生产者与消费者之间的同步与互斥问题

合集下载

进程同步机制与互斥-生产者消费者问题

进程同步机制与互斥-生产者消费者问题

学习中心:专业:年级:年春/秋季学号:学生:题目:进程同步与互斥生产者-消费者问题1.谈谈你对本课程学习过程中的心得体会与建议?转眼间,学习了一个学期的计算机操作系统课程即将结束。

在这个学期中,通过老师的悉心教导,让我深切地体会到了计算机操作系统的一些原理和具体操作过程。

在学习操作系统之前,我只是很肤浅地认为操作系统只是单纯地讲一些关于计算机方面的操作应用,并不了解其中的具体操作过程1.1设计思路在这次设计中定义的多个缓冲区不是环形循环的,并且不需要按序访问。

其中生产者可以把产品放到某一个空缓冲区中,消费者只能消费被指定生产者生产的产品。

本设计在测试用例文件中指定了所有生产和消费的需求,并规定当共享缓冲区的数据满足了所有有关它的消费需求后,此共享才可以作为空闲空间允许新的生产者使用。

本设计在为生产者分配缓冲区时各生产者之间必须互斥,此后各个生产者的具体生产活动可以并发。

而消费者之间只有在对同一个产品进行消费时才需要互斥,它们在消费过程结束时需要判断该消费者对象是否已经消费完毕并释放缓冲区的空间。

1.2程序流程图1.3基本内容在设计程序时主要有三个主体部分、三个辅助函数和一个数据结构。

其中主体部分为一个主函数main (),用于初始化缓冲区和各个同步对象,并完成线程信息的读入,最后根据该组的线程记录启动模拟线程,并等待所有线程的运主函数初始化缓冲区,消费请求队列及部分同步对象提取线程信息完成线程相关同步对象的初始化等待所有线程结束创建线程模拟生产和消费程序结束消费者有消费请求?此请求可满足?确定产品位置此产品正被消费?进入临界区(对同一产品进行请求的消费者之间互斥)消费产品、并判断是否应该释放产品所占缓冲区 结束消费进程生产者存在空缓冲区?另一生产者正在生产?进入临界区 (所有生产者之间互斥)从空缓冲区中为本生产者的产品分配一个空间退出临界区在该缓冲区放入产品通过信号量通知等待本产品的消费者结束生产进程退出临界区 YYYNNNNYYN行结束后退出程序;生产者函数Produce()和消费者函数Consume(),生产者和消费者函数运行于线程中完成对缓冲区的读、写动作,根据此处生产消费的模型的特点,生产者和消费者之间通过使用同步对象实现了生产和消费的同步与互斥,是本实验的核心所在。

操作系统pv操作

操作系统pv操作

引言概述:正文内容:一、概念介绍1.pv操作的定义及由来:pv操作是一种用于进程间同步和互斥的操作,其中p表示“pass”(等待)操作,v表示“vacate”(释放)操作。

它最早由Dijkstra在1965年提出,并被广泛应用于操作系统中的进程间通信。

2.信号量的概念及与pv操作的关系:信号量是一种计数器,用于同步和互斥。

pv操作是通过操作信号量来实现进程间的同步与互斥,其中p操作用于申请资源时的等待,v操作用于释放资源。

3.pv操作的作用:pv操作允许进程进行同步和互斥操作,保证资源的正确访问顺序,避免竞态条件和死锁问题。

二、pv操作的使用场景1.生产者消费者问题:在多线程或多进程环境下,生产者和消费者之间的数据通信和同步是一个常见的问题。

pv操作可以用来同步生产者和消费者的操作,确保生产者和消费者的操作顺序正确。

2.进程间互斥访问共享资源:当多个进程需要同时访问某个共享资源时,需要使用pv操作来进行互斥操作,避免多个进程同时访问导致数据不一致的问题。

3.进程间信号通知:pv操作也可以用于进程间的信号通知,例如一个进程等待某个事件的触发,另一个进程通过v操作来触发该事件。

4.进程管道通信:pv操作也可以用于进程之间通过管道进行通信,通过p操作来等待管道中有数据可读,通过v操作来通知管道中有新数据写入。

5.进程调度和同步:操作系统中的进程调度和同步往往需要使用pv操作来保证进程的正确执行顺序和互斥性。

三、pv操作的实现原理与方法1.pv操作的实现原理:pv操作的实现通常依赖于操作系统中的信号量机制。

当一个进程进行p操作时,它会尝试将指定的信号量值减1,若结果为负,则表示资源不可用,该进程会被阻塞。

当一个进程进行v操作时,它会将指定的信号量值加1,并唤醒一个等待中的进程。

2.pv操作的实现方法:pv操作可以通过系统调用来进行实现,例如在Unixlike系统中,可以使用semop()系统调用来进行pv操作。

用多线程同步方法解决生产者-消费者问题

用多线程同步方法解决生产者-消费者问题

目录1.需求分析 (2)1.1 课程设计题目 (2)1.2 课程设计任务 (2)1.3 课程设计原理 (2)1.4 课程设计要求 (2)1.5 实验环境 (2)2. 概要设计 (3)2.1 课程设计方案概述 (3)2.2 课程设计流程图 (3)3.详细设计 (4)3.1 主程序模块 (4)3.2 生产者程序模块 (5)3.3 消费者程序模块 (6)4.调试中遇到的问题及解决方案 (6)5.运行结果 (7)6.实验小结 (7)参考文献 (8)附录:源程序清单 (8)1.需求分析1.1 课程设计题目用多线程同步方法解决生产者-消费者问题1.2 课程设计任务(1)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的全部内容、当前指针位置和生产者/消费者线程的标识符。

(2)生产者和消费者各有两个以上。

(3)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。

1.3 课程设计原理生产者和消费者问题是从操作系统中的许多实际同步问题中抽象出来的具有代表性的问题,它反映了操作系统中典型的同步例子,生产者进程(进程由多个线程组成)生产信息,消费者进程使用信息,由于生产者和消费者彼此独立,且运行速度不确定,所以很可能出现生产者已产生了信息而消费者却没有来得及接受信息这种情况。

为此,需要引入由一个或者若干个存储单元组成的临时存储区(即缓冲区),以便存放生产者所产生的信息,解决平滑进程间由于速度不确定所带来的问题。

1.4 课程设计要求(1)有界缓冲区内设有20个存储单元,放入/取出的数据项设定为1~20这20个整型数。

(2)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的全部内容、当前指针位置和生产者/消费者线程的标识符。

(3)生产者和消费者各有两个以上。

(4)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。

1.5 实验环境系统平台:LINUX开发语言:C开发工具:PC机一台2. 概要设计2.1 课程设计方案概述本设计中设置一个长度为20的一维数组buff[20]作为有界缓冲区,缓冲区为0时,代表该缓冲区内没有产品,buff[i]=i+1表示有产品,产品为i+1。

进程同步问题分析——生产者和消费者问题

进程同步问题分析——生产者和消费者问题

一、讨论课名称:计算机操作系统中进程同步与互斥问题分析二、讨论课目的:1.熟悉临界资源、信号量及PV操作的定义与物理意义;2.掌握进程互斥与进程同步的相关知识;3.掌握用信号量机制解决进程之间的同步与互斥问题;4.实现生产者-消费者问题,深刻理解进程同步问题。

三、讨论课内容:1.进程同步的基本概念在多道程序环境下,系统中可能存在许多的进程,在这些进程之间必定存在一些制约关系,这种制约关系表现为以下两种形式:①资源共享关系。

进程之间不知道其他进程的存在,而这些进程又处在同一个系统中,对系统资源必须共享使用,而有些资源不允许进程同时访问,例如打印机。

系统只能保证进程间互斥地使用这种临界资源,称这种资源共享关系叫做互斥;②相互合作关系。

在某些进程间还存在一种相互合作的关系。

例如在某个系统中存在两个进程,输入进程A和计算进程B,A负责向B提供数据,当缓冲区空时,B进程因不能获得所需数据而等待。

当A把数据送入缓冲区后,并向B发送一个信号将B唤醒,B才能取走数据。

同样,当B没有提取数据,也就是说缓冲区满时,进程A也无法向其中投入数据而等待。

这就是一种相互合作关系,称之为进程间的同步关系。

2.信号量机制实现进程同步本文分析的生产者-消费者问题就是一种相互合作问题的代表,对进程同步问题的解决,早在1965年,荷兰科学家Dijkstra就提出信号量机制是一种卓有成效的进程同步工具。

在信号量机制中,信号量仅能通过两个标准的原子操作wait(s)和singnal(s)来访问。

这两个操作被称为P,V操作。

在信号量机制中,除了需要一个用于代表资源数目的整型变量value外,还应增加一个进程链表L,用于链接上述的所有等待进程。

记录型信号量是由于它采用了记录型的数据结构而得名的。

它所包含的上述两个数据项可描述为:type semaphore=recordvalue:integer;L:list of process;End相应地,wait(s)和singal(s)操作可描述为:Procedure wait(s)var s:semaphore;BeginS.value:=S.value-1;If S.value<0 then block(S,L)EndProcedure signal(s)var S:semaphore;BeginS.value:=S.value+1;If S.value<=0 then wakeup(S,L);End每次的wait操作,意味着进程请求一个单位的资源,因此描述为S.value:=S.value-1;当S.value<0时,表示资源已分配完毕,因而进程调用block原语,进行自我阻塞,放弃处理机,并插入到信号量链表S.L中。

进程的同步与互斥之生产者消费者问题:对信号量设置的理解及PV操作顺序分析

进程的同步与互斥之生产者消费者问题:对信号量设置的理解及PV操作顺序分析

进程的同步与互斥之⽣产者消费者问题:对信号量设置的理解及PV操作顺序分析问题描述系统中有⼀组⽣产者进程和⼀组消费者进程,⽣产者进程每次⽣产⼀个产品放⼊缓冲区,消费者进程每次从缓冲区取出⼀个产品并使⽤;缓冲区在同⼀时刻只能允许⼀个进程访问。

问题分析⽣产者、消费者共享⼀个初始为空、⼤⼩为n的缓冲区,我们把缓冲区中未存放数据的⼀个块,当作⼀个“空位”;把其中按块存放的数据当作“产品”。

同步关系:⽣产者与消费者只有缓冲区有空位时,⽣产者才能把产品放⼊缓冲区⽣产者把“空位”当作资源,缓冲区初始为空,即空位数量为n(n:空的缓冲区⼤⼩)所以可以设置信号量empty,初始nempty>0时,有空位,⽣产者可以消耗“空位”这种资源即P(empty);empty<=0时,⽣产者⽆“空位”资源可⽤,便会挂起到阻塞队列等待。

只有缓冲区有产品时,消费者才能从缓冲区中取出产品消费者把“产品”当作资源,缓冲区初始为空,即产品数量为0所以可以设置信号量full,初始为0full<=0,消费者⽆“产品”这种资源可⽤,便会挂起到阻塞队列full>0,有产品,消费者可以消耗“产品”这种资源即P(full)进⼀步:empty>0时,有空位,⽣产者可以消耗“空位”这种资源即P(empty)的同时:⽣产了“产品这种资源”,即V(full);full>0时,有产品,消费者可以消耗“产品”这种资源即P(full)的同时:⽣产了“空位”这种资源,即V(empty);互斥关系:所有进程之间缓冲区是临界资源,各个进程必须互斥地访问设置信号零mutex,初始为1在进⼊区P(mutex)申请资源在退出区V(mutex)释放资源设计typedef struct{int value;Struct process *L; //等待序列}semaphore;semaphore full;semaphore empty;semaphore mutex;//某进程需要使⽤资源时,通过wait原语申请:P操作void wait(semaphore S){S.value--;if(S.value < 0){block(S.L);//阻塞原语,将当前进程挂载到当前semaphore的阻塞队列}}//进程使⽤完资源后,通过signal原语释放:V操作void signal(semaphore S){S.value++;if(S.value <= 0){wakeup(S.L);//唤醒原语,将当前semaphore的阻塞队列中的第⼀个进程唤醒}}full.value=0; //缓冲区 “产品”资源数(初始为0),⽤于实现⽣产者与消费者进程的同步empty.value=n; //缓冲区 “空位”资源数(初始为n),⽤于实现⽣产者与消费者进程的同步mutex.value=1; //互斥信号量,⽤于实现所有进程之间互斥地访问缓冲区//⽣产者producer(){while(1){Produce(); //⽣产“产品”P(empty); //“空位”数-1P(mutex); //临界区上锁Storage(); //摆放产品V(mutex); //临界区解锁V(full); //“产品”数+1}}//消费者consumer(){while(1){P(full); //“产品”数-1P(mutex); //临界区上锁TakeOut(); //拿⾛产品V(mutex); //临界区解锁V(empty); //“空位”数+1Use(); //使⽤“产品”}}对于各个操作顺序的理解:1. 对于⼀部分操作的顺序,我们很好理解,符合我们的认知://⽣产者Produce(); //⽣产产品P(empty); //“空位”数-1,可能有⼈在这⾥会问这个操作为什么不可以放在“Storage甚⾄是V(full)”后⾯,考虑⼀种情况:当空位数为0时,我们是不能摆放产品的,⽽这个操作正是在检查是否还有“空位”这种资源;所以它⼀定在Storage前⾯ Storage(); //摆放产品V(full); //“产品”数+1,可能有⼈在这⾥会问这个操作为什么不可以放在“Storage甚⾄是P(empty)”前⾯,考虑⼀种情况:当产品数为n时,我们是不能再摆放产品的,因为缓冲区已满,再向其中添加数据(执⾏Storage)是要出问题的;所 //消费者P(full); //“产品”数-1,同上⾯⼀样,可能有⼈在这⾥会问这个操作为什么不可以放在“TakeOut甚⾄是V(empty)”后⾯,考虑⼀种情况:当产品数为0时,我们是不能拿⾛产品的,⽽这个操作正是在检查是否还有“产品”这种资源;所以它⼀定 TakeOut(); //拿⾛产品V(empty); //“空位”数+1,同上⾯⼀样,可能有⼈在这⾥会问这个操作为什么不可以放在“TakeOut甚⾄是P(full)”前⾯,考虑⼀种情况:当空位数为n时,我们是不能拿⾛产品的,因为缓冲区已经空了,再拿⾛(执⾏TakeOut)拿⾛个寂寞 Use(); //使⽤“产品”2. 对于其他操作:实现同步的P操作⼀定要在实现互斥的P操作之前,为什么呢?反向分析:我们考虑若调换⽣产者上述两个P操作的顺序://⽣产者producer(){while(1){Produce(); //⽣产产品P(mutex); //临界区上锁P(empty); //“空位”数-1Storage(); //摆放产品V(mutex); //临界区解锁V(full); //“产品”数+1}}//消费者consumer(){while(1){P(full); //“产品”数-1P(mutex); //临界区上锁TakeOut(); //拿⾛产品V(mutex); //临界区解锁V(empty); //“空位”数+1Use(); //使⽤“产品”}}若此时缓冲区已经放满产品,则empty=0,full=n⽣产者进程执⾏P(mutex),mutex变为0,由于empty为0即没有“空位”了,需要⽣产者进程阻塞,等待消费者拿⾛产品切换⾄消费者进程,消费者进程执⾏到P(mutex),由于mutex为0即⽣产者未释放临界资源,需要⽣产者释放临界资源,消费者进程阻塞互相等待,进⼊死锁结论:不要让因同步引起的进程阻塞(P操作可能产⽣结果)发⽣在为临界区上锁之后,因为:1. 临界区上锁,表⽰临界资源已被占⽤;若对临界区未解锁之前,发⽣了因同步引起的进程阻塞(上例中即需要⽣产者进程阻塞,等待消费者拿⾛产品)。

操作系统之进程(生产者---消费者)实验报告

操作系统之进程(生产者---消费者)实验报告

操作系统实验报告——生产者和消费者问题姓名:学号: 班级:一、实验内容1、模拟操作系统中进程同步和互斥;2、实现生产者和消费者问题的算法实现;二、实验目的1、熟悉临界资源、信号量及PV操作的定义与物理意义;2、了解进程通信的方法;3、掌握进程互斥与进程同步的相关知识;4、掌握用信号量机制解决进程之间的同步与互斥问题;5、实现生产者-消费者问题,深刻理解进程同步问题;三、实验题目在Windows操作系统下用C语言实现经典同步问题:生产者—消费者,具体要求如下:(1)一个大小为10的缓冲区,初始状态为空。

(2)2个生产者,随机等待一段时间,往缓冲区中添加数据,若缓冲区已满,等待消费者取走数据之后再添加,重复10次.(3)2个消费者,随机等待一段时间,从缓冲区中读取数据,若缓冲区为空,等待生产者添加数据之后再读取,重复10次。

四、思想本实验的主要目的是模拟操作系统中进程同步和互斥。

在系统进程并发执行异步推进的过程中,由于资源共享和进程间合作而造成进程间相互制约。

进程间的相互制约有两种不同的方式.(1)间接制约。

这是由于多个进程共享同一资源(如CPU、共享输入/输出设备)而引起的,即共享资源的多个进程因系统协调使用资源而相互制约。

(2)直接制约。

只是由于进程合作中各个进程为完成同一任务而造成的,即并发进程各自的执行结果互为对方的执行条件,从而限制各个进程的执行速度。

生产者和消费者是经典的进程同步问题,在这个问题中,生产者不断的向缓冲区中写入数据,而消费者则从缓冲区中读取数据.生产者进程和消费者对缓冲区的操作是互斥,即当前只能有一个进程对这个缓冲区进行操作,生产者进入操作缓冲区之前,先要看缓冲区是否已满,如果缓冲区已满,则它必须等待消费者进程将数据取出才能写入数据,同样的,消费者进程从缓冲区读取数据之前,也要判断缓冲区是否为空,如果为空,则必须等待生产者进程写入数据才能读取数据.在本实验中,进程之间要进行通信来操作同一缓冲区。

生产者与消费者之间的同步与互斥问题

生产者与消费者之间的同步与互斥问题

•进程间的关系 •生产者生产消息 后 消费者消费的合作 关系 •消费者消费 后 的空白缓冲块由生产者 生产消息的合作关系 •进程间在队列操作上的互斥关系
Var mutex, empty, full:semaphore∶=1,n,0; buffer:array[0, …, n-1] of item; in, out: integer∶=0, 0; proceducer:begin repeat producer an item nextp; wait(empty); wait(mutex); buffer(in)∶=nextp; in∶=(in+1) mod n; signal(mutex); signal(full); until false; end • consumer:begin • repeat • wait(full); • wait(mutex); • nextc∶ =buffer(out); • out∶ =(out+1) mod n; • signal(mutex); • signal(empty); • consumer the item in nextc; • until false; • end
互斥问题:
1.生产者与生产者之间、消费者与消费者之间 互斥访问缓冲池。 2.生产者和消费者之间互斥访问缓冲池。
生产者/消费者问题
• 一个生产者,一个消费者,一个缓冲区 • 确定同步对象 • 确定同步约束条件 • 确定同步时机 • 定义信号量:考虑为每个同步对象设一个 信号量 • 用wait()操作判断同步条件是否满足 • 用signal()操作向其它同步对象发同步信号
Thank you !!
姚俊 朱景焕 宋聪 郭涛 欧阳睿 朱思勇 杨凝 熊伟 唐沐 万骞 闫弈潼

unix系统中同步问题和互斥问题例子

unix系统中同步问题和互斥问题例子

unix系统中同步问题和互斥问题例子同步问题和互斥问题是在多进程或者多线程编程中经常遇到的共享资源管理问题。

在Unix系统中,同步问题和互斥问题具体体现在进程间共享的文件、共享内存和信号量等资源的访问过程中。

一、同步问题同步问题指的是多个进程或线程需要按照一定的次序执行,以实现特定的功能或保证数据的一致性。

以下是一些在Unix系统中常见的同步问题例子:1.多进程文件写入在多个进程同时对同一个文件进行写入操作时,可能会出现数据混乱的问题。

例如,两个进程同时向同一个文件写入一段数据,如果操作不加以控制,可能会导致两个进程的数据交错。

为了解决这一问题,可以使用文件锁(flock)或者互斥锁(mutex)来实现对文件的互斥访问,保证每个进程对文件的独占写入操作。

2.生产者和消费者问题生产者和消费者问题是一种经典的同步问题,常用于描述多个进程或线程之间的协作关系。

在Unix系统中,可以通过共享内存、信号量等机制来实现生产者和消费者之间的同步。

例如,一个进程负责生产数据,另一个进程负责消耗数据,通过信号量来控制两个进程之间的同步,保证数据的正确交换和处理。

3.进程间通信在Unix系统中,进程间通信(IPC)是一种常见的同步问题。

例如,两个进程需要完成某个任务,但是任务的执行需要依赖于另一个进程的结果。

可以通过管道、套接字或者共享内存等方式来实现进程间的通信,保证同步和协作的顺利进行。

二、互斥问题互斥问题是指多个进程或线程对共享资源的访问需要互斥进行,以避免数据竞争和冲突。

以下是一些在Unix系统中常见的互斥问题例子:1.临界区问题临界区问题是指多个进程或线程对共享资源的访问需要互斥进行。

在Unix系统中,可以使用互斥锁(mutex)来实现对临界区的互斥访问。

例如,多个线程对共享变量进行读写操作,通过互斥锁的加锁和解锁操作来保证每次只有一个线程能够访问临界区,避免数据竞争和冲突。

2.信号量问题信号量是一种常见的同步机制,可用于解决多个进程或线程对共享资源的互斥访问问题。

实验二生产者消费者问题实践

实验二生产者消费者问题实践

实验二生产者消费者问题实践【实验目的】配合操作系统课程的学习,加深对生产者与消费者问题的理解并熟悉VC的使用。

【实验学时】建议2学时【实验内容】利用信号量机制完成5个生产者10个消费者的同步。

【实验原理】生产者消费者问题是把并发进程的同步和互斥问题一般化后得到的一个抽象的一般模型。

首先同步问题:消费者只有在有界缓冲区内有数据的时候才能进行消费,而生产者只能在有界缓冲区内有空间的时候才能够进行生产。

其次,由于有界缓冲区是临界资源,所以生产者进程和消费者进程必须互斥。

为此,本实验中设置了一个公用的信号量即“ct”用来保证互斥的实现,它的初始值为1。

另外为生产者和消费者分别设置了两个私用信号量,分别为“notem”和“notfu”。

其中“notfu”表示有界缓冲区中的空单元数,初始值为20;“notem”表示有界缓冲区中非空单元数,初始值为0。

由于信号量的值只能通过P、V原语来操作,所以本实验中还定义了P、V的有关操作。

【实验要求】实现生产者、消费者的模拟函数(produce、consume),用它们来模拟生产者消费者问题。

【实验步骤】1、创建一个控制台类型的、名为P_C的工程(如图5-1所示)。

下一步选择简单应用(如图5-2所示)。

2、在P_C.cpp文件中添加如下代码:3、添加一个类,用于控制生产者消费者的状态。

点击Insert->New Class.类名为"Monitor"(如图5-3 所示)。

4、在Monitor.h 文件中添加如下代码:5、在Monitor.cpp文件中添加如下代码:6、在Stdafx.h文件中添加如下代码:7、Build P_C.exe,点击Build图标。

Output输出如下所示,则P_C工程建立完毕。

8、运行P_C.exe。

点击!图标。

生产者与消费者问题理解(转载+个人理解)

生产者与消费者问题理解(转载+个人理解)

⽣产者与消费者问题理解(转载+个⼈理解)⼀、问题描述⼆、问题分析该问题中出现的主要的两种关系:①⽣产者—消费者之间的同步关系表现为:⼀旦缓冲池中所有缓冲区均装满产品时,⽣产者必须等待消费者提供空缓冲区;⼀旦缓冲池中所有缓冲区全为空时,消费者必须等待⽣产者提供满缓冲区。

②⽣产者—消费者之间还有互斥关系:由于缓冲池是临界资源,所以任何进程在对缓冲区进⾏存取操作时都必须和其他进程互斥进⾏。

PV操作题⽬分析的步骤:1.关系分析。

找出题⽬中描述的各个进程,分析它们之间的同步、互斥关系。

2.整理思路。

根据各进程的操作流程确定PV操作的⼤致顺序。

3.设置信号量。

设置需要的信号量,并根据题⽬条件确定信号量的初值。

(互斥信号量初值⼀般为1,同步信号量的初值需要看对应资源的初始值是多少)在这⾥:互斥的实现是在同⼀个进程中进⾏的⼀对PV操作。

同步的实现是在两个进程中进⾏的,在⼀个进程中执⾏P操作,在另⼀个进程中执⾏V操作。

semaphore mutex = 1; //互斥信号量semaphore empty = n; //同步信号量。

空闲缓冲区的数量semaphore full = 0; //同步信号量。

产品的数量,⾮空缓冲区的数量producer(){while(1){⽣成⼀个产品;P(empty); //消耗⼀个空闲缓冲区P(mutex);把产品放⼊缓冲区;V(mutex);V(full) //增加⼀个产品}}consumer(){while(1){P(full); //消耗⼀个产品P(mutex);从缓冲区取出⼀个产品;V(mutex);V(empty); //增加⼀个空闲缓冲区使⽤产品;}}实现互斥的P操作⼀定要放在实现同步的P操作之后!我们观察上⾯的代码,⽣产者⽣产产品和消费者使⽤产品这两个操作都是放在各⾃进程的PV操作之外的,那么能不能放在各⾃的PV操作之内呢?其实从逻辑上来说是可以的,⽐如从缓冲区取出⼀个产品之后⽴即使⽤这个产品,但是这样就会造成临界区的代码量变⼤,消费者进程访问临界区将会耗费更多的时间,若此时有别的进程想要访问临界区是会被阻塞的,若将这些不是很⾮代码也放⼊临界区,会造成进程的并发度降低。

经典同步互斥问题

经典同步互斥问题

经典同步互斥之生产者—消费者问题生产者—消费者同步问题其实际上就是生活中同步、互斥问题的一个抽象模型,如多个进程合作解决文件打印的问题,汽车行驶过程中司机与售票员的活动问题,理发师理发问题等等。

要解决同步互斥问题,最主要的是理清楚活动者之间的同步关系,还有某些问题中变量的互斥问题。

分析清楚之后就是设置信号量,设置几个,并且根据实际情况给出信号量的初值。

生产者—消费者问题就是生产者进程向消费者进程提供消息。

生产者生产商品存入空缓冲区内,而消费者从缓冲区内取出产品并消费。

1、一个生产者P和一个消费者Q(其中只有同步问题)其同步关系为:(1)P进程不能向“满”的缓存区内存放产品,即仅当有一个空缓存区时才能放产品,设置信号量empty,初值为0,用于指示空缓存区数目。

(2)Q进程不能从空的缓存区中取产品,设置信号量full,初值为0,用于指示满缓存区的数目。

注意:a)在P、V操作中,P、V操作必须成对出现;b)在互斥关系中P、V操作在同一进程内;【c)在同步关系中P、V操作在不同的进程内。

其同步问题解决如下:P: //生产者repeat生产一个产品;送产品到缓冲区;V(full);//释放一个满的缓冲区;P(empty); //申请一个空的缓冲区存放产品;until false;;Q: //消费者repeatP(full);//申请一个满的缓存区取产品从缓存区取产品;V(empty);//产品取完后释放掉该空的缓存区消费产品;until false;2、多个生产者和多个消费者多个生产者和消费者问题中,缓存区属于临界资源,它只允许一个生产者放入产品或者一个消费者从中取产品。

生产者之间、生产者与消费者之间、消费者之间都必须互斥的使用缓冲区。

其中既存在同步问题,又存在互斥问题。

其同步关系为:(1)>(2)至少有一个缓冲区已存入消息后,消费者才能从中提取消息,否则消费者必须等待。

设置信号量empty,初值为n,用于指示空缓冲区的数目;(3)至少有一个缓存区是空的,生产者才能将消息存入缓冲区,否则生产者必须等待。

操作系统生产者和消费者问题

操作系统生产者和消费者问题

生产者-消费者问题是一个经典的进程同步问题,已经属于化石级别的了。

该问题最早由Dijkstra 提出,用以演示他提出的信号量机制。

要求设计在同一个进程地址空间内执行的两个线程。

生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。

消费者线程从缓冲区中获得物品,然后释放缓冲区。

当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放出一个空缓冲区。

当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻塞,直到新的物品被生产出来。

要求设计并实现一个进程,该进程拥有一个生产者线程和一个消费者线程,它们使用N个不同的缓冲区(N为一个自定义的确定的数值,例如N=32)。

需要使用如下信号量:•一个互斥信号量,用以阻止生产者线程和消费者线程同时操作缓冲区列表;•一个信号量,当生产者线程生产出一个物品时可以用它向消费者线程发出信号;•一个信号量,消费者线程释放出一个空缓冲区时可以用它向生产者线程发出信号;看代码吧://pv操作:生产者与消费者经典问题//author:leaf#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<pthread.h>#include<semaphore.h>#define M 32 /*缓冲数目*/#define P(x)sem_wait(&x)#define V(x)sem_post(&x)int in = 0;/*生产者放置产品的位置*/int out = 0;/*消费者取产品的位置*/int buff[M]={0};/*缓冲初始化为0,开始时没有产品*/sem_t empty_sem;/*同步信号量,当满了时阻止生产者放产品*/sem_t full_sem;/*同步信号量,当没产品时阻止消费者消费*/pthread_mutex_t mutex;/*互斥信号量,一次只有一个线程访问缓冲*//**output the buffer*/void print(){int i;for(i = 0; i < M; i++)printf("%d ", buff[i]);printf("\n");}/**producer*/void*producer(){for(;;){sleep(1);P(empty_sem);pthread_mutex_lock(&mutex);in = in % M;printf("(+)produce a product. buffer:");buff[in]= 1;print();++in;pthread_mutex_unlock(&mutex);V(full_sem);}}/**consumer*/void*consumer(){for(;;){sleep(2);P(full_sem);pthread_mutex_lock(&mutex);out = out % M;printf("(-)consume a product. buffer:");buff[out]= 0;print();++out;pthread_mutex_unlock(&mutex);V(empty_sem);}}void sem_mutex_init(){/**semaphore initialize*/int init1 = sem_init(&empty_sem, 0, M);int init2 = sem_init(&full_sem, 0, 0);if((init1 != 0)&&(init2 != 0)){printf("sem init failed \n");exit(1);}/**mutex initialize*/int init3 =pthread_mutex_init(&mutex,NULL);if(init3 != 0){printf("mutex init failed \n");exit(1);}}int main(){pthread_t id1;pthread_t id2;int i;int ret;sem_mutex_init();/*create the producer thread*/ret =pthread_create(&id1,NULL, producer,NULL);if(ret != 0){printf("producer creation failed \n");exit(1);}/*create the consumer thread*/ret =pthread_create(&id2,NULL, consumer,NULL);if(ret != 0){printf("consumer creation failed \n");exit(1);}pthread_join(id1,NULL);pthread_join(id2,NULL);exit(0);}程序执行结果:其中1表示已经生产出的产品,1的个数就代表已生产出的产品个数。

生产者与消费者算法

生产者与消费者算法

生产者与消费者算法1. 简介生产者与消费者算法是操作系统中一种解决生产者与消费者问题的经典算法。

生产者与消费者问题是指多个生产者和多个消费者共享一个有限缓冲区,生产者向缓冲区中放入数据,消费者从缓冲区中取出数据的问题。

生产者与消费者算法通过合理地同步生产者与消费者的操作,保证生产者和消费者的正确性和公平性。

本文将介绍生产者与消费者算法的原理、实现和使用方法。

2. 原理生产者与消费者算法的核心思想是使用互斥锁和条件变量。

互斥锁用于保护共享缓冲区的访问,条件变量用于实现生产者和消费者之间的等待和唤醒操作。

具体来说,算法包括以下几个步骤:1.定义共享缓冲区,并初始化相关变量(如指针、计数器等)。

2.创建互斥锁和条件变量,并初始化。

3.同时启动多个生产者线程和消费者线程。

4.生产者线程的主要工作是生产数据并将其放入缓冲区中。

在放入数据之前,需要获取互斥锁进行保护。

5.消费者线程的主要工作是从缓冲区中取出数据并进行消费。

在取出数据之前,需要获取互斥锁进行保护。

6.若缓冲区已满,生产者线程需要等待条件变量唤醒。

7.若缓冲区为空,消费者线程需要等待条件变量唤醒。

8.当生产者线程放入数据后,需唤醒等待中的消费者线程;当消费者线程取出数据后,需唤醒等待中的生产者线程。

9.在线程操作结束后,释放互斥锁。

3. 实现以下是一个简单的生产者与消费者算法的示例代码。

代码使用了C语言的pthread库实现多线程。

```c #include <stdio.h> #include <stdlib.h> #include <pthread.h>#define BUFFER_SIZE 5 // 缓冲区大小int buffer[BUFFER_SIZE]; // 共享缓冲区 int in = 0; // 指示下一个生产者放置数据的位置 int out = 0; // 指示下一个消费者取出数据的位置pthread_mutex_t mutex; // 互斥锁 pthread_cond_t full; // 缓冲区满条件变量pthread_cond_t empty; // 缓冲区空条件变量void producer(void arg) { int data = 0; while (1) { pthread_mutex_lock(&mutex); while ((in + 1) % BUFFER_SIZE == out) { pthread_cond_wait(&full, &mutex); }buffer[in] = data; in = (in + 1) % BUFFER_SIZE; data++;pthread_cond_signal(&empty); pthread_mutex_unlock(&mutex); } }void consumer(void arg) { while (1) { pthread_mutex_lock(&mutex); while (in == out) { pthread_cond_wait(&empty, &mutex); } int data = buffer[out]; out = (out + 1) % BUFFER_SIZE; printf(。

进程同步机制与互斥-生产者消费者问题

进程同步机制与互斥-生产者消费者问题

学习中心:专业:年级:年春/秋季学号:学生:题目:进程同步与互斥生产者-消费者问题1.谈谈你对本课程学习过程中的心得体会与建议?转眼间,学习了一个学期的计算机操作系统课程即将结束。

在这个学期中,通过老师的悉心教导,让我深切地体会到了计算机操作系统的一些原理和具体操作过程。

在学习操作系统之前,我只是很肤浅地认为操作系统只是单纯地讲一些关于计算机方面的操作应用,并不了解其中的具体操作过程和实用性。

通过这一学期的学习,我才知道操作系统(Operating System,简称OS)是管理计算机系统的全部硬件资源包括软件资源及数据资源;控制程序运行;改善人机界面;为其它应用软件提供支持等,使计算机系统所有资源最大限度地发挥作用,为用户提供方便的、有效的、友善的服务界面。

操作系统这门课程并不是教你如何使用操作系统的,而是讲操作。

总而言之,操作系统的一些原理在生活中都可以找到相应的例子。

结合生活中的例子,可以化抽象为具体,我们会更加清楚地了解到其原理与操作过程。

我觉得通过我们的不断学习,结合生活中的实际问题,我们就会把操作系统学得更好。

总体来说,通过这次的对操作系统的总结,有收获也有遗憾、不足的地方,但我想,我已经迈入了操作系统的大门,只要我再认真努力的去学习,去提高,肯定能让自己的知识能力更上一层楼.1设计思路及主要代码分析1.1设计思路在这次设计中定义的多个缓冲区不是环形循环的,并且不需要按序访问。

其中生产者可以把产品放到某一个空缓冲区中,消费者只能消费被指定生产者生产的产品。

本设计在测试用例文件中指定了所有生产和消费的需求,并规定当共享缓冲区的数据满足了所有有关它的消费需求后,此共享才可以作为空闲空间允许新的生产者使用。

本设计在为生产者分配缓冲区时各生产者之间必须互斥,此后各个生产者的具体生产活动可以并发。

而消费者之间只有在对同一个产品进行消费时才需要互斥,它们在消费过程结束时需要判断该消费者对象是否已经消费完毕并释放缓冲区的空间。

生产者消费者问题 操作系统课程设计

生产者消费者问题 操作系统课程设计

生产者消费者问题操作系统课程设计本文介绍了操作系统课程设计中的生产者消费者问题。

生产者消费者问题是一种经典的同步问题,涉及到多个线程或进程的协作与同步。

在该问题中,有一定数量的生产者和消费者,它们共享一个有限的缓冲区。

生产者负责往缓冲区中添加数据,而消费者则负责从缓冲区中取出数据。

缓冲区的大小是有限的,当缓冲区已满时,生产者就需要等待,直到有消费者来取出数据;当缓冲区为空时,消费者也需要等待,直到有生产者添加数据为止。

为了解决生产者消费者问题,操作系统课程设计中通常采用信号量机制来进行同步和互斥。

生产者和消费者需要共享两个信号量:一个用来表示空闲缓冲区的数量,另一个用来表示有数据的缓冲区的数量。

当生产者添加数据时,需要使用信号量将空闲缓冲区的数量减1,然后将数据添加到缓冲区;当消费者取出数据时,需要使用信号量将有数据的缓冲区的数量减1,然后将数据从缓冲区中取出。

当缓冲区已满或为空时,线程需要进行等待,直到有信号量被释放。

操作系统课程设计中,生产者消费者问题可以作为实验来进行实践。

通过编写程序实现生产者消费者问题,可以加深对操作系统中同步和互斥的理解,同时也可以提高编程能力和解决问题的能力。

- 1 -。

操作系统实验报告经典生产者—消费者问题范文大全[修改版]

操作系统实验报告经典生产者—消费者问题范文大全[修改版]

第一篇:操作系统实验报告经典生产者—消费者问题实验二经典的生产者—消费者问题一、目的实现对经典的生产者—消费者问题的模拟,以便更好的理解经典进程同步问题。

二、实验内容及要求编制生产者—消费者算法,模拟一个生产者、一个消费者,共享一个缓冲池的情形。

1、实现对经典的生产者—消费者问题的模拟,以便更好的理解此经典进程同步问题。

生产者-消费者问题是典型的PV 操作问题,假设系统中有一个比较大的缓冲池,生产者的任务是只要缓冲池未满就可以将生产出的产品放入其中,而消费者的任务是只要缓冲池未空就可以从缓冲池中拿走产品。

缓冲池被占用时,任何进程都不能访问。

2、每一个生产者都要把自己生产的产品放入缓冲池,每个消费者从缓冲池中取走产品消费。

在这种情况下,生产者消费者进程同步,因为只有通过互通消息才知道是否能存入产品或者取走产品。

他们之间也存在互斥,即生产者消费者必须互斥访问缓冲池,即不能有两个以上的进程同时进行。

三、生产者和消费者原理分析在同一个进程地址空间内执行两个线程。

生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。

消费者线程从缓冲区中获得物品,然后释放缓冲区。

当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放一个空缓冲区。

当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻挡,直到新的物品被生产出来。

四、生产者与消费者功能描述:生产者功能描述:在同一个进程地址空间内执行两个线程。

生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。

当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放出一个空缓冲区。

消费者功能描述:消费者线程从缓冲区获得物品,然后释放缓冲区,当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻塞,直到新的物品被生产出来。

五、实验环境操作系统环境:Windows 系统。

编程语言:C#。

同步与互斥实例

同步与互斥实例
(1)进程A专门拣黑子,进程B专门拣白子;
(2)每个进程每次只拣一个子,当一个进程在 拣子时不允许另一进程去拣子;
(3)当一个进程拣了一个子(黑或白)以后, 必让另一个进程拣一个子(黑或白) 。
请用P、V操作管理两个并发进程,使其能正 确实现上述功能。
Var S1, S2: semaphore:=1,0;
理发师问题理发师问题l理发店里有一位理发师一把理发椅和n把供等候理发的顾客坐的椅子l如果没有顾客理发师便在理发椅上睡觉l一个顾客到来时它必须叫醒理发师l如果理发师
进程同步与互斥实例
同步实例
1.经典的生产者─消费者问题
生产者
消费者
1.经典的生产者─消费者问题
var B : integer;
empty:semaphore; /* 可以使用的空缓冲区数 */
process 小和尚: begin repeat P(empty); P(count); P(mutex1); 从井中取水; V(mutex1); P(mutex2); 送水入水缸; V(mutex2); V(count); V(full); until false;
end
Var mutex1, mutex2, empty, full, count: semaphore;
④在每个进程中用于实现互斥的PV操作必须成对出现;用于实现 同步的PV操作也必须成对出现,但可以分别出现在不同的进程中; 在某个进程中如果同时存在互斥与同步的P操作,则其顺序不能颠 倒,必须先执行对同步信号量的P操作,再执行对互斥信号量的P 操作,但V操作的顺序没有严格要求。
同步与互斥的解题步骤
full:semaphore;
/* 缓冲区内可以使用的产品数 */
empty := 1;

计算机操作系统pv操作

计算机操作系统pv操作

引言概述计算机操作系统中的PV操作是进程同步和互斥的重要手段,用于解决多个进程共享资源时可能引发的竞争条件和死锁问题。

PV操作是通过对进程间的信号量进行操作来实现的。

本文将详细介绍PV 操作的定义、原理和应用场景,并通过分析五个大点来深入探讨PV 操作的实现和特性。

正文内容一、PV操作的定义和原理1.PV操作简介:PV操作是一种用于进程间同步和互斥的机制,主要包括两个操作——P操作(等待)和V操作(发出信号)。

2.P操作原理:进程执行P操作时,会判断信号量的值是否大于0,若大于0则将其减一;若等于0则进程被阻塞,等待信号量的值大于0。

3.V操作原理:进程执行V操作时,会将信号量的值加一;如果有阻塞的进程,会唤醒其中一个进程。

4.PV操作的互斥性:PV操作可以实现进程对共享资源的互斥保护,即只允许一个进程访问资源。

5.PV操作的同步性:PV操作可以实现进程之间的同步,即某个进程需要等待其他进程执行完相应操作后再进行操作。

二、PV操作的应用场景1.生产者消费者问题:通过使用信号量来解决生产者和消费者之间的同步和互斥问题,确保生产者和消费者能够正确地访问共享缓冲区。

2.读者写者问题:通过使用信号量来解决多个读者和一个写者之间的同步和互斥问题,确保读者和写者能够正确地访问共享资源。

3.互斥访问共享资源:通过使用信号量来保证多个进程对共享资源的互斥访问,防止竞争条件的发生。

4.进程间的消息传递:通过使用信号量来实现进程间的同步和消息传递,确保消息的正确发送和接收。

5.进程的顺序执行:通过使用信号量来控制进程的执行顺序,确保某些进程按照特定的顺序执行。

三、PV操作的实现方式1.信号量的定义和初始化:在操作系统中,信号量是由一个整数值和一个相关的进程等待队列组成。

需要在创建信号量时对其进行初始化。

2.P操作的实现:P操作需要对信号量的值进行判断,若大于0则执行减一操作;若等于0则将进程加入等待队列,进入阻塞状态。

4.8 经典互斥与同步问题 生产者-消费者问题

4.8 经典互斥与同步问题 生产者-消费者问题

4.8 经典互斥与同步问题:生产者-消费者问题(the producer/consumer problem)
问题描述:若干进程通过有限的共享缓冲区交换数据。

其中,"生产者"进程不断写入,而"消费者"进程不断读出;共享缓冲区共有N个;任何时刻只能有一个进程可对共享缓冲区进行操作。

任何时刻只能有一个进程可对共享缓冲区进行操作,可知使用共享缓冲区的生产者与生产者之间、生产者与消费者之间以及消费者与消费者之间存在互斥关系。

缓冲区不满,生产者才能写入;缓冲区不空,消费者才能读出,可知生产者与消费者之间存在同步关系。

设置如下信号量:
full是“满”缓冲区数目,初值为0;
empty是“空”缓冲区数目,初值为N;
mutex用于访问缓冲区时的互斥,初值是1 。

实际上,full和empty是同一个含义:full + empty == N。

用信号量和P、V原语解决生产者-消费者问题如下:
需要注意的是操作的顺序很重要,不当会产生死锁。

如假定Producer和Consumer如下:
当full=0, mutex = 1时,如果执行顺序为:
Consumer.P(mutex) ; Consumer.P(full); // C阻塞,等待Producer 发出的full信号
Producer.P(empty) ; Producer.P(mutex) ; // P 阻塞,等待Consumer发出的mutex信号此时将出现死锁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•进程间的关系 •生产者生产消息 后 消费者消费的合作 关系 •消费者消费 后 的空白缓冲块由生产者 生产消息的合作关系 •进程间在队列操作上的互斥关系
Var mutex, empty, full:semaphore∶=1,n,0; buffer:array[0, …, n-1] of item; in, out: integer∶=0, 0; proceducer:begin repeat producer an item nextp; wait(empty); wait(mutex); buffer(in)∶=nextp; in∶=(in+1) mod n; signal(mutex); signal(full); until false; end • consumer:begin • repeat • wait(full); • wait(mutex); • nextc∶ =buffer(out); • out∶ =(out+1) mod n; • signal(mutex); • signal(empty); • consumer the item in nextc; • until false; • end
互斥问题:
1.生产者与生产者之间、消费者与消费者之间 互斥访问缓冲池。 2.生产者和消费者之间互斥访问缓冲池。
生产者/消费者问题
• 一个生产者,一个消费者,一个缓冲区 • 确定同步对象 • 确定同步约束条件 • 确定同步时机 • 定义信号量:考虑为每个同步对象设一个 信号量 • 用wቤተ መጻሕፍቲ ባይዱit()操作判断同步条件是否满足 • 用signal()操作向其它同步对象发同步信号
Thank you !!
姚俊 朱景焕 宋聪 郭涛 欧阳睿 朱思勇 杨凝 熊伟 唐沐 万骞 闫弈潼
例 1
电子邮件信箱
1 2
……
n
发送进程 A
接收进程 B
当信箱满时,发送进程只有等待接收进程取走信件, 当信箱空时,接收进程必须等待发送进程发送信件。
生产者与消费者之间的同步与互斥问题 同步问题:
1.只要缓冲池未满,生产者便可将消息送入缓 冲池,否则等待。 2.只要缓冲池未空,消费者便可从缓冲池中取 走一个消息,否则等待。
问题描述
• 一个仓库可以存放K件物品。生产者每生产一件 产品,将产品放入仓库,仓库满了就停止生产。 消费者每次从仓库中去一件物品,然后进行消费, 仓库空时就停止消费。 • 生产者与消费者问题是许多相互合作进程的一种 抽象。例如,在输入时,输入进程是生产者,计 算进程是消费者。在输出时,计算进程是生产者, 打印进程是消费者。
相关文档
最新文档