【最新推荐】中考必做的36道压轴题及变式训练
【最新推荐】10.22中考必做的36道数学压轴题
中考必做的36道数学压轴题例1(2013北京,23,7分)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<<x 这一段位于直线AB 的下方,求该抛物线的解析式.解:(1)当 x = 0 时, y =-2 .∴ A (0,-2). 抛物线对称轴为 x =212mm--=,∴ B (1,0).(2)易得 A 点关于对称轴的对称点为 A (2,-2)则直线 l 经过 A 、 B . 没直线的解析式为 y =kx +b 则22,0.k b k b +=-⎧⎨+=⎩解得2,2.k b =-⎧⎨=⎩∴直线的解析式为 y =-2x +2. (3)∵抛物线对称轴为 x =1抛物体在 2 <x <3 这一段与在-1<x <0 这一段关于对称轴对称,结合图象可以观察到抛物线在-2<x <1这一段位于直线 l 的上方,在 -1< x <0 这一段位于直线 l 的下方.∴抛物线与直线 l 的交点横坐标为 -1 ; 当 x =-1 时, y =-2x (-1)+2 =4 则抛物线过点(-1,4)当 x =-1 时, m +2m -2=4 , m =2 ∴抛物线解析为 y =2x 2 -4x -2 .连接(2013江苏南京,26,9分)已知二次函数y =a (x -m )2-a (x -m )(a 、m 为常数,且a ≠0). (1)求证:不论a 与m 为何值,该函数的图象与x 轴总有两个公共点;(2)设该函数的图象的顶点为C .与x 轴交于A 、B 两点,与y 轴交于点D .①当△ABC 的面积等于1时,求a 的值;②当△ABC 的面积与△ABD 的面积相等时,求m 的值. 【答案】(1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am .因为当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0.所以,方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根.所以,不论a 与m 为何值,该函数的图象与x 轴总有两个公共点. ………3分(2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a ,所以,点C 的坐标为(212+m ,-4a ).当y =0时,a (x -m )2-a (x -m )=0.解得x 1=m ,x 2=m +1.所以AB =1.当△ABC 的面积等于1时,21×1×4a -=1.所以21×1×(-4a )=1,或21×1×4a =1.所以a =-8,或a =8.②当x =0时,y =am 2+am .所以点D 的坐标为(0,am 2+am ).当△ABC 的面积与△ABD 的面积相等时,21×1×4a-=21×1×am am+221×1×(-4a )=21×1×(am 2+am ),或21×1×4a =21×1×(am 2+am ). 所以m =-21,或m =221--,或m =221+- (9)分变式: (2012北京,23,7分)已知二次函数23(1)2(2)2y t x t x =++++在0x =和2x =时的函数值相等。
中考必做的36道数学压轴题
中考必做的36道数学压轴题第一题夯实双基“步步高”,强化条件是“路标”例1(2013北京,23,7分)在平面直角坐标系x O y中,抛物线2 -y二mx - 2mx -2 ( m = 0 )与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线I与直线AB关于该抛物线的对称轴对称,求直线I的解析式;(3)若该抛物线在-2:::X:::-1这一段位于直线I的上方,并且在2 X 3这一段位于直线AB的下方,求该抛物线的解析式.解:(1)当x = 0 时,y =— 2 .VA二 A ( 0, —2).2m抛物线对称轴为x=n紀1,二 B (1 , 0).(2)易得A点关于对称轴的对称点为 A (2,—2)则直线I经过A、B .->没直线的解析式为y= kx+ b2k F八2,解得k八2, k b =0. b=2.•••直线的解析式为y=—2x + 2 .(3 )•••抛物线对称轴为x = 1抛物体在2 <x<3这一段与在—1<x <0这一段关于对称轴对〔第23题)称,结合图象可以观察到抛物线在—2<x <1这一段位于直线I的上方,在—1< x<0这一段位于直线I的下方. •抛物线与直线I的交点横坐标为—1 ;当x=— 1 时,y= —2x( —1)+ 2 = 4则抛物线过点(—1, 4)当x=— 1 时,m+ 2m —2 = 4 , m= 2•抛物线解析为y= 2x2—4x—2 .连接(2013江苏南京,26, 9分)已知二次函数y= a (x —m) 2—a (x —m) (a、m为常数,且a工0 .(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为 C.与x轴交于A、B两点,与y轴交于点D.①当△ ABC的面积等于1时,求a的值;②当△ ABC的面积与△ ABD的面积相等时,求m的值.【答案】(1)证明:y= a (x—m) 2— a (x—m)= ax2—( 2am+ a) x+ am2+ am. 因所以,方程ax 2—( 2am + a ) x + am 2+ am = 0有两个不相等的实数根. 所以,不论a 与m 为何值,该函数的图象与 x 轴总有两个公共点 ....................................... 3分 (2)解:① y = a (x — m ) 2— a (x — m )= a (x — _1 )2—里,24所以,点C 的坐标为(_1 ,——).24当 y = 0 时,a (x — m ) 2— a (x — m )= 0.解得 x i = m , X 2= m + 1.所以 AB = 1. 当厶ABC 的面积等于1时,1 xi x-= 1.1 a xi x ( ) = 1,24a 8, ^或 a 8.x = 0 时,y = am 2+ am.所以点 D 的坐标为(0, am 2+ am ).1a 1 2— x x =—x x am +am24 2-xx(— —) = 1 X1 x (am 2+ am ),或丄 x x-a = 1 X x (am 2 + am )2 4 2 2 4 21_1 _ 祁2 _1 + <2所以 m =——,或 m = —— -,或 m = —— - ... ....... 9 分2 2 2变式:(2012北京,23, 7分)已知二次函数y =(t • 1)x 2 • 2(t • 2)x 在x =0和*=2时2的函数值相等。
36道中考物理压轴题及解法36题带答案全国通用
1:有关大气压的中考物理压轴题及解法
1、中考物理图像压轴题及解法
2、有关浮力与密度的中考物理压轴题及解法
3、有关力学的中考物理压轴题及解法
4、有关功与功率的中考物理压轴题及解法
5、有关阻力与速度的中考物理压轴题及解法
6、名师教你如何看图像解中考物理压轴题
7、有关阻力与速度的中考物理压轴题及解法
8、有关电动机的中考物理压轴题及解法
9、有关电压与电阻的中考物理压轴题及解
10、实验研究型中考物理压轴题及解法
11、有关调光灯电路的中考物理压轴题及解法
12、节能减排的中考物理压轴题及解法
13、有关电磁继电器的中考物理压轴题及解法
14、有关电热器节能的中考物理压轴题及解法
15、有关风力测定仪的中考物理压轴题及解法
16、有关滑动变阻器的中考物理压轴题及解法
17、有关电学动向题中单刀双掷的中考物理压轴
题及解法
18、解中考物理电学压轴题串通分压是个好方法
19、动向电路压轴题最小功率的计算方法
20、物理压轴题中有关动向电路比率关系的解法。
中考必做的36道数学压轴题
中考必做的36道数学压轴题第一題夯实双基“步步高”,强化条件是“路标”例1(2013北京,23,7分庭平面直角坐标系My中,抛物线y^mx2-2mx-2(m*0)与y轴交于点.4,其对称轴与x轴交于点B.(1)求点B的坐标;(2)设直线7与直线.43关于该抛物銭的对称轴对称,求直线7的解析式;(3)若该抛物线在-2 < X < -1这一段位于直线/的上方,并且在2 < x < 3这一段位于直线•必的下方,求该抛物线的解析式.解;口)当==0时,y =-2..'.A(0, —2).—2J»抛物线对称轴为x= -斯=1,:.B (1, 0).(2)易得1点关于对称轴的对称点为4 (2, -2)则直线,经过且、B.没直銭的解析式为)=米+方则{W解得仁....直銭的解析式为y=-2r +2.⑶•..抛物线对称轴为工=1抛物体在2 <v<3这一段与在- l<x<0这一段关于对称轴对称,结合图象可以观察到抛物线在-2。
<1这一段位于直线/的上方,在-IvxO这一段位于靠却的下方.抛物线与直銭/的交点横坐标为-1 ;当x=-l时,尸一2x( —D+2 =4则抛物线过点(~b 4)当x=-l时,m+2m-2=4 , m=2「•抛物线解析为]=廿-阪-2.连接(2013江苏南京,26,9分)已知二次函数]=a (x~m) 2-a (x-w) (a、巾为常数,且奶-(1)求证:不论a与冲为何值,该圈数的图象与X轴总有两个公共点;(2)设该函数的图象的顶点为U与x轴交于4、3两点,与.v轴交于点。
①当A.4BC的面积等于1时,求。
的值;②当A.4BC的面积与的面积相等时,求m的值-【答案】(1)证明:y=a (x—m) 2—a <x-m) =ax2— (2twn+a) x+an^+am. 因为当#0 时,[—(2am+a')]2—4a {am2+ am') =a2>0.所以,方程众2-(2次+ .)工+加+効=0有两个不相等的实数根一所以,不论。
中考数学必做36道压轴题
中考数学必做36道压轴题
第1题夯实双基“步步高”,强化条件是“路标”
第2题“弓形问题”再相逢,“殊途同归”快突破
第3题“模式识别”记心头,看似“并列”实“递进”
第4题“准线”“焦点”频现身,“居高临下”明“结构”
第5题莫为“浮云”遮望眼,“洞幽察微”探指向
第6题分类讨论“程序化”,“分离抗扰”探本质
第7题“两种对称”正方形,“以美启真”助破题
第8题对称图形为载体,特殊位置要留意
第9题平行线内“正方形”,构造全等“弦方图”
第10题“并列”问题“递进”解,经典问题再追问
第11题“伴随图形”来研究,“分类讨论”显功底
第12题中心对称“带上路”,以美启真构菱形。
最新中考必做地36道数学压轴题
中考必做的36道数学压轴题第一题夯实双基“步步高”,强化条件是“路标” 例1(2013北京,23,7分)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<<x 这一段位于直线AB 的下方,求该抛物线的解析式.(1)当 x = 0 时, y =-2 . ∴ A (0,-2). 抛物线对称轴为 x =212mm--=, ∴ B (1,0). (2)易得 A 点关于对称轴的对称点为 A (2,-2) 则直线 l 经过 A 、 B . 没直线的解析式为 y =kx +b 则22,0.k b k b +=-⎧⎨+=⎩解得2,2.k b =-⎧⎨=⎩∴直线的解析式为 y =-2x +2. (3)∵抛物线对称轴为 x =1抛物体在 2 <x <3 这一段与在-1<x <0 这一段关于对称轴对称,结合图象可以观察到抛物线在-2<x <1这一段位于直线 l 的上方,在 -1< x <0 这一段位于直线 l 的下方. ∴抛物线与直线 l 的交点横坐标为 -1 ; 当 x =-1 时, y =-2x (-1)+2 =4 则抛物线过点(-1,4) 当 x =-1 时, m +2m -2=4 , m =2 ∴抛物线解析为 y =2x 2 -4x -2 .连接(2013江苏南京,26,9分)已知二次函数y =a (x -m )2-a (x -m )(a 、m 为常数,且a ≠0).(1)求证:不论a 与m 为何值,该函数的图象与x 轴总有两个公共点; (2)设该函数的图象的顶点为C .与x 轴交于A 、B 两点,与y 轴交于点D . ①当△ABC 的面积等于1时,求a 的值;②当△ABC 的面积与△ABD 的面积相等时,求m 的值.【答案】(1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am .因为当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0.所以,方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根.所以,不论a 与m 为何值,该函数的图象与x 轴总有两个公共点. ………3分 (2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a, 所以,点C 的坐标为(212+m ,-4a). 当y =0时,a (x -m )2-a (x -m )=0.解得x 1=m ,x 2=m +1.所以AB =1. 当△ABC 的面积等于1时,21×1×4a -=1.所以21×1×(-4a )=1,或21×1×4a=1. 所以a =-8,或a =8.②当x =0时,y =am 2+am .所以点D 的坐标为(0,am 2+am ). 当△ABC 的面积与△ABD 的面积相等时,21×1×4a -=21×1×am am +221×1×(-4a )=21×1×(am 2+am ),或21×1×4a =21×1×(am 2+am ). 所以m =-21,或m =221--,或m =221+-.………9分变式: (2012北京,23,7分)已知二次函数23(1)2(2)2y t xt x =++++在0x =和2x =时的函数值相等。
中考必做的36道压轴题及变式训练
的图象与 轴交
于 、 两点,与 轴交于 点,已知 点坐标为 .
(1)求抛物线的解析式;
(2)试探究
的外接圆的圆心心位置,并求出圆心心坐标;
(3)若点 是线段 下方方的抛物线上一一点,求
的面面积的最大大值,并求出此时
点的坐标.
第 4 ⻚页 共 28 ⻚页
【答案】解:(1)将 B(4,0)代入入
中,得:
×1×(- )= ×1×(am2+am),或 ×1× = ×1×(am2+am).
所以 m=- ,或 m=
,或 m=
.………9 分
变式: (北北京,23,7 分)已知二二次函数
在 和 时的函数值
相等。
(1) 求二二次函数的解析式;
(2) 若一一次函数
的图象与二二次函数的图象都经过点
,求 和 的值;
(3) 设二二次函数的图象与 轴交于点 (点 在点 的左侧),将二二次函数的图象在
中考必做的 36 道压轴题及变式训练
第一一题夯实双基“步步高高”,强化条件是“路路标”
例例 1(北北京,23,7 分)在平面面直⻆角坐标系 O 中,抛物线
(
)与 轴交于点 A,其对称轴与 轴交于点 B.
(1)求点 A,B 的坐标;
(2)设直线 与直线 AB 关于该抛物线的对称轴对称,求直线 的解析式;
第 1 ⻚页 共 28 ⻚页
当x=-1时,y=-2x(-1)+2 =4
则抛物线过点(-1,4) 当x=-1时,m+2m -2=4 ,m=2 ∴抛物线解析为y=2x2 -4x-2 . 连接(江苏南京,26,9 分)已知二二次函数 y=a(x-m)2-a(x-m)(a、m 为常数,且 a
≠0).
(1)求证:不不论 a 与 m 为何值,该函数的图象与 x 轴总有两个公共点;
中考数学28道压轴题含答案解析
中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
中考必做的36道压轴题数学
中考必做的36道压轴题1:如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为ts.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.解题反思:此题主要考查了相似三角形的性质与判定以及直线与圆的位置关系和圆与圆的位置关系,正确判定直线与圆的位置关系是重点知识同学们应重点复习。
中考必做的36道压轴题2:如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD于点E,B,连接BC,AC,构成△ABC,设AB=x. (1)求x的取值范围;(2)若△ABC为直角三角形,则x=;(3)设△ABC的面积的平方为W,求W的最大值。
解题反思:此题考查了三角形三边关系,线段垂直平分线的性质,直角三角形的性质以及二次函数的最值问题等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与分类讨论思想的应用.中考必做的36道压轴题3:如图,在平面直角坐标系xOy中,一抛物线的顶点坐标是(0,1),且过点(﹣2,2),平行四边形OABC的顶点A、B在此抛物线上,AB与y轴相交于点M.已知点C的坐标是(﹣4,0),点Q(x,y)是抛物线上任意一点.(1)求此抛物线的解析式及点M的坐标;(2)在x轴上有一点P(t,0),若PQ∥CM,试用x的代数式表示t;(3)在抛物线上是否存在点Q,使得△BAQ的面积是△BMC的面积的2倍?若存在,求此时点Q的坐标.解题反思:此题考查了待定系数法求二次函数的解析式,平行四边形的性质,相似三角形的判定与性质以及三角形面积问题.此题综合性很强,解题的关键是注意数形结合与方程思想的应用.中考必做的36道压轴题4:已知抛物线y=ax﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD 的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB 的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.解题反思:本题是二次函数的综合题型,其中涉及的知识点有一元二次方程的解法.在求有关存在不存在问题时要注意先假设存在,再讨论结果.中考必做的36道压轴题5:如图,已知抛物线y=-4x/9+bx+c与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO=1.(1)填空:b=.c=,点B的坐标为(,):(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC 的长;(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.解题反思:本题主要考查对解二元一次方程组,二次函数图象上点的坐标特征,用待定系数法求二次函数的解析式,勾股定理,线段的垂直平分线定理等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.中考必做的36道压轴题6:如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-1)三点,过坐标原点O的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,-2)作平行于x轴的直线l、l.(1)求抛物线对应二次函数的解析式;(2)求证以ON为直径的圆与直线l相切;(3)求线段MN的长(用k表示),并证明M、N两点到直线l的距离之和等于线段MN的长.解题反思:(1)根据点在曲线上,点的坐标满足方程的关系,用待定系数法即可求出抛物线对应二次函数的解析式。
中考必做的36道数学压轴题[整理版]共18页
中考必做的36道数学压轴题第一题夯实双基“步步高”,强化条件是“路标” 例1(2019北京,23,7分)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<<x 这一段位于直线AB 的下方,求该抛物线的解析式.解:(1)当 x = 0 时, y =-2 . ∴ A (0,-2). 抛物线对称轴为 x =212mm--=, ∴ B (1,0). (2)易得 A 点关于对称轴的对称点为 A (2,-2) 则直线 l 经过 A 、 B . 没直线的解析式为 y =kx +b 则22,0.k b k b +=-⎧⎨+=⎩解得2,2.k b =-⎧⎨=⎩∴直线的解析式为 y =-2x +2. (3)∵抛物线对称轴为 x =1抛物体在 2 <x <3 这一段与在-1<x <0 这一段关于对称轴对称,结合图象可以观察到抛物线在-2<x <1这一段位于直线 l 的上方,在 -1< x <0 这一段位于直线 l 的下方. ∴抛物线与直线 l 的交点横坐标为 -1 ; 当 x =-1 时, y =-2x (-1)+2 =4 则抛物线过点(-1,4) 当 x =-1 时, m +2m -2=4 , m =2 ∴抛物线解析为 y =2x 2 -4x -2 .连接(2019江苏南京,26,9分)已知二次函数y =a (x -m )2-a (x -m )(a 、m 为常数,且a ≠0).(1)求证:不论a 与m 为何值,该函数的图象与x 轴总有两个公共点; (2)设该函数的图象的顶点为C .与x 轴交于A 、B 两点,与y 轴交于点D . ①当△ABC 的面积等于1时,求a 的值;②当△ABC 的面积与△ABD 的面积相等时,求m 的值. 【答案】(1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am . 因为当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0.所以,方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根.所以,不论a 与m 为何值,该函数的图象与x 轴总有两个公共点. ………3分 (2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a, 所以,点C 的坐标为(212+m ,-4a). 当y =0时,a (x -m )2-a (x -m )=0.解得x 1=m ,x 2=m +1.所以AB =1. 当△ABC 的面积等于1时,21×1×4a -=1.所以21×1×(-4a )=1,或21×1×4a=1. 所以a =-8,或a =8.②当x =0时,y =am 2+am .所以点D 的坐标为(0,am 2+am ). 当△ABC 的面积与△ABD 的面积相等时,21×1×4a -=21×1×am am +221×1×(-4a )=21×1×(am 2+am ),或21×1×4a =21×1×(am 2+am ). 所以m =-21,或m =221--,或m =221+-.………9分变式: (2019北京,23,7分)已知二次函数23(1)2(2)2y t xt x =++++在0x =和2x =时的函数值相等。
中考必做地36道数学压轴题
中考必做的36道数学压轴题第一题夯实双基“步步高”.强化条件是“路标” 例1(2013北京.23,7分)在平面直角坐标系x O y 中.抛物线222--=mx mx y (0≠m )与y 轴交于点A .其对称轴与x 轴交于点B .(1)求点A .B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称.求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l 的上方.并且在32<<x 这一段位于直线AB 的下方.求该抛物线的解析式.解:(1)当 x = 0 时. y =-2 . ∴ A (0.-2). 抛物线对称轴为 x =212mm--=. ∴ B (1.0). (2)易得 A 点关于对称轴的对称点为 A (2.-2) 则直线 l 经过 A 、 B . 没直线的解析式为 y =kx +b 则22,0.k b k b +=-⎧⎨+=⎩解得2,2.k b =-⎧⎨=⎩∴直线的解析式为 y =-2x +2. (3)∵抛物线对称轴为 x =1抛物体在 2 <x <3 这一段与在-1<x <0 这一段关于对称轴对称.结合图象可以观察到抛物线在-2<x <1这一段位于直线 l 的上方.在 -1< x <0 这一段位于直线 l 的下方. ∴抛物线与直线 l 的交点横坐标为 -1 ; 当 x =-1 时. y =-2x (-1)+2 =4 则抛物线过点(-1.4) 当 x =-1 时. m +2m -2=4 . m =2 ∴抛物线解析为 y =2x 2 -4x -2 .连接(2013江苏南京.26.9分)已知二次函数y =a (x -m )2-a (x -m )(a 、m 为常数.且a ≠0).(1)求证:不论a 与m 为何值.该函数的图象与x 轴总有两个公共点; (2)设该函数的图象的顶点为C .与x 轴交于A 、B 两点.与y 轴交于点D . ①当△ABC 的面积等于1时.求a 的值;②当△ABC 的面积与△ABD 的面积相等时.求m 的值.【答案】(1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am .因为当a ≠0时.[-(2am +a )]2-4a (am 2+am )=a 2>0.所以.方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根.所以.不论a 与m 为何值.该函数的图象与x 轴总有两个公共点. ………3分 (2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a. 所以.点C 的坐标为(212+m .-4a). 当y =0时.a (x -m )2-a (x -m )=0.解得x 1=m .x 2=m +1.所以AB =1. 当△ABC 的面积等于1时.21×1×4a -=1.所以21×1×(-4a )=1.或21×1×4a=1. 所以a =-8.或a =8.②当x =0时.y =am 2+am .所以点D 的坐标为(0.am 2+am ). 当△ABC 的面积与△ABD 的面积相等时.21×1×4a -=21×1×am am +221×1×(-4a )=21×1×(am 2+am ).或21×1×4a =21×1×(am 2+am ). 所以m =-21.或m =221--.或m =221+-.………9分变式: (2012北京.23.7分)已知二次函数23(1)2(2)2y t x t x =++++在0x =和2x =时的函数值相等。
中考必做的36道数学压轴题
中考必做的36道数学压轴题第一题夯实双基“步步高”,强化条件是“路标” 例1(2013北京,23,7分)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<<x 这一段位于直线AB 的下方,求该抛物线的解析式.解:(1)当 x = 0 时, y =-2 . ∴ A (0,-2). 抛物线对称轴为 x =212mm--=, ∴ B (1,0). (2)易得 A 点关于对称轴的对称点为 A (2,-2) 则直线 l 经过 A 、 B . 没直线的解析式为 y =kx +b 则22,0.k b k b +=-⎧⎨+=⎩解得2,2.k b =-⎧⎨=⎩∴直线的解析式为 y =-2x +2. (3)∵抛物线对称轴为 x =1抛物体在 2 <x <3 这一段与在-1<x <0 这一段关于对称轴对称,结合图象可以观察到抛物线在-2<x <1这一段位于直线 l 的上方,在 -1< x <0 这一段位于直线 l 的下方. ∴抛物线与直线 l 的交点横坐标为 -1 ; 当 x =-1 时, y =-2x (-1)+2 =4 则抛物线过点(-1,4) 当 x =-1 时, m +2m -2=4 , m =2 ∴抛物线解析为 y =2x 2 -4x -2 .连接(2013江苏南京,26,9分)已知二次函数y =a (x -m )2-a (x -m )(a 、m 为常数,且a ≠0).(1)求证:不论a 与m 为何值,该函数的图象与x 轴总有两个公共点; (2)设该函数的图象的顶点为C .与x 轴交于A 、B 两点,与y 轴交于点D . ①当△ABC 的面积等于1时,求a 的值;②当△ABC 的面积与△ABD 的面积相等时,求m 的值. 【答案】(1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am . 因为当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0.所以,方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根.所以,不论a 与m 为何值,该函数的图象与x 轴总有两个公共点. ………3分 (2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a, 所以,点C 的坐标为(212+m ,-4a). 当y =0时,a (x -m )2-a (x -m )=0.解得x 1=m ,x 2=m +1.所以AB =1. 当△ABC 的面积等于1时,21×1×4a -=1.所以21×1×(-4a )=1,或21×1×4a=1. 所以a =-8,或a =8.②当x =0时,y =am 2+am .所以点D 的坐标为(0,am 2+am ). 当△ABC 的面积与△ABD 的面积相等时,21×1×4a -=21×1×am am +221×1×(-4a )=21×1×(am 2+am ),或21×1×4a =21×1×(am 2+am ). 所以m =-21,或m =221--,或m =221+-.………9分变式: (2012北京,23,7分)已知二次函数23(1)2(2)2y t xt x =++++在0x =和2x =时的函数值相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考必做的36道压轴题及变式训练第一题夯实双基“步步高”,强化条件是“路标” 例1(北京,23,7分)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<<x 这一段位于直线AB 的下方,求该抛物线的解析式.解:(1)当 x = 0 时, y =-2 . ∴ A (0,-2). 抛物线对称轴为 x =212mm--=, ∴ B (1,0).(2)易得 A 点关于对称轴的对称点为 A (2,-2) 则直线 l 经过 A 、 B . 没直线的解析式为 y =kx +b 则22,0.k b k b +=-⎧⎨+=⎩解得2,2.k b =-⎧⎨=⎩ ∴直线的解析式为 y =-2x +2. (3)∵抛物线对称轴为 x =1抛物体在 2 <x <3 这一段与在-1<x <0 这一段关于对称轴对称,结合图象可以观察到抛物线在-2<x <1这一段位于直线 l 的上方,在 -1< x <0 这一段位于直线 l 的下方. ∴抛物线与直线 l 的交点横坐标为 -1 ;当 x =-1 时, y =-2x (-1)+2 =4 则抛物线过点(-1,4)当 x =-1 时, m +2m -2=4 , m =2 ∴抛物线解析为 y =2x 2 -4x -2 .连接(江苏南京,26,9分)已知二次函数y =a (x -m )2-a (x -m )(a 、m 为常数,且a ≠0).(1)求证:不论a 与m 为何值,该函数的图象与x 轴总有两个公共点; (2)设该函数的图象的顶点为C .与x 轴交于A 、B 两点,与y 轴交于点D . ①当△ABC 的面积等于1时,求a 的值;②当△ABC 的面积与△ABD 的面积相等时,求m 的值.【答案】(1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am . 因为当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0. 所以,方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根. 所以,不论a 与m 为何值,该函数的图象与x 轴总有两个公共点. ………3分 (2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a, 所以,点C 的坐标为(212+m ,-4a). 当y =0时,a (x -m )2-a (x -m )=0.解得x 1=m ,x 2=m +1.所以AB =1. 当△ABC 的面积等于1时,21×1×4a -=1.所以21×1×(-4a )=1,或21×1×4a=1. 所以a =-8,或a =8.②当x =0时,y =am 2+am .所以点D 的坐标为(0,am 2+am ). 当△ABC 的面积与△ABD 的面积相等时,21×1×4a -=21×1×am am +221×1×(-4a )=21×1×(am 2+am ),或21×1×4a =21×1×(am 2+am ). 所以m =-21,或m =221--,或m =221+-.………9分变式: (北京,23,7分)已知二次函数23(1)2(2)2y t x t x =++++在0x =和2x =时的函数值相等。
(1) 求二次函数的解析式;(2) 若一次函数6y kx =+的图象与二次函数的图象都经过点(3)A m -,,求m 和k 的值; (3) 设二次函数的图象与x 轴交于点B C ,(点B 在点C 的左侧),将二次函数的图象在 点B C ,间的部分(含点B 和点C )向左平移(0)n n >个单位后得到的图象记为G ,同时将(2)中得到的直线6y kx =+向上平移n 个单位。
请结合图象回答:当平移后的直线与图象 G 有公共点时,n 的取值范围。
【答案】(1)①方法一:∵二次函数23(1)2(2)2y t x t x =++++在0x =和2x =时的函数值相等∴334(1)4(2)22t t =++++. ∴32t =-.∴这个二次函数的解析式是21322y x x =-++②方法二:由题意可知:二次函数图象的对称轴为1x =则2(2)12(1)t t +-=+∴32t =-.∴这个二次函数的解析式是21322y x x =-++.(2)∵二次函数的图象过(3,)A m -点. ∴213(3)(3)622m =--+-+=-. 又∵一次函数6y kx =+的图象经过点A ∴366k -+=- ∴4k =(3)令21322y x x =-++=解得:11x =-23x =由题意知,点B 、C 间的部分图象的解析式为1(3)(1)2y x x =--+,(13x -≤≤).则向左平移后得到图象G 的解析式为:1(3)(1)2y x n x n =--+++,(13n x n --≤≤-). 此时平移后的一次函数的解析式为46y x n =++. 若平移后的直线46y x n =++与平移后的抛物线1(3)(1)2y x n x n =--+++相切. 则146(3)(1)2x n x n x n ++=--+++有两个相等的实数根。
即一元二次方程22119(3)0222x n x n --+--=有两个相等的实数的根。
∴判别式=[]22119(3)4()()0222n n -+-⨯---=解得:0n =与0n >矛盾.∴平移后的直线46y x n =++与平移后的抛物线1(3)(1)2y x n x n =--+++不相切.∴结合图象可知,如果平移后的直线与图象G 有公共点,则两个临界交点为(1,0)n --和(3,0)n -.则4(1)60n n --++=,解得:23n = 4(3)60n n -++=,解得:6n =∴263n ≤≤ 第2题“弓形问题”再相逢,“殊途同归”快突破(例题)(湖南湘潭,26,10分) 如图,抛物线)0(2232≠--=a x ax y 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知B 点坐标为()0,4. (1)求抛物线的解析式;(2)试探究ABC ∆的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求MBC ∆的面积的最大值,并求出此时M 点的坐标.【答案】解:(1)将B (4,0)代入)0(2232≠--=a x ax y 中,得:21=a ∴抛物线的解析式为:)0(223212≠--=a x x y (2)∵当0223212=--x x 时,解得41=x ,12-=x ∴A 点坐标为(-1,0),则OA=1 ∵当x=0时,2223212-=--=x x y ∴C 点坐标为(0,-2),则OC=2 在Rt ⊿AOC 与Rt ⊿COB 中,21==OB OC OC OA ∴Rt ⊿AOC ∽Rt ⊿COB ∴∠ACO=∠CBO∴∠ACB =∠ACO +∠OCB=∠CBO +∠OCB =90° 那么⊿ABC 为直角三角形所以⊿ABC 的外接圆的圆心为AB 中点,其坐标为(1.5,0) (3)连接OM .设M 点坐标为(x ,223212--x x )则OBC OBM MBC S ⊿⊿⊿⊿S S S OCM -+= =4221221)22321(4212⨯⨯-⨯⨯+++-⨯⨯x x x =4)2(2+--x∴当x=2时,⊿MBC 的面积有最大值为4,M 的坐标为(2,-3)变式(安徽芜湖24)面直角坐标系中,▱ABOC 如图放置,点A 、C 的坐标分别为(0,3)、(-1,0),将此平行四边形绕点O 顺时针旋转90°,得到▱A'B'OC'.(1)若抛物线过点C ,A ,A',求此抛物线的解析式; (2)▱ABOC 和▱A'B'OC'重叠部分△OC'D 的周长; (3)点M 是第一象限内抛物线上的一动点,问:点M 在何处时△AMA'的面积最大?最大面积是多少?并求出此时M 的坐标.第三题“模式识别”记心头,看似“并列”“递进”(例题)23.(河南,23,11分)如图,在平面直角坐标系中,直线112y x =+与抛物线23y ax bx =+-交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上一动点(不与A 、B 重合),过点P 作x 轴的垂线交直线AB 与点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ACP ∠的值; (2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长, 并求出线段PD 长的最大值;②连接PB ,线段PC 把△PDB 分成 两个三角形,是否存在适合的m 值, 使这两个三角形的面积之比为9:10?若存在,直接写出m 值;若不存在,说明理由.【答案】(1)由1102x +=,得2,x =-∴(2,0)A - 由1132x +=,得4,x =∴(4,3)B ∵23y ax bx =+-经过,A B 两点,∴22(-2)-2-3=04+4-3=3a b a b ⎧⋅⎪⎨⋅⎪⎩∴11,22a b ==-设直线AB 与y 轴交于点E ,则(0,1)E ∵PC ∥y 轴,∴ACP AEO ∠=∠.∴225sin sin 55OA ACP AEO AE ∠=∠===(2)由⑴可知抛物线的解析式为211322y x x =--∴2111(,3),(,1)222P m m m C m m --+2211111(3)42222PC m m m m m =+---=-++在Rt PCD 中,sin PD PC ACP =∠2125(4)25m m =-++⨯ 2595(1).55m =--+ ∵505-<∴当1m =时,PD 有最大值955②存在满足条件的m 值,53229m =或【提示】分别过点D 、B 作DF ⊥PC ,BG ⊥PC ,垂足分别为F 、G .第23题图BCDxOPAy在t R PDF 中,211(28).55DF PD m m ==---又4,BG m =-∴21(28)2545PCD PBC m m S DF m S BG m ---+===-.当29510PCD PBC S m S +==时,解得52m =; 当21059PCD PBC S m S +==时,解得329m =.变式一27.(江苏泰州,27,12分)已知:二次函数y =x 2+bx -3的图像经过点P (-2,5).(1)求b 的值,并写出当1<x ≤3时y 的取值范围;(2)设点P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图像上. ①当m =4时,y 1、y 2、y 3能否作为同一个三角形的三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.【答案】解:(1)把点P 代入二次函数解析式得5= (-2)2-2b -3,解得b=-2. 当1<x ≤3时y 的取值范围为-4<y ≤0.(2)①m=4时,y 1、y 2、y 3的值分别为5、12、21,由于5+12<21,不能成为三角形的三边长.②当m 取不小于5的任意实数时,y 1、y 2、y 3的值分别为m 2-2m -3、m 2-4、m 2+2m -3,由于, m 2-2m -3+m 2-4>m 2+2m -3,(m -2)2-8>0, 当m 不小于5时成立,即y 1+y 2>y 3成立.所以当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,变式二(重庆B 卷,25,10分)如图,已知抛物线c bx x y ++=2的图像与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5). (1)求直线BC 与抛物线的解析式;(2)若点M 是抛物线在x 轴下方图像上的一动点,过点M 作MN //y 轴交直线BC 于点N ,求MN 的最大值;(3)在(2)的条件下,MN 取得最大值时,若点P 是抛物线在x 轴下方图像上任意一点,以BC 为边作平行四边形CBPQ ,设平行四边形CBPQ 的面积为1S ,△ABN 的面积为2S ,且216S S =,求点P 的坐标.【答案】解:(1)设直线BC 的解析式为n mx y +=,将B (5,0),C (0,5)代入有:⎩⎨⎧==+505n n m 解得:⎩⎨⎧=-=51n m 所以直线BC 的解析式为5+-=x y 再将B (5,0),C (0,5)代入抛物线c bx x y ++=2有:⎩⎨⎧==++5525c c b 解得:⎩⎨⎧=-=56c b 所以抛物线的解析式为:562+-=x x y(2)设M 的坐标为(x ,562+-x x ),则N 的坐标为(x ,5+-x ),MN =)56()5(2+--+-x x x=x x 52+-y xO CA B当25=x 时,MN 有最大值为425(3)当0562=+-=x x y 时,解得11=x ,52=x故A (1,0),B (5,0),所以AB =4 由(2)可知,N 的坐标为(25,25) ∴5254212=⨯⨯=S 则30621==S S ,那么15=CBP S △ 在y 上取点Q (-1,0),可得15=CBQ S △ 故QP ∥BC则直线QP 的解析式为1--=x y当1562--=+-x x x 时,解得21=x ,32=x所以P 点坐标为(2,3-),(3,4-),1P 2P y xO CAB NMQ第四题“准线”“焦点”频现身,“居高临下”明“结构”(例题)(四川资阳,25,9分)抛物线214y x x m =++的顶点在直线3y x =+上,过点F (2,2)-的直线交该抛物线于点M 、N 两点(点M 在点N 的左边),MA ⊥x 轴于点A ,NB ⊥x 轴于点B .(1)(3分)先通过配方求抛物线的顶点坐标(坐标可用含m 的代数式表示),再求m 的值;(2)(3分)设点N 的横坐标为a ,试用含a 的代数式表示点N 的纵坐标,并说明NF =NB ;(3)(3分)若射线NM 交x 轴于点P ,且PA ×PB =1009,求点M 的坐标.答案:解(1)2211(2)(1)44y x x m x m =++=++- ∴顶点坐标为(-2 , 1m -)∵顶点在直线3y x =+上, ∴-2+3=1m -,得m =2(2)∵点N 在抛物线上,∴点N 的纵坐标为2124a a ++ 即点N (a ,2124a a ++) 过点F 作FC ⊥NB 于点C ,(第25题图)在Rt △FCN 中,FC =a +2,NC =NB -CB =214a a +,∴2NF =22NC FC +=2221()(2)4a a a +++=2221()(4)44a a a a ++++ 而2NB =221(2)4a a ++=2221()(4)44a a a a ++++ ∴2NF =2NB ,NF =NB(3)连结AF 、BF由NF =NB ,得∠NFB =∠NBF ,由(2)的结论知,MF =MA ,∴∠MAF =∠MFA ,∵MA⊥x 轴,NB ⊥x 轴,∴MA ∥NB ,∴∠AMF +∠BNF =180°∵△MAF 和△NFB 的内角总和为360°,∴2∠MAF +2∠NBF =180°,∠MAF +∠NBF =90°, ∵∠MAB +∠NBA =180°,∴∠FBA +∠FAB =90°又∵∠FAB +∠MAF =90°∴∠FBA =∠MAF =∠MFA又∵∠FPA =∠BPF ,∴△PFA ∽△PBF ,∴PF PB PA PF =,2PF PA PB =⨯=1009过点F 作FG ⊥x 轴于点G ,在Rt △PFG 中,PG =22PF FG -=83,∴PO =PG +GO =143, ∴P (-143, 0) 设直线PF :y kx b =+,把点F (-2 , 2)、点P (-143 , 0)代入y kx b =+解得k =34,b =72,∴直线PF :3742y x =+ 解方程21372442x x x ++=+,得x =-3或x =2(不合题意,舍去) 当x =-3时,y =54,∴M (-3 ,54) 变式一25.已知抛物线y=ax 2+bx+c (a ≠0)顶点为C (1,1)且过原点O .过抛物线上一点P (x ,y )向直线y= 54作垂线,垂足为M ,连FM (如图). (1)求字母a ,b ,c 的值;(2)在直线x=1上有一点F(1,34),求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形; (3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM=PN 恒成立?若存在请求出t 值,若不存在请说明理由.解:(1)抛物线y=ax 2+bx+c (a ≠0)顶点为C (1,1)且过原点O ,可得-2b a=1,244ac b a =1,c=0, ∴a=-1,b=2,c=0.(2)由(1)知抛物线的解析式为y=-x 2+2x ,故设P 点的坐标为(m ,-m 2+2m ),则M 点的坐标(m ,54), ∵△PFM 是以PM 为底边的等腰三角形∴PF=MF ,即(m-1)2+(-m 2+2m-34)2=(m-1)2+(34-54)2∴-m2+2m-34=12或-m2+2m-34=-12,①当-m2+2m-34=1 2时,即-4m2+8m-5=0 ∵△=64-80=-16<0 ∴此式无解②当-m2+2m-34=-12时,即m2-2m=-14∴m=1+32或m=1-32Ⅰ、当m=1+32时,P点的坐标为(1+32,14),M点的坐标为(1+32,54)Ⅱ、当m=1-32时,P点的坐标为(1-32,14),M点的坐标为(1-32,54),经过计算可知PF=PM,∴△MPF为正三角形,∴P点坐标为:(1+32,14)或(1-32,14).(3)当t=34时,即N与F重合时PM=PN恒成立.证明:过P作PH与直线x=1的垂线,垂足为H,在Rt△PNH中,PN2=(x-1)2+(t-y)2=x2-2x+1+t2-2ty+y2,PM 2=(54-y )2=y 2-52y+2516, P 是抛物线上的点,∴y=-x 2+2x ;∴PN 2=1-y+t 2-2ty+y 2=y 2-52y+2516, ∴1-y+t 2-2ty+y 2=y 2-52y+2516, 移项,合并同类项得:-32y+2ty+916-t 2=0, ∴y (2t-32)+(916-t 2)=0对任意y 恒成立. ∴2t-32=0且916-t 2=0, ∴t=34,故t=34时,PM=PN 恒成立. ∴存在这样的点.变式二(山东潍坊,24,11分)如图12,已知抛物线与坐标轴分别交于A (2-,0)、B(2,0)、C (0,1-)三点,过坐标原点O 的直线y kx =与抛物线交于M 、N 两点.分别过点C 、D (0,2-)作平行于x 轴的直线l 1、l 2.(1)求抛物线对应二次函数的解析式;(2)求证以ON 为直径的圆与直线l 1相切;(3)求线段MN 的长(用k 表示),并证明M 、N 两点到直线l 2的距离之和等于线段MN 的长.【答案】解:(1)设抛物线对应二次函数的解析式为2y ax bx c =++,图12 x yA B CDO MNl 1 l 2由0420421a b c a b c c =-+⎧⎪=++⎨⎪-=⎩,解得1401a b c ⎧=⎪⎪=⎨⎪=-⎪⎩. 所以2114y x =-. (2)设M (x 1,y 1),N (x 2,y 2),因为点M 、N 在抛物线上, 所以211114y x =-,222114y x =-,所以2224(1)x y =+; 又2ON =2222x y +=2224(1)y y ++=22(2)y +,所以ON =22y +,又因为y 2≥1-,所以ON =22y +.设ON 的中点为E ,分别过点N 、E 向直线l 1作垂线,垂足为P 、F , 则EF =2OC NP +=222y +, 所以ON =2EF ,即ON 的中点到直线l 1的距离等于ON 长度的一半,所以以ON 为直径的圆与直线l 1相切.(3)过点M 作MH ⊥NP 交NP 于点H ,则222MN MH NH =+=221()x x -+221()y y -,又y 1=kx 1,y 2=kx 2,所以221()y y -=2221()k x x -,所以22221(1)()MN k x x =+-;又因为点M 、N 既在y =kx 的图象上又在抛物线上, 所以2114kx x =-,即2440x kx --=, 所以x =2416162k k ±+=2k ±221k +, 所以221()x x -=216(1)k +,所以22216(1)MN k =+,所以MN =24(1)k +.延长NP 交l 2于点Q ,过点M 作MS ⊥l 2于点S ,则MS + NQ = 122y y ++=22121111444x x -+-+=22121()24x x ++, 又2212x x +=2222[44(1)]168k k k ++=+,所以MS + NQ =2422k ++=24(1)k +=MN .即M 、N 两点到直线l 2的距离之和等于线段MN 的长.第五题末尾“浮云”遮望眼,“洞幽察微”深指向例题(浙江宁波,26,12分)如图,二次函数2y ax bx c =++的图象交x 轴于A (-1,0),B (2,0),交y 轴于C (0,-2),过A ,C 画直线.(1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且PA =PC ,求OP 的长;(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H①若M 在y 轴右侧,且△CHM ∽△AOC (点C 与点A 对应),求点M 的坐标; ②若 M 的半径为455,求点M 的坐标. 第24题x yA B C D O M Nl 1l 2E P QF S H【答案】解:(1)设该二次函数的解析式为:(1)(2)y a x x =+- 将x =0,y =-2代入,得-2= a (0+1)(0-2)解得a =1.∴抛物线的解析式为(1)(2)y x x =+-,即22y x x =--. (2)设OP =x ,则 PC =PA =x +1.在R t △POC 中,由勾股定理,得2222(1)x x +=+解得32x =,即32OP =. (3)① ∵△CHM ∽△AOC ,∴∠MCH =∠CAO .情形1:如图,当H 在点C 下方时,∵∠MCH =∠CAO ,∴CM ∥x 轴,∴2M y =-,∴222x x --=-,解得x =0(舍去),或x =1, M (1,-2).情形2:如图,当H 在点C 上方时∵∠M ’CH =∠CAO ,由(2):得,M ’为直线CP 与抛物线的另一交点, 设直线CM ’的解析式为y =k x -2.把P (32,0)的坐标代入,得3202k -=, 解得43k =,∴423y x =-. 由24223x x x -=--, 解得x =0(舍去),或x =73, 此时109y =,∴710'(,)39M .②在x 轴上取一点D ,过点D 作DE ⊥AC 于点E ,使DE =455. ∵∠COA =∠DEA =90°,∠OAC =∠EAD ,∴△ADE ∽△AOC ,∴AD DE AC OC=, ∴45525AD =,解得AD =2. ∴D (1,0)或D (-3,0).过点D 作DM ∥AC ,交抛物线于M .则直线DM 的解析式为:22y x =-+或26y x =--.当- 2x -6= x 2 -x -2时,方程无实数解.当- 2x +2=x 2 -x -2时, 解得12117117,22x x ---+==. ∴点M 的坐标为M 117(,37)2--+或M 117(,37)2-++变式一25.如图,抛物线y=14-x 2+x+3与x 轴相交于点A 、B ,与y 轴相交于点C ,顶点为点D ,对称轴l 与直线BC 相交于点E ,与x 轴相交于点F .(1)求直线BC 的解析式;(2)设点P 为该抛物线上的一个动点,以点P 为圆心,r 为半径作⊙P①当点P 运动到点D 时,若⊙P 与直线BC 相交,求r 的取值范围; ②若r= 455,是否存在点P 使⊙P 与直线BC 相切?若存在,请求出点P 的坐标;若不存在,请说明理由.提示:抛物线y=ax 2+bx+x (a ≠0)的顶点坐标(2b a-,244ac b a - ),对称轴x=2b a-. 变式二22.(广东省,20,9分)如图,抛物线213=--922y x x 与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC .(1)求AB 和OC 的长; (2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作直线l 平行于BC ,交AC 于点D .设AE 的长为m ,△ADE 的面积为S ,求S 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).【答案】(1)当y=0时,213--9=022x x ,解得x 1=-3,x 2=6.∴AB=|x 1-x 2|=|-3-6|=9. 当x=0时,y=-9.∴OC=9.(2)由(1)得A (-3,0),B (6,0),C (0,-9),∴直线BC 的解析式为y=32x -9,直线AC 的解析式为y=-3x -9. ∵AE 的长为m ,∴E (m -3,0).又∵直线l 平行于直线BC ,∴直线l 的解析式为y=32x -3(-3)2m . 由3933-(-3)22y x y x m =--⎧⎪⎨=⎪⎩得9=3-m x y m -⎧⎪⎨⎪=⎩,∴点D (93m -,-m ). ∴△ADE 的面积为:S=12·AE ·|D 纵|=12·(m -3)·|-m |=213-22m m .(0<m <9) (3)△CDE 面积为:S △ACE -S △ADE =192m ⋅⨯-(213-22m m )=21+32m m -=219-(-3)+22m , ∴当m=3时,△CDE 面积的最大值为92. 此时,点E (0,0).如图,作OF ⊥BC 于F ,∵OB=6,OC=9,∴OF=OB OC BC ⋅=226969⨯+=181313. ∴以点E 为圆心,与BC 相切的圆的面积为:218324(13)=1313ππ.第6题 分类讨论“程序化”,“分离抗扰”探本质例题(贵州遵义,27,14分)已知抛物线)0(32≠++=a bx ax y 经过A (3,0), B (4,1)两点,且与y 轴交于点C 。