴∠FAD+∠DCM=45°,∴∠DAE=∠DCM,在△ADE和△CDM中,,∴△ADE≌△CDM(SAS),∴DE=DM,∵OE=OM,∴OE⊥OD,在△COM和△COD中,,∴△COM≌△COD(SAS),∴OM=OD,∴OE=OD,∴OE=OD,OE⊥OD;(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=AB=×4=8,∴点O经过的路径长为:πd=8π.。
2019年辽宁省朝阳市中考数学模拟试卷(解析版)
2019年辽宁省朝阳市中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣的倒数是()A.B.2C.﹣D.﹣22.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.3.下列运算中,正确的是()A.(x2)3=x5 B.x2+2x3=3x5 C.(﹣ab)3=a3b D.x3•x3=x64.若点A(m﹣1,y1),B(m,y2)都在二次函数y=ax2+4ax+3(a>0)的图象上,且y1<y2则m 的取值范围是()A.m B.m<﹣C.m>﹣D.m>﹣5.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7B.4<m<7C.4≤m≤7D.4<m≤76.关于x的一元二次方程x2﹣mx+5(m﹣5)=0的两个正实数根分别为x1,x2,且2x1+x2=7,则m的值是()A.2B.6C.2或6D.77.关于一组数据:1,3,5,5,6,下列说法错误的是()A.平均数是4B.众数是5C.中位数是6D.方差是3.28.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.1B.2C.3D.69.如图,在平行四边形ABCD中AB=6,BC=8,BD的垂直平分线交AD于点E,则△ABE的周长是()A.7B.10C.13D.1410.已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a <b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分24分,每小题3分)11.将数12000000科学记数法表示为.12.分解因式:2x2﹣2=.13.要使分式有意义,则x应满足的条件是.14.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.15.如图,在反比例函数图象中,△AOB是等边三角形,点A在双曲线的一支上,将△AOB绕点O 顺时针旋转α(0°<α<360°),使点A仍在双曲线上,则α=.16.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是.17.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=度.18.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的.面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=三.解答题(共2小题,满分20分,每小题10分)19.先化简,再求值:,其中a是方程x2+4x﹣6=0的根.20.为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?四.解答题(共2小题,满分24分,每小题12分)21.在一只不透明的盒子里有背面完全相同,正面上分别写有数字1、2、3、4的四张卡片,小马从中随机地抽取一张,把卡片上的数字作为被减数;在另一只不透明的盒子里将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小虎从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小马与小虎做游戏,规则是:若这两数的差为非正数,则小马赢;否则小虎赢.你认为该游戏公平吗?请说明理由.22.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE =5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)五.解答题(共2小题,满分24分,每小题12分)23.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.24.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?六.解答题(共1小题,满分14分,每小题14分)25.△ABC中,AB=AC.将△ABC绕C点旋转至△A′B′C,连BB′,以AB、BB′为邻边作▱ABB′D,连A′D.(1)旋转后B、C、A′在一条直线上.如图1,若∠BAC=60°,则∠ADA′=;如图2,若∠BAC=90°,则∠ADA′=;(2)如图3,旋转后B、C、A′在一条直线上.若∠BAC=α,则∠ADA′=(用含α的式子表示);(3)分别将图1与图2中的△A′B′C继续旋转至图4、图5,使B、C、A′不在一条直线上,连AA′,则图4中,△ADA′的形状是;图5中,△ADA′的形状是.请你任选其中一个结论证明.七.解答题(共1小题,满分14分,每小题14分)26.如图,在平面直角坐标系中,直线y=kx﹣4k+4与抛物线y=x2﹣x交于A、B两点.(1)直线总经过定点,请直接写出该定点的坐标;(2)点P在抛物线上,当k=﹣时,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.2019年辽宁省朝阳市中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据乘积为1的两个数互为倒数,直接解答即可.【解答】解:∵﹣×(﹣2)=1,∴﹣的倒数是﹣2,故选:D.【点评】本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.【分析】直接利用幂的乘方运算法则以及合并同类项法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、(x2)3=x6,故此选项错误;B、x2+2x3,无法计算,故此选项错误;C、(﹣ab)3=﹣a3b3,故此选项错误;D、x3•x3=x6,正确.故选:D.【点评】此题主要考查了幂的乘方运算以及合并同类项以及积的乘方运算,正确掌握相关运算法则是解题关键.4.【分析】先求出抛物线的对称轴方程,再根据二次函数的性质,当点A(m﹣1,y1)和B(m,y2)在直线x=﹣2的右侧时m﹣1≥﹣2;当点A(m﹣1,y1)和B(m,y2)在直线x=﹣2的两侧时﹣2﹣(m﹣1)<m﹣(﹣2),然分别解两个不等式即可得到m的范围.【解答】解:抛物线的对称轴为直线x=﹣=﹣2,∵m﹣1<m,y1<y2,∴当点A(m﹣1,y1)和B(m,y2)在直线x=﹣2的右侧,则m﹣1≥﹣2,解得m≥﹣1;当点A(m﹣1,y1)和B(m,y2)在直线x=﹣2的两侧,则﹣2﹣(m﹣1)<m﹣(﹣2),解得m>﹣;综上所述,m的范围为m>﹣.故选:C.【点评】本题考查了二次函数图象上点的坐标特征:熟练掌握二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.5.【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.6.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系和两根都为正根得到x1+x2=m>0,x1•x2=5(m﹣5)>0,则m>5,由2x1+x2=7得到m+x1=7,即x1=7﹣m,x2=2m﹣7,于是有(7﹣m)(2m﹣7)=5(m﹣5),然后解方程得到满足条件的m的值.【解答】解:根据题意得x1+x2=m>0,x1•x2=5(m﹣5)>0,则m>5,∵2x1+x2=7,∴m+x1=7,即x1=7﹣m,∴x2=2m﹣7,∴(7﹣m)(2m﹣7)=5(m﹣5),整理得m2﹣8m+12=0,(m﹣2)(m﹣6)=0,解得m1=2,m2=6,∵m>5,∴m=6.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解法.7.【分析】根据平均数、众数、中位数及方差的定义分别计算可得.【解答】解:A、平均数为=4,此选项正确;B、5出现次数最多,即众数为5,此选项正确;C、中位数是5,此选项错误;D、方差为×[(1﹣4)2+(3﹣4)2+2×(5﹣4)2+(6﹣5)2]=3.2,此选项正确;故选:C.【点评】本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.8.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故选:B.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.9.【分析】根据线段垂直平分线的性质可得BE=DE,再根据平行四边形的性质可得DC=AB=6,AD=BC=8,进而可以算出△ABE的周长.【解答】解:∵BD的垂直平分线交AD于点E,∴BE=ED,∵四边形ABCD是平行四边形,∴DC=AB=6,AD=BC=8,∴△ABE的周长为:AB+AE+ED=AD+AB=6+8=14,故选:D.【点评】此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是掌握平行四边形两组对边分别相等.10.【分析】由抛物线开口向上得到a大于0,再由对称轴在y轴右侧得到a与b异号,即b小于0,由抛物线与y轴交于正半轴,得到c大于0,可得出abc的符合,对于(3)作出判断;由x=1时对应的函数值小于0,将x=1代入二次函数解析式得到a+b+c小于0,(1)错误;根据对称轴在1和2之间,利用对称轴公式列出不等式,由a大于0,得到﹣2a小于0,在不等式两边同时乘以﹣2a,不等号方向改变,可得出不等式,对(2)作出判断;由x=﹣1时对应的函数值大于0,将x=﹣1代入二次函数解析式得到a﹣b+c大于0,又4a大于0,c大于0,可得出a﹣b+c+4a+c 大于0,合并后得到(4)正确,综上,即可得到正确的个数.【解答】解:由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误;又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误;∵对称轴在1和2之间,∴1<﹣<2,又a>0,∴在不等式左右两边都乘以﹣2a得:﹣2a>b>﹣4a,故(2)正确;又x=﹣1时,对应的函数值大于0,故将x=﹣1代入得:a﹣b+c>0,又a>0,即4a>0,c>0,∴5a﹣b+2c=(a﹣b+c)+4a+c>0,故(4)错误,综上,正确的有1个,为选项(2).故选:A.【点评】此题考查了二次函数图象与系数的关系,利用了数形结合的思想,二次函数y=ax2+bx+c (a≠0),a的符号由抛物线的开口决定;b的符号由a及对称轴的位置确定;c的符号由抛物线与y轴交点的位置确定,此外还有注意利用特殊点1,﹣1及2对应函数值的正负来解决问题.二.填空题(共8小题,满分24分,每小题3分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12 000 000=1.2×107,故答案是:1.2×107,【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得1﹣x≠0,则x≠1,故答案为:x≠1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.【分析】根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.【解答】解:从数﹣2,﹣,0,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,∵正比例函数y=kx的图象经过第三、第一象限,∴k=mn>0.由树状图可知符合mn >0的情况共有2种,∴正比例函数y =kx 的图象经过第三、第一象限的概率是=.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比. 15.【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【解答】解:根据反比例函数的轴对称性,A 点关于直线y =x 对称,∵△OAB 是等边三角形,∴∠AOB =60°,∴AO 与直线y =x 的夹角是15°,∴α=2×15°=30°时点A 落在双曲线上,根据反比例函数的中心对称性,∴点A 旋转到直线OA 上时,点A 落在双曲线上,∴此时α=180°,根据反比例函数的轴对称性,继续旋转30°时,点A 落在双曲线上,∴此时α=210°;故答案为:30°、180°、210°.【点评】本题考查了反比例函数的综合运用,旋转的性质,等边三角形的性质.关键是通过旋转及双曲线的对称性得出结论.16.【分析】由题意可得:∠CAB =∠CBA =45°=∠ATB ,AB =TB =2,可得AC =BC =TC ,即点C 是的中点,则S 阴影=S △TCB ,即S 阴影=S △ABT =××2×2=1. 【解答】解:如图:设AT 与圆O 相交于点C ,连接BC∵BT 是⊙O 的切线∴AB ⊥TB ,又∵∠ATB =45°∴∠TAB =45°=∠ATB∴AB=TB=2∵AB是直径∴∠ACB=90°∴∠CAB=∠CBA=45°=∠ATB ∴AC=BC=TC∴点C是的中点∴S阴影=S△TCB∴S阴影=S△ABT=××2×2=1故答案为:1【点评】本题考查了切线的性质,圆周角的定理,熟练运用这些性质是本题的关键.17.【分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE =CB,∠ECB=∠DCA,计算即可.【解答】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.【点评】本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.18.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC =CA 1=P 1C =3,设A 1D =a ,则P 2D =a ,∴OD =6+a ,∴点P 2坐标为(6+a ,a ),将点P 2坐标代入y =﹣x +4,得:﹣(6+a )+4=a ,解得:a =,∴A 1A 2=2a =3,P 2D =,同理求得P 3E =、A 2A 3=,∵S 1=×6×3=9、S 2=×3×=、S 3=××=、……∴S 2018=,故答案为:. 【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三.解答题(共2小题,满分20分,每小题10分)19.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由一元二次方程的解的概念得出a 2+4a =6,代入计算可得.【解答】解:原式=[+]÷=(+)•=•=, ∵a 是方程x 2+4x ﹣6=0的根,∴a 2+4a ﹣6=0,即a 2+4a =6,则原式==2.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及一元二次方程的解的概念.20.【分析】(1)用7次的人数除以7次所占的百分比即可求得总人数,然后求得6次的人数即可确定众数;(2)补齐6次小组的小长方形即可.(2)用总人数乘以达标率即可.【解答】解:(1)观察统计图知达到7次的有7人,占28%,∴7÷28%=25人,达到6次的有25﹣2﹣5﹣7﹣3=8人,故众数为6次;…(4分)(2)(3)(人).答:该校125名九年级男生约有90人体能达标.…【点评】本题考查了条形统计图的知识,解题的关键是从统计图中整理出进一步解题的有关信息.四.解答题(共2小题,满分24分,每小题12分)21.【分析】(1)先利用画树状图展示所有12种等可能的结果数,再找出两数差为0的结果数,然后根据概率公式求解;(2)先找出这两数的差为非正数的结果数和这两数的差为正数的结果数,再根据概率公式计算出小马赢的概率和小虎赢的概率,然后通过比较概率的大小判断该游戏是否公平.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中两数差为0的结果数为3,所以P(两数差为0)==;(2)该游戏公平.理由如下:因为这两数的差为非正数的结果数为6,这两数的差为正数的结果数为6,小马赢的概率==,小虎赢的概率==,所以游戏公平.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).22.【分析】过点D作DH⊥BC于点H,则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,由三角函数得出DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,得出x=tan60°•[(x﹣5)﹣10],解方程即可.【解答】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=50°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.【点评】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.五.解答题(共2小题,满分24分,每小题12分)23.【分析】(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,据此即可得证;(2)证△ABC∽△FBO得=,结合AB=2BO即可得;(3)证ECD∽△EGC得=,根据CE=3,DG=2.5知=,解之可得.【解答】解:(1)CG与⊙O相切,理由如下:如图1,连接CE,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG与⊙O相切;(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴=,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴=,∵CE=3,DG=2.5,∴=,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.【点评】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.24.【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,据此列出函数解析式及二次函数的性质.六.解答题(共1小题,满分14分,每小题14分)25.【分析】(1)连接AA′,交BB′于点O,设AC与BB′交于点E,如图1.易证△BCB′≌△ACA′,则有BB′=AA′,∠CBB′=∠CAA′,从而可得∠AOB=∠ACB.由平行四边形ABB′D可得AD=BB′,AD∥BB′,从而可得AD=AA′,∠DAA′=∠AOB,即可得到∠DAA′=∠ACB=60°,则有△ADA′是等边三角形,因而∠ADA′=60°;连接AA′,交BB′于点O,设AC与BB′交于点E,如图2.易证△BCB′∽△ACA′,则有=,∠CBB′=∠CAA′从而可得∠AOB=∠ACB,由平行四边形ABB′D可得AD=BB′,AD∥BB′,从而可得=,∠DAA′=∠AOB,从而可得∠DAA′=∠ACB,即可得到△DAA′∽△BCA,即可得到∠ADA′=∠CBA=45°;(2)连接AA′,交BB′于点O,设AC与BB′交于点E,如图3.同(1)可得到∠ADA′=∠CBA,由AB=AC及∠BAC=α即可得到∠ADA′=∠CBA=90°﹣;(3)连接AA′,交BB′于点O,设AC与BB′交于点E,如图4.同(1)可得到△ADA′是等边三角形;连接AA′,交BB′于点O,设AC与BB′交于点E,如图5.同(1)可得到△DAA′∽△BCA,由等腰直角△BCA即可得到△DAA′是等腰直角三角形.【解答】解:(1)连接AA′,交BB′于点O,设AC与BB′交于点E,如图1.∵△A′B′C是由△ABC绕C点旋转所得,∠BAC=60°,AB=AC,∴CA=CA′=CB=CB′,∠ACB=∠A′CB′,∴∠BCB′=∠ACA′.在△BCB′和△ACA′中∴△BCB′≌△ACA′,∴BB′=AA′,∠CBB′=∠CAA′.∵∠AEB=∠CAA′+∠AOB,∠AEB=∠CBB′+∠ACB,∴∠AOB=∠ACB.∵四边形ABB′D是平行四边形,∴AD=BB′,AD∥BB′,∴AD=AA′,∠DAA′=∠AOB,∴∠DAA′=∠ACB=60°,∴△ADA′是等边三角形,∴∠ADA′=60°.连接AA′,交BB′于点O,设AC与BB′交于点E,如图2.∵△A′B′C是由△ABC绕C点旋转所得,∴CA=CA′,CB=CB′,∠ACB=∠A′CB′,∴=,∠BCB′=∠ACA′.∴△BCB′∽△ACA′,∴=,∠CBB′=∠CAA′.∵∠AEB=∠CAA′+∠AOB,∠AEB=∠CBB′+∠ACB,∴∠AOB=∠ACB.∵四边形ABB′D是平行四边形,∴AD=BB′,AD∥BB′,∴=,∠DAA′=∠AOB,∴∠DAA′=∠ACB,∴△DAA′∽△BCA,∴∠ADA′=∠CBA.∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ADA′=45°.故答案分别为60°、45°;(2)连接AA′,交BB′于点O,设AC与BB′交于点E,如图3.∵△A′B′C是由△ABC绕C点旋转所得,∴CA=CA′,CB=CB′,∠ACB=∠A′CB′,∴=,∠BCB′=∠ACA′.∴△BCB′∽△ACA′,∴=,∠CBB′=∠CAA′.∵∠AEB=∠CAA′+∠AOB,∠AEB=∠CBB′+∠ACB,∴∠AOB=∠ACB.∵四边形ABB′D是平行四边形,∴AD=BB′,AD∥BB′,∴=,∠DAA′=∠AOB,∴∠DAA′=∠ACB,∴△DAA′∽△BCA,∴∠ADA′=∠CBA.∵AB=AC,∠BAC=α,∴∠ABC=∠ACB==90°﹣,∴∠ADA′=90°﹣.故答案为90°﹣;(3)连接AA′,交BB′于点O,设AC与BB′交于点E,如图4.∵△A′B′C是由△ABC绕C点旋转所得,∠BAC=60°,AB=AC,∴CA=CA′=CB=CB′,∠ACB=∠A′CB′,∴∠BCB′=∠ACA′.在△BCB′和△ACA′中∴△BCB′≌△ACA′,∴BB′=AA′,∠CBB′=∠CAA′.∵∠AEB=∠CAA′+∠AOB,∠AEB=∠CBB′+∠ACB,∴∠AOB=∠ACB.∵四边形ABB′D是平行四边形,∴AD=BB′,AD∥BB′,∴AD=AA′,∠DAA′=∠AOB,∴∠DAA′=∠ACB=60°,∴△ADA′是等边三角形.连接AA′,交BB′于点O,设AC与BB′交于点E,如图5.∵△A′B′C是由△ABC绕C点旋转所得,∴CA=CA′,CB=CB′,∠ACB=∠A′CB′,∴=,∠BCB′=∠ACA′.∴△BCB′∽△ACA′,∴=,∠CBB′=∠CAA′.∵∠AEB=∠CAA′+∠AOB,∠AEB=∠CBB′+∠ACB,∴∠AOB=∠ACB.∵四边形ABB′D是平行四边形,∴AD=BB′,AD∥BB′,∴=,∠DAA′=∠AOB,∴∠DAA′=∠ACB,∴△DAA′∽△BCA.∵△BCA是等腰直角三角形,∴△DAA′是等腰直角三角形.故答案分别为等边三角形、等腰直角三角形.【点评】本题主要考查了全等三角形的判定与性质、相似三角形的判定与性质、平行四边形的性质、旋转的性质、等边三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质、三角形的外角性质等知识,考查了由特殊到一般的数学思想,突出了对四基(基本知识、基本技能、基本数学思想、基本数学活动经验)的考查,体现了新课程理念.七.解答题(共1小题,满分14分,每小题14分)26.【分析】(1)变形为不定方程k (x ﹣4)=y ﹣4,然后根据k 为任意不为0的实数得到x ﹣4=0,y ﹣4=0,然后求出x 、y 即可得到定点的坐标;(2)通过解方程组得A (6,3)、B (﹣4,8);①如图1,作PQ ∥y 轴,交AB 于点Q ,设P (x , x 2﹣x ),则Q (x ,﹣ x +6),则PQ =(﹣x +6)﹣(x 2﹣x ),利用三角形面积公式得到S △PAB =﹣(x ﹣1)2+=20,然后解方程求出x 即可得到点P 的坐标;②设P (x , x 2﹣x ),如图2,利用勾股定理的逆定理证明∠AOB =90°,根据三角形相似的判定,由于∠AOB =∠PCO ,则当=时,△CPO ∽△OAB ,即=;当=时,△CPO ∽△OBA ,即=,然后分别解关于x 的绝对值方程即可得到对应的点P 的坐标. 【解答】解:(1)∵y =kx ﹣4k +4=k (x ﹣4)+4,即k (x ﹣4)=y ﹣4,而k 为任意不为0的实数,∴x ﹣4=0,y ﹣4=0,解得x =4,y =4,∴直线过定点(4,4);(2)当k =﹣时,直线解析式为y =﹣x +6,解方程组得或,则A (6,3)、B (﹣4,8);①如图1,作PQ ∥y 轴,交AB 于点Q ,设P (x , x 2﹣x ),则Q (x ,﹣ x +6),∴PQ =(﹣x +6)﹣(x 2﹣x )=﹣(x ﹣1)2+,∴S △PAB =(6+4)×PQ =﹣(x ﹣1)2+=20,解得x1=﹣2,x2=4,∴点P的坐标为(4,0)或(﹣2,3);②设P(x,x2﹣x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=,整理得4|x2﹣x|=3|x|,解方程4(x2﹣x)=3x得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2﹣x)=﹣3x得x1=0(舍去),x2=1,此时P点坐标为(1,﹣);当=时,△CPO∽△OBA,即=,整理得3|x2﹣x|=4|x|,解方程3(x2﹣x)=4x得x1=0(舍去),x2=,此时P点坐标为(,);解方程3(x2﹣x)=﹣4x得x1=0(舍去),x2=﹣,此时P点坐标为(﹣,)综上所述,点P的坐标为:(7,)或(1,﹣)或(﹣,)或(,).【点评】本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和相似三角形的判定方法;会利用待定系数法求抛物线解析式,通过解方程组求两函数图象的交点坐标,会解一元二次方程;理解坐标与图形性质;会运用分类讨论的思想解决思想问题.。
精品解析:【市级联考】辽宁省朝阳市2019届九年级中考适应性考试数学试题(一)(解析版)
2019年辽宁省朝阳市中考适应性考试数学试题(一)一.选择题(共10小题,满分30分)1.的倒数是()A. ﹣2019B.C.D. 2019【答案】A【解析】【分析】根据倒数的定义解答.【详解】的倒数是.故选:A.【点睛】考查了倒数的定义,考查了学生对概念的记忆,属于基础题.2.如图所示是机器零件的立体图,从上面看到的平面图形是()A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得只有一层,第一层有2个正方形,如图:.故选A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.下列运算中,计算正确的是()A. (a2b)3=a5b3B. (3a2)3=27a6C. x6÷x2=x3D. (a+b)2=a2+b2【答案】B【解析】试题分析:A、(a2b)3=a6b3,故此选项错误;B、 (3a2)3=27a6,故此选项正确;C、x6÷x2=x4,故此选项错误;D、(a+b)2=a2+b2+2ab,故此选项错误.故选B.4.下列事件中,属于必然事件的是()A. “世界杯新秀”姆巴佩发点球100%进球B. 任意购买一张车票,座位刚好挨着窗口C. 三角形内角和为180°D. 叙利亚不会发生战争【答案】C【解析】【分析】随机事件是指可能发生也可能不发生的事件,必然事件是指一定能发生的事件,不可能事件是指一定不发生的事件,根据以上定义逐个进行判断即可.【详解】A.“世界杯新秀”姆巴佩发点球100%进球是随机事件;B.任意购买一张车票,座位刚好挨着窗口是随机事件;C.三角形内角和为180°是必然事件;D.叙利亚不会发生战争是随机事件;故选C.【点睛】本题考查了对随机事件、必然事件、不可能事件的应用,能理解随机事件、必然事件、不可能事件的定义是解此题的关键.5.如图,在△ABC中,D,E分别在边AC与AB上,DE∥BC,BD、CE相交于点O,,AE=1,则EB的长为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】先由DE∥BC,根据平行线分线段成比例定理得到;同样得到,然后计算出AB,从而得到BE的长.【详解】∵DE∥BC,∴;∵DE∥BC,∴,∴AB=3AE=3,∴BE=3﹣1=2.故选B.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了平行线分线段成比例定理.6.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.【答案】A 【解析】 【分析】设进2个球的有x 人,进3个球的有y 人,根据20人共进49个球,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】设进2个球有x 人,进3个球的有y 人, 根据题意得:,即.故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A. 5,5 B. 5,6C. 6,6D. 6,5【答案】B 【解析】 【分析】根据众数、中位数的定义分别进行解答即可. 【详解】由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为6.故选B .【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.如图,在矩形ABCD中,AB=2,BC=4,把矩形折叠,使点D与点B重合,点C落在点E处,则折痕FG的长为()A. 2.5B. 3C.D. 2【答案】C【解析】【分析】先连接BD,在Rt△ABD中,求得BD的长,在Rt△ABE中运用勾股定理求得BF的长,即可得到DF长,最后在Rt△DOF中求得FO的长,即可得到FG的长.【详解】如图,连接BD,交EF于O,则由轴对称的性质可知,FG垂直平分BD,Rt△ABD中,BD==2∴DO=,由折叠可得,∠BFO=∠DFO,由AD∥BC可得,∠DFO=∠BGO,∴∠BFO=∠BGO,∴BF=BG,即△BFG是等腰三角形,∴BD平分FG,设BF=DF=x,则AE=4﹣x,在Rt△ABE中,(4﹣x)2+22=x2,解得x=,即DF=,∴Rt△DOF中,OF=,∴FG=2FO=.故选C.【点睛】本题是折叠问题,主要考查了折叠的性质,勾股定理以及矩形的性质的综合应用,解决问题的关键是根据勾股定理列方程求解.本题也可以运用面积法求得FO的长.9.下列关于二次函数的说法正确的是()A. 它的图象经过点B. 它的图象的对称轴是直线C. 当时,随的增大而减小D. 当时,有最大值为0【答案】C【解析】【分析】由二次函数的解析式为,把代入即可判断是否在抛物线上,对称轴x=-=0,图像开口向上,即可判断CD两个选项.【详解】A. 它的图象经过点,A错误;B. 它的图象的对称轴是直线,B错误;C. 当时,随的增大而减小,正确;D. 当时,有最小值为0,D错误.【点睛】此题主要考察二次函数的图像与性质.10.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF 分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A. 1B. 2C. 3D. 4【答案】D【解析】【分析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,所以∠ANM=∠AEB,则可求得②正确;根据三角形的外角的性质得到①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,再根据相似三角形的性质得到EF=MN,于是得到S△AEF=2S△AMN.故④正确.【详解】如图,把△ADF绕点A顺时针旋转90°得到△ABH由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正确∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH ∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故①正确,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故③正确连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正确故选D.【点睛】此题考查相似三角形全等三角形的综合应用,熟练掌握相似三角形,全等三角形的判定定理是解决此类题的关键.二.填空题(满分18分,每小题3分)11.将数12000000科学记数法表示为_____.【答案】1.2×107【解析】【分析】科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】解:数12000000科学记数法表示为1.2×107,故答案是:1.2×107,【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.12.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是_____.【答案】35°【解析】【分析】连接CB,OB,CO,根据题意易得AC=CB,再由等腰三角形三角形的性质、圆周角定理,进行角的代换计算即可得到答案.【详解】连接CB,OB,CO.由题意=,∴AC=CB,且△ABC是等腰三角形,∠CAO=∠CBO∵AO=OB,在△AOB中∴∠BAO=∠ABO=20°∴∠AOB=180°-∠BAO-∠ABO=140°∵AC=CB∴∠AOC=∠BOC=∠AOB=70°在△AOC中,AO=CO,∴∠CAO=∠ACO=(180°-70°)×=55°∴∠CAB=∠CAO-∠OAB=55°-20°=35°故答案为35°.【点睛】本题主要考查的是等要三角形的性质、圆周角定理,熟练掌握知识点是本题的解题关键.13.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是_____.【答案】【解析】【分析】利用阴影部分与三角形的面积比即可.【详解】设三角形面积为1.∵△ABC 中,D 、E 、F 分别是各边的中点,∴DE ∥BC ,DE =BF ,∴四边形BFED 是平行四边形,∴△DEF ≌△FBD ,同理△DEF ≌△CFE ,△DEF ≌△EDA ,∴阴影部分的面积=△ABC 的面积的,即米粒落到阴影区域内的概率是. 故答案为:.【点睛】本题考查了几何概型的概率求法,利用面积求概率是解题的关键.14.任意写出一个3的倍数例如:,首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M ,它会掉入一个数字“黑洞”那么最终掉入“黑洞”的那个数M 是______.【答案】153【解析】【分析】 认真审题,熟悉规则取符合条件的数如3,6,9等,按规则计算便可得结果.【详解】如:3.3的立方为27,则2的立方加上7的立方得351,则3的立方加上5的立方再加上1的立方得153, 所以这个数是153.故答案为:153.【点睛】考查了数字的变化类问题,读懂题意,熟悉规则是关键可经过多次试验确定结果.15.如图,已知正比例函数y=kx(k≠0)和反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B,则不等式kx<的解集是_____.【答案】﹣2<x<0或x>2.【解析】【分析】根据关于原点对称的点的坐标特征求得B(2,-1),然后根据函数的图象的交点坐标即可得到结论.【详解】∵正比例函数y=kx(k≠0)和反比例函数y=(m≠0)的图象相交于点A(﹣2,1),和点B,∴B(2,﹣1),∴不等式kx<的解集是﹣2<x<0或x>2,故答案为:﹣2<x<0或x>2.【点睛】此题考查了反比例函数与一次函数的交点问题,关键是注意掌握数形结合思想的应用.16.已知某果农贩卖的西红柿,其质量与价钱成一次函数关系,今小华向果农买一竹篮的西红柿,含竹篮称得总质量为15公斤,付西红柿的钱25元.若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的质量为_____公斤.【答案】2.5【解析】【分析】设西红柿的价钱为x,质量为y,根据质量与价钱成一次函数关系,利用待定系数法求出k与b的值,确定出一次函数解析式,即可求出空竹篮的质量.【详解】设西红柿的价钱为x,质量为y,由题意得:y=kx+b,把(25,15)与(26,15.5)代入得:②﹣①得:k=0.5,把k=0.5代入①得:b=2.5,∴y=0.5x+2.5,令x=0,得到y=2.5,则空竹篮的质量为2.5公斤,故答案为:2.5【点睛】此题考查了一次函数的应用,熟练掌握待定系数法是解本题的关键.三.解答题(共9小题,满分72分)17.计算:4sin60°﹣|﹣1|+(﹣1)0+【答案】6【解析】【分析】将特殊锐角三角函数值代入、计算绝对值、零指数幂、化简二次根式,再进一步计算可得.【详解】解:原式=4×﹣1+1+4=2+4=6【点睛】本题主要考查实数的运算,解题的关键是掌握特殊锐角三角函数值、绝对值性质、零指数幂、二次根式性质.18.先化简:; 再在不等式组的整数解中选取一个合适的解作为a的取值,代入求值.【答案】1【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再求出不等式的解集,在其解集范围内选取合适的a的值代入分式进行计算即可.试题解析:解:原式=•﹣=1﹣=﹣=﹣解不等式3﹣(a+1)>0,得:a<2,解不等式2a+2≥0,得:a≥﹣1,则不等式组的解集为﹣1≤a<2,其整数解有﹣1、0、1.∵a≠±1,∴a=0,则原式=1.点睛:本题考查的是分式的化简求值及一元一次不等式组的整数解,解答此类问题时要注意a的取值要保证分式有意义.19.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.【答案】(1)35%,126;(2)见解析;(3)1344人【解析】【分析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.【详解】(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为:35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.20.如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?【答案】(1)40海里;(2)轮船继续向东航行,无触礁危险.【解析】【分析】(1)根据三角形内角和定理求出∠ACB,根据等腰三角形的判定定理解答;(2)作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,比较得到答案.【详解】(1)由题意得,∠CAB=30°,∠ABC=120°,∴∠ACB=180°-30°-120°=30°,∴∠ACB=∠CAB,∴BC=AB=40(海里);(2)作CE⊥AB交AB的延长线于E,在Rt△CBE中,sin∠CBE=,∴CE=BC•sin∠CBE=40×=20,∵20>30,∴轮船继续向东航行,无触礁危险.【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握锐角三角函数的定义,正确标注方向角是解题的关键.21.在三个完全相同的小球上分别写上-2,-1,2三个数字,然后装入一个不透明的布袋内搅匀,从布袋中取出一个球,记下小球上的数字为,放回袋中再搅匀,然后再从袋中取出一个小球,记下小球上的数字为,组成一对数.(1)请用列表或画树状图的方法,表示出数对的所有可能的结果;(2)求直线不经过第一象限的概率.【答案】(1)见解析;(2) .【解析】【分析】(1)根据题意画出树状图,表示出数对(m,n)的所有可能的结果即可;(2)由树状图求得所有等可能的结果与所得到的直线y=mx+n不经过第一象限的情况,再利用概率公式即可求解.【详解】解:(1)树状图如下:∴数对的所有可能为,,,,,,,,;(2)直线不经过第一象限的概率为.故答案为:(1)见解析;(2) .【点睛】本题考查用列表法或树状图法求概率,一次函数的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.22.如图,AB为⊙O直径,C、D为⊙O上的点,∠ACD=2∠A,CE⊥DB交DB的延长线于点E.(1)求证:直线CE与⊙O相切;(2)若AC=8,AB=10,求CE的长.【答案】(1)见解析;(2).【解析】【分析】(1)连接OC,由等腰三角形的性质得到∠A=∠ACO,推出∠DCO=∠D,得到OC∥DE,根据平行线的性质得到OC⊥CE,于是得到结论;(2)根据圆周角定理得到∠ACB=90°,根据切线的性质得到∠BCE=∠BAC,根据相似三角形的性质列方程即可得到结论.【详解】解(1)证明:连接OC,∵OA=OC,∴∠A=∠ACO,∵∠ACD=2∠A,∴∠DCO=∠ACO=∠A,∵∠A=∠D,∴∠DCO=∠D,∴OC∥DE,∵CE⊥DB,∴OC⊥CE,∴直线CE与⊙O相切;(2)解:∵AB⊙O直径,∴∠ACB=90°,∵AC=8,AB=10,∴BC=6,∵直线CE与⊙O相切,∴∠BCE=∠BAC,∵∠CEB=∠ACB=90°,∴△ABC∽△CBE,∴,∴,∴CE=.【点睛】本题考查切线的判定和性质,圆周角定理,平行线的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m= ,n= ;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?【答案】(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.【解析】【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值;(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得32=12m﹣76m,解得m=,当第26天的售价为25元/千克时,代入y=n,则n=25,故答案为:m=,n=25;(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,当1≤x<20时,W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,∴当x=18时,W最大=968,当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,∵28>0,∴W随x的增大而增大,∴当x=30时,W最大=952,∵968>952,∴当x=18时,W最大=968;(3)当1≤x<20时,令﹣2x2+72x+320=870,解得x1=25,x2=11,∵抛物线W=﹣2x2+72x+320的开口向下,∴11≤x≤25时,W≥870,∴11≤x<20,∵x为正整数,∴有9天利润不低于870元,当20≤x≤30时,令28x+112≥870,解得x≥27,∴27≤x≤30∵x为正整数,∴有3天利润不低于870元,∴综上所述,当天利润不低于870元的天数共有12天.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.24.在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥BC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:∠ANE =∠DCE ;(2)如图2,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长;(3)连接AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.【答案】(1)见解析;(2);(3)DE 的长分别为或3. 【解析】【分析】(1)由比例中项知,据此可证△AME ∽△AEN 得∠AEM =∠ANE ,再证∠AEM =∠DCE 可得答案;(2)先证∠ANE =∠EAC ,结合∠ANE =∠DCE 得∠DCE =∠EAC ,从而知,据此求得AE =8﹣=,由(1)得∠AEM =∠DCE ,据此知,求得AM =,由求得MN =; (3)分∠ENM =∠EAC 和∠ENM =∠ECA 两种情况分别求解可得.【详解】解:(1)∵AE 是AM 和AN 的比例中项 ∴,∵∠A =∠A ,∴△AME ∽△AEN ,∴∠AEM =∠ANE ,∵∠D =90°,∴∠DCE +∠DEC =90°,∵EM ⊥BC ,∴∠AEM +∠DEC =90°,∴∠AEM =∠DCE ,∴∠ANE =∠DCE ;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(3)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如图3,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,设DE=3x,则HE=3x,AH=4x,AE=5x,又AE+DE=AD,∴5x+3x=8,解得x=1,∴DE=3x=3,综上所述,DE的长分别为或3.【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.25.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于A,点B,与y轴交于点C,过点C作CD⊥y轴交抛物线于点D,过点B作BE⊥x轴,交DC延长线于点E,连接BD,交y轴于点F,直线BD的解析式为y=﹣x+2.(1)写出点E的坐标;抛物线的解析式.(2)如图2,点P在线段EB上从点E向点B以1个单位长度/秒的速度运动,同时,点Q在线段BD上从点B向点D 以个单位长度/秒的速度运动,当一个点到达终点时,另一个点随之停止运动,当t为何值时,△PQB为直角三角形?(3)如图3,过点B的直线BG交抛物线于点G,且tan∠ABG =,点M为直线BG上方抛物线上一点,过点M作MH⊥BG,垂足为H,若HF=MF,请直接写出满足条件的点M的坐标.【答案】(1)点E坐标为(2,5),y =﹣x2﹣+5;(2)t =或时,△PQB为直角三角形;(3)点M坐标为(﹣4,3)或(0,5).【解析】【分析】(1)由待定系数法求点坐标及函数关系式;(2)根据题意,△DEB为等腰直角三角形,通过分类讨论PQB=90°或∠QPB=90°的情况求出满足条件t值;(3)延长MF交GB于K,由∠MHK=90°,HF=MF可推得HF=FK,即F为MK中点,设出M坐标,利用中点坐标性质,表示K点坐标,代入GB解析式,可求得点M坐标.+bx+5【详解】将点D(-3,5)点B(2,0)代入y=ax2解得∴抛物线解析式为:y=-x2-x+5(2)由已知∠QBE=45°,PE=t,PB=5-t,QB=t当∠QPB=90°时,△PQB为直角三角形.∵∠QBE=45°∴QB=PB∴t=(5−t)解得t=当∠PQB=90°时,△PQB为直角三角形.△BPQ∽△BDE∴BQ•BD=BP•BE∴5(5-t)=t•5解得:t=∴t=或时,△PQB为直角三角形.(3)由已知tan∠ABG=,且直线GB过B点则直线GB解析式为:y=x−1延长MF交直线BG于点K∵HF=MF∴∠FMH=∠FHM∵MH⊥BG时∴∠FMH+∠MKH=90°∠FHK+∠FHM=90°∴∠FKH=∠FHK∴HF=KF∴F为MK中点设点M坐标为(x,-x2-x+5)∵F(0,2)∴点K坐标为(-x,x2+x-1)把K点坐标代入入y=x−1解得x1=0,x2=-4,把x=0代入y=-x2-x+5,解得y=5,把x=-4代入y=-x2-x+5解得y=3则点M坐标为(-4,3)或(0,5).【点睛】本题为代数几何综合题,考查了二次函数性质、一次函数性质、三角形相似以及直角三角形的性质,应用了分类讨论和数形结合思想.。
辽宁省朝阳市中考数学试卷及答案
辽宁省朝阳市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。
辽宁省朝阳市中考数学试卷和答案
辽宁省朝阳市初中升学考试数学(考试时间120分钟,满分120分)一.选择题(20分,每题2分)1.3的相反数是( ) A.3 B.31 C.-3 D.31- 2.如图所示几何体的左视图是( )A B C D3.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x 元,依题意列方程,正确的是( ) A .9015%x x -= B .9015%x= C .90-x =15% D . x =90×15% 4.如图,AB//CD ,∠ABE=60°,∠D=50°,则∠E 的度数为( )(4题图) (6题图)5.计算3221⎪⎭⎫⎝⎛-xy ,结果正确的是( )A.5361y x B.6381y x - C.6361y x D.5381y x - 6.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则BC 两地之间的距离为 ( ) A.3100m B.250m C.350m D.33100 7.六箱救灾区物资的质量(单位:千克)分别是17,20,18,17,18,18,则这组数据的平均数,众数,方差依次是( )A.18,18,3B.18,18,1C.18,17.5,3D.17.5,18,1 8.如图,在梯形ABCD 中,AD//BC,AB=DC,∠ABC=72°,现平行移动腰AB 至DE 后,再将△DCE 沿DE 折叠,得△DC ′E ,则∠EDC ′的度数是( ) A.72° B.54° C.36° D.30°(第8题) (第9题) (第10题)9.用圆心角为120°,半径6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A.2cmB.23cmC.24 cmD.4cm 10.如图,正比例函数y 1=k 1x 和反比例函数y 2=xk 2的图像交于A (-1,2),B (1,-2)两点,若y 1>y 2,则x 的取值范围是( )A.x <-1或x>1B.x<-1或0<x<1C.-1<x<0或0<x<1 C.-1<x<0或x>1二.填空题(18分,每题3分)11.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为 吨12.如图,将小张五月份手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角为 度A B第12题图 第15题图13.不等式组⎪⎩⎪⎨⎧<-≤34131x x 的解集是14.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是15.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100 m ,测得圆周角 ∠ACB =30°,则这个人工湖的直径为 16.如图,正方形ABCD 的边长为2cm ,△PMN 是直角一块三角板(∠N =30°),PM >2cm ,PM 与BC 均在直线l 上,开始时M 点与B 点重合,将三角板向右平行移动,直至M 点与C 点重合为止.设BM =x cm ,三角板与正方形重叠部分的面积外y cm 2.下列结论: ①当0≤x ≤233时,y 与x 之间的函数关系式为32y x =; C②当233≤x ≤2时,y 与x 之间的函数关系式为2233y x =-; ③当MN 经过AB 的中点时,132y =(cm 2);④存在x 的值,使y =12S 正方形ABCD (12S 正方形ABCD 表示正方形ABCD 的面积).其中正确的是________(写出所有正确结论的序号).三.解答题(82分) 17.(5分)计算:()211332-+-+-18.(6分)先化简,再求值:xx x x x 313412--÷⎪⎭⎫ ⎝⎛-++,其中x=13+19.(8分)“安全教育,警钟长鸣”,为此,某中学组织全校1200名学生参加安全知识测试,为了解本次测试成绩的分布情况,从中随机抽取了部分学生的成绩,绘制出如下不完整的统计图表:请根据以上图表提供的信息,解答下列问题:(1)表中吗的值为 ,n 的值为 . (2)补全频数分布直方图(3)测试成绩的中位数在哪个分数段? (4)规定测试成绩80分以上(含80分)为合格,请估计全校学生中合格人数约为多少人?20.(7分)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成。
辽宁省朝阳市2019-2020学年中考数学模拟试题(1)含解析
辽宁省朝阳市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2011•雅安)点P 关于x 轴对称点为P 1(3,4),则点P 的坐标为( )A .(3,﹣4)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)2.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )A .①的收入去年和前年相同B .③的收入所占比例前年的比去年的大C .去年②的收入为2.8万D .前年年收入不止①②③三种农作物的收入3.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1) 4.反比例函数是y=2x 的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限5.如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )A .3.5B .4C .7D .146.一元二次方程210x x --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断7.如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )A.10 B.12 C.20 D.248.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF9.方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=310.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.C.D.11.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.12.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.三角形的每条边的长都是方程2680-+=的根,则三角形的周长是.x x14.某市居民用电价格如表所示:用电量不超过a 千瓦时 超过a 千瓦时的部分 单价(元/千瓦时) 0.5 0.6 小芳家二月份用电200千瓦时,交电费105元,则a=______.15.函数12y x=,当x <0时,y 随x 的增大而_____. 16.若a+b =3,ab =2,则a 2+b 2=_____.17.如图,AB 是⊙O 的直径,点E 是»BF的中点,连接AF 交过E 的切线于点D ,AB 的延长线交该切线于点C ,若∠C =30°,⊙O 的半径是2,则图形中阴影部分的面积是_____.18.已知x 1、x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,则的值是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,抛物线2:23L y x bx =--(b 为常数).(1)抛物线的顶点坐标为( , )(用含b 的代数式表示);(2)若抛物线L 经过点()2,1M --且与k y x=图象交点的纵坐标为3,请在图1中画出抛物线L 的简图,并求k y x=的函数表达式; (3)如图2,规矩ABCD 的四条边分别平行于坐标轴,1AD =,若抛物线L 经过,A C 两点,且矩形ABCD 在其对称轴的左侧,则对角线AC 的最小值是 .20.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图. 类别频数(人数) 频率 小说0.5 戏剧4 散文10 0.25 其他6 合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.21.(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法、B 阅读,C 足球,D 器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?22.(8分)如图所示,AB 是⊙O 的一条弦,DB 切⊙O 于点B ,过点D 作DC ⊥OA 于点C ,DC 与AB 相交于点E .(1)求证:DB=DE ;(2)若∠BDE=70°,求∠AOB 的大小.23.(8分)直角三角形ABC 中,BAC 90∠=o ,D 是斜边BC 上一点,且AB AD =,过点C 作CE AD ⊥,交AD 的延长线于点E ,交AB 延长线于点F .()1求证:ACB DCE ∠∠=;()2若BAD45o∠=,AF22=+,过点B作BG FC⊥于点G,连接DG.依题意补全图形,并求四边形ABGD的面积.24.(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:2≈1.41,3≈1.73,10≈3.16)25.(10分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)26.(12分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=52,请求出该抛物线的顶点坐标.27.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】∵关于x 轴对称的点,横坐标相同,纵坐标互为相反数,∴点P 的坐标为(3,﹣4).故选A .2.C【解析】【详解】A 、前年①的收入为60000×117360=19500,去年①的收入为80000×117360=26000,此选项错误; B 、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误; C 、去年②的收入为80000×126360=28000=2.8(万元),此选项正确; D 、前年年收入即为①②③三种农作物的收入,此选项错误,故选C .【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系. 3.A【解析】【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.4.B【解析】【分析】【详解】解:∵反比例函数是y=2x中,k=2>0, ∴此函数图象的两个分支分别位于一、三象限.故选B .5.A【解析】【分析】根据菱形的四条边都相等求出AB ,再根据菱形的对角线互相平分可得OB=OD ,然后判断出OE 是△ABD 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.【详解】解:∵菱形ABCD 的周长为28,∴AB=28÷4=7,OB=OD ,∵E 为AD 边中点,∴OE 是△ABD 的中位线,∴OE=12AB=12×7=3.1. 故选:A .【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.6.A【解析】【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况.【详解】21,1,14145a b c b ac ==-=-∴∆-=+=Q∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口.7.B【解析】【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【详解】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 向C 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC ,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC 的面积为:12×4×6=12. 故选:B.【点睛】本题考查动点问题的函数图象,解题关键是注意结合图象求出BC 与AC 的长度,本题属于中等题型. 8.C【解析】【分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE 的关系,根据三角形外角的性质,可得答案.【详解】 在△ABC 和△DEB 中,AC BD AB ED BC BE =⎧⎪=⎨⎪=⎩,所以△ABC ≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.9.B【解析】【分析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘(x−3)(x+1),得(x−2) (x+1)=x(x−3),,解得x=1.检验:把x=1代入(x−3)(x+1)=-4≠0.∴原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.10.B【解析】试题解析:能够凑成完全平方公式,则4a前可是“-”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选B.考点:1.概率公式;2.完全平方式.11.D【解析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C 选项:∵∠ABC=∠DEC=90°,∴AB ∥DE ,∴∠2=∠EFC ,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D 选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系. 12.B【解析】【分析】【详解】解:∵AC 是⊙O 的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC 的平分线BD 交⊙O 于点D ,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选B .【点睛】本题考查圆周角定理;圆心角、弧、弦的关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6或2或12【解析】【分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.14.150【解析】【分析】根据题意可得等量关系:不超过a 千瓦时的电费+超过a 千瓦时的电费=105元;根据等量关系列出方程,解出a 的值即可.【详解】∵0.5×200=100<105,∴a<200.由题意得:0.5a+0.6(200-a)=105,解得:a=150.故答案为:150【点睛】此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.15.减小【解析】【分析】 先根据反比例函数的性质判断出函数12y x =的图象所在的象限,再根据反比例函数的性质进行解答即可. 【详解】 解:∵反比例函数12y x =中,102k =>, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小.故答案为减小.【点睛】 考查反比例函数的图象与性质,反比例函数()0,k y k x=≠ 当0k >时,图象在第一、三象限.在每个象限,y 随着x 的增大而减小,当k 0<时,图象在第二、四象限.在每个象限,y 随着x 的增大而增大.16.1【解析】【分析】根据a 2+b 2=(a+b )2-2ab ,代入计算即可.【详解】∵a+b =3,ab =2,∴a 2+b 2=(a+b )2﹣2ab =9﹣4=1.故答案为:1.【点睛】本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.17.223π- 【解析】【分析】首先根据切线的性质及圆周角定理得CE 的长以及圆周角度数,进而利用锐角三角函数关系得出DE ,AD 的长,利用S △ADE ﹣S 扇形FOE =图中阴影部分的面积求出即可.【详解】解:连接OE ,OF 、EF ,∵DE 是切线,∴OE ⊥DE ,∵∠C =30°,OB =OE =2,∴∠EOC =60°,OC =2OE =4,∴CE =OC×sin60°=4sin 60⨯=o∵点E 是弧BF 的中点,∴∠EAB =∠DAE =30°,∴F ,E 是半圆弧的三等分点,∴∠EOF =∠EOB =∠AOF =60°,∴OE ∥AD ,∠DAC =60°,∴∠ADC =90°,∵CE =AE =∴DE=3,∴AD=DE×tan60°=333,⨯=∴S△ADE113333222AD DE=⋅=⨯⨯=∵△FOE和△AEF同底等高,∴△FOE和△AEF面积相等,∴图中阴影部分的面积为:S△ADE﹣S扇形FOE23360π2333260π.3⋅⨯=-=-故答案为3323π-【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.18.6【解析】【分析】已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【详解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,∴=故答案为6.【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2,3b b --;(2)图象见解析,6y x =或9y x=-;(3)2 【解析】【分析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M ,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式; (3)设出A 的坐标,表示出C,D 的坐标,得到CD 的长度,根据题意找到CD 的最小值,因为AD 的长度不变,所以当CD 最小时,对角线AC 最小,则答案可求.【详解】解:(1)()2222222323()3y x bx x bx b b x b b =--=-+--=--+Q , ∴抛物线的顶点的坐标为2(,3)b b --.故答案为:2(,3)b b --(2)将(2,1)M --代入抛物线的解析式得:4431b +-=-解得:12b =-, ∴抛物线的解析式为23y x x =+-.抛物线L 的大致图象如图所示:将3y =代入23y x x =+-得: 233x x +-=,解得:2x =或3x =-∴抛物线与反比例函数图象的交点坐标为(2,3)或()3,3-.将(2,3)代入k y x=得:6k =,6y x∴=. 将()3,3-代入k y x=得:9k =-, 9y x=-∴. 综上所述,反比例函数的表达式为6y x =或9y x=-. (3)设点A 的坐标为()2,23x x bx --,则点D 的坐标为()21,23x x bx +--, C 的坐标为21,(22)2)2(x x b x b ++---.()2223(22)22221DC x bx x b x b x b ⎡⎤∴=---+---=-+-⎣⎦ DC ∴的长随x 的增大而减小.Q 矩形ABCD 在其对称轴的左侧,抛物线的对称轴为x b =,1x b ∴+≤1x b ∴≤-∴当1x b =-时,DC 的长有最小值,DC 的最小值2(1)211b b =--+-=.AD Q 的长度不变,∴当DC 最小时,AC 有最小值.AC ∴的最小值=.【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.20.(1)41(2)15%(3)16【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)=212=16.21.(1)答案见解析;(2)1 4【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41. 164 ==点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(1)证明见解析;(2)110°.【解析】分析:(1)欲证明DB=DE,只要证明∠BED=∠ABD即可;(2)因为△OAB是等腰三角形,属于只要求出∠OBA即可解决问题;详解:(1)证明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD为切线,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD ,∵∠CEA=∠BED ,∴∠BED=∠ABD ,∴DE=DB .(2)∵DE=DB ,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD 为切线,∴OB ⊥BD ,∴∠OBA=35°,∵OA=OB ,∴∠OBA=180°-2×35°=110°.点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(1)证明见解析;(2)补图见解析;ABGD S 四边形=【解析】【分析】()1根据等腰三角形的性质得到ABD ADB ∠=∠,等量代换得到ABD CDE ∠=∠,根据余角的性质即可得到结论;()2根据平行线的判定定理得到AD ∥BG ,推出四边形ABGD 是平行四边形,得到平行四边形ABGD 是菱形,设AB=BG=GD=AD=x ,解直角三角形得到BF == ,过点B 作BH AD ⊥ 于H ,根据平行四边形的面积公式即可得到结论.【详解】解:()1AB AD Q =, ABD ADB ∠∠∴=,ADB CDE ∠∠=Q ,ABD CDE ∠∠∴=,BAC 90∠=o Q ,ABD ACB 90∠∠∴+=o ,CE AE ⊥Q ,DCE CDE 90∠∠∴+=o ,ACB DCE ∠∠∴=;()2补全图形,如图所示:BAD 45∠=o Q ,BAC 90∠=o ,BAE CAE 45∠∠∴==o ,F ACF 45∠∠==o ,AE CF ⊥Q ,BG CF ⊥,AD //BG ∴,BG CF ⊥Q ,BAC 90∠=o ,且ACB DCE ∠∠=,AB BG ∴=,AB AD =Q ,BG AD ∴=,∴四边形ABGD 是平行四边形,AB AD =Q ,∴平行四边形ABGD 是菱形,设AB BG GD AD x ====,BF 2BG 2x ∴==,AB BF x 2x 22∴+==x 2∴=过点B 作BH AD ⊥于H ,2BH 1∴==. ABGD S AD BH 2∴=⨯=四边形故答案为(1)证明见解析;(2)补图见解析;ABGD =2S 四边形.【点睛】本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.24.2.1.【解析】【分析】据题意得出tanB =13, 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.【点睛】点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.25.(1)证明见解析;(2)233π-; 【解析】【分析】 (1)连接OD ,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD ,∠COD=∠ODB ,又因为OB=OD ,所以∠OBD=∠ODB ,即∠AOC=∠COD ,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD ,Rt △ODC 与Rt △OAC 是含30°的直角三角形,从而得到 ∠DOB=60°,即△BOD 为等边三角形,再用扇形的面积减去△BOD 的面积即可.【详解】(1)证明:连接OD ,∵CD 与圆O 相切,∴OD ⊥CD ,∴∠CDO=90°,∵BD ∥OC ,∴∠AOC=∠OBD ,∠COD=∠ODB ,∵OB=OD ,∴∠OBD=∠ODB ,∴∠AOC=∠COD ,在△AOC 和△DOC 中,OA OD AOC COD OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△EOC (SAS ),∴∠CAO=∠CDO=90°,则AC 与圆O 相切;(2)∵AB=OC=4,OB=OD ,∴Rt △ODC 与Rt △OAC 是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD 为等边三角形,图中阴影部分的面积=扇形DOB 的面积﹣△DOB 的面积,=260212236023ππ⨯-⨯=n . 【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.26. (1)见解析;(2)顶点为(52,﹣14) 【解析】【分析】(1)根据题意,由根的判别式△=b 2﹣4ac >0得到答案;(2)结合题意,根据对称轴x =﹣2b a得到m =2,即可得到抛物线解析式为y =x 2﹣5x+6,再将抛物线解析式为y =x 2﹣5x+6变形为y =x 2﹣5x+6=(x ﹣52)2﹣14,即可得到答案. 【详解】(1)证明:a =1,b =﹣(2m+1),c =m 2+m , ∴△=b 2﹣4ac =[﹣(2m+1)]2﹣4×1×(m 2+m )=1>0,∴抛物线与x 轴有两个不相同的交点.(2)解:∵y =x 2﹣(2m+1)x+m 2+m ,∴对称轴x =﹣2b a =(21)21m -+⨯=212m +, ∵对称轴为直线x =52, ∴212m +=52, 解得m =2,∴抛物线解析式为y =x 2﹣5x+6,∵y =x 2﹣5x+6=(x ﹣52)2﹣14, ∴顶点为(52,﹣14 ). 【点睛】 本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用. 27.(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.。