2015第九章《不等式与不等式组》综合测试题

合集下载

人教版七年级数学 下册 第九章 不等式与不等式组 单元综合与测试(含答案)

人教版七年级数学 下册 第九章 不等式与不等式组 单元综合与测试(含答案)

第九章 不等式与不等式组 单元复习与检测题(含答案)一、选择题1、如果两个不等式的解集相同,那么这两个不等式叫做同解不等式.下列两个不等式是同解不等式的是 ( )A. -4x <48与x >-12B. 3x≤9与x≥3C. 2x -7<6x 与-7≤4xD.132x -+<0与13x >-2 2、数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x ;⑤a ≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个B.3个C.4个D.5个 3、下列说法中,错误的是( ) A.x=1是不等式x <2的解 B.-2是不等式2x-1<0的一个解 C.不等式-3x >9的解集是x=-3 D.不等式x <10的整数解有无数个4、对于命题“b a 、是实数,若22,b a b a >>则”,若结论保持不变,怎样改变条件,命题才是真命题.给出以下 四种改法:(1)22,0b a b a b a >>>则是实数,若、 (2)22,0b a b a b a b a >>+>则且是实数,若、 (3)22,0b a b a b a ><<则是实数,若、 (4)22,0b a b a b a b a ><+<则且是实数,若、 其中真命题的个数是A.1个B.2个C.3个D.4个5、不等式x x ->32的解集是( )A .2<xB .2>xC .1>xD .1<x 6、不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( )A.1个B.2个C.3个D.4个 7、把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是8、若不等式组3,x x a>⎧⎨>⎩的解集是x>a ,则a 的取值范围是( )A .a<3B .a=3C .a>3D .a ≥39、如果a >b ,那么不等式组⎩⎨⎧<<b x a x ,的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)无解10、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润不低于160元,则至多可打( )A. 6折B. 7折C. 8折D. 9折二、填空题11、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。

人教版七年级下册数学 第九章 不等式与不等式组 综合检测题

人教版七年级下册数学  第九章 不等式与不等式组  综合检测题

人教版七年级下册数学第九章 不等式与不等式组 综合检测题一、填空题(每题3分,共24分)1. 当x 时,代数式x 35-的值小于1-.2. 用“>”或“<”填空:若b a <,则12+-a 12+-b .3. x 的21不大于2与x 的和,用不等式表示为 . 4.下列不等式组中:①⎩⎨⎧24>>x x ;②⎩⎨⎧24><x x ;③⎩⎨⎧24<>x x ;④⎩⎨⎧24<<x x ,解集在数轴上表示成如图所示,则这个不等式组为 .(填序号)5.不等式()321615+<--x x 的正整数解是 . 6. 商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为 元/千克.7. 若关于x 的不等式()21>-x a 可化为a x -<12,则a 的取值范围是 .8. 已知关于x 、y 的二元一次方程组⎩⎨⎧-=++=+m y x m y x 22212的解满足不等式组⎩⎨⎧+-1x 8><y y x ,则m 的取值范围是 .二、选择题(每小题3分,共27分) 9. 已知m 、n 均为非零有理数,下列结论正确的是( )A .若n m ≠,则22n m ≠B .若22n m =,则n m =C .若0>>n m ,则22n m >D .若0>>n m ,则nm 11> 10. 学校准备用200本笔记本奖给期末考试成绩获年级一、二等奖的80名同学,如果奖给一等奖的每5本,二等奖的每人2本,则一等奖最多设置人数为( )A .15B .14 C.13 D .1211.若关于x 、y 的二元一次方程组⎩⎨⎧=++=-3312y x m y x 的解满足0>y x +,则m 的取值范围是( ).A .2>mB .1>mC .2->mD .2<m12. 不等式组⎩⎨⎧≤-31<x x 的解集在数轴上可以表示为( ) A . B . C . D .13. 关于x 的不等式组()⎩⎨⎧->-<-12130x x m x 无解,那么m 的取值范围为( )A .1-≤mB .1-<mC .01≤-m <D .01<m ≤-14. 不等式组⎩⎨⎧-++11692<>k x x x 的解集为2<x ,则k 的取值范围为( )A .1>k B. 1<k C. 1≥k D.1≤k15. 不等式02≤-m x 的正整数解为1,2,则a 的取值范围是( )A .64<<mB .64≤≤mC .64<m ≤D .64≤m <16.不等式组x ⎩⎨⎧->-≥-1230x a x 有5个整数解,则a 的取值范围为( ).A .34-≤-<aB .34-≤≤-aC .34-≤-a <D .34--<<a17.如果关于x 的不等式组⎩⎨⎧≤-≥-0302b x a x 的整数解仅有2=x 、3=x ,那么适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有( )A .3个B .4个C .5个D .6个三、简答题(共49分)18. 解下列不等式,并把解集在数轴上表示出来.(每题4分,共8分)(1)1643312+-≤-x x (2)()()x x 2333243-≥--19. 解下列不等式组,并把解集在数轴上表示出来.(每题5分,共10分) (1)()⎪⎩⎪⎨⎧-<-++>+-2221351135x x x x x (2)⎩⎨⎧-++14232x x x x <>20. (6分)阅读下列材料:“已知2=-y x ,且1>x ,0<y ,试确定y x +的取值范围”有如下解法:解:∵2=-y x ,∴2+=y x又∵1>x ,∴2+=y x ,∴1->y又∵0<y ,∴01<<y -…① 同理21<<x …②由①+②得2011+++-<<y x , ∴y x +的取值范围是20<<y x +请按照上述方法,完成下列问题:(1)已知3=-y x ,且2>x ,1<y ,则y x +的取值范围是 ;(2)已知1-<x ,1>y ,若a y x =-成立,求y x +的取值范围(结果用含有a 的式子表示).21. (11分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少?22.(14分)某服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元,(1)求A ,B 两种型号的服装每件分别多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定,购进A 型服装的数量要比购进B 型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案,如何进货?。

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。

精选人教版七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

精选人教版七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

人教版年级数学下册第九章不等式与不等式组单元测试题人教版七年级数学下册第九章不等式与不等式组单元测试题一、选择题1.设 a> b> 0, c 为常数,给出以下不等式:① a- b>0;② ac> bc;③1<1;④b2> ab,其 a b中正确的不等式有( )A.1 个B.2个C.3 个D.4 个2.已知,以下式子不建立的是()A.B.C.D.假如,那么2x+ y= m+ 7,x≥0, y> 0,那么 m的取值范围3. 在对于 x, y 的方程组中,未知数知足x+ 2y= 8- m在数轴上应表示为( )4.方程组中,若未知数、知足,则的取值范围是()A.B.C.D.5.某市自来水企业按以下标准收取水费:若每户每个月用水不超出,则每立方米收费元;若每户每个月用水超出,则超出部分每立方米收费元,小颖家某月的水费许多于元,那么她家这个月的用水量(吨数为整数)起码是()A.B.C.D.6.甲、乙两人从相距24km的A,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h之内相遇,则甲的速度应()A .小于8km/h B.大于8km/h C.小于4km/h D .大于4km/h7.把一些图书分给几名同学,假如每人分 3 本,那么余8 本;假如前方的同学每人分 5 本,那么最后一人就分不到 3 本.则这些图书有()A.23 本B.24 本C. 25本 D .26本8.定义 [x] 为不超出 x 的最大整数,如[3.6] = 3,[0.6] = 0,[ - 3.6] =- 4.对于随意实数x,下列式子中错误的选项是 ()A . [x] = x(x 为整数 )B .0≤ x- [x]<1C.[ x+ y] ≤ [x]+ [y]D. [n+ x] = n+ [x](n 为整数 )9. 某射击运动员在一次竞赛中( 共 10 次射击,每次射击最多是10 环 ) ,前 6 次射击共中 52环.假如他要打破 89 环的记录,那么第7 次射击不可以少于 ( )A.5 环B.6环C.7 环D.8 环10. 某班组织 20 名同学去春游,同时租用两种型号的车辆,一种车每辆有8 个座位,另一种车每辆有 4 个座位,要求租用的车辆不留空座,也不可以超载.租车方案共有()种.A. 2B. 3C. 4D. 5二、填空题1.若点 A(x+ 3,2) 在第二象限,则x 的取值范围是 ________.12.当 x________时,式子3+ x 的值大于式子 2x-1 的值.3.某班级从文化用品市场购置了署名笔和圆珠笔共15 支,所付金额大于 26 元,但小于 27 元.已知署名笔每支 2 元,圆珠笔每支 1.5 元,则此中署名笔购置了________支.a( a>b),4.定义一种法例“”以下: a b=b(a≤b).比如:= 2.若(- 2m-= 3,则 m 的取值范围是 __________.5.按下边程序计算,若开始输入x 的值为正数,最后输出的结果为656,则知足条件的所有 x 的值是 ______________.x+ 1> 3( 1- x),6. 不等式组1+ 2x的解集是____________.≤x3三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x+1)-1≥3x+2;(2) 2x - 1-9x + 2≤1. 362.( 3a + 1)x a ( 2x + 3)+ 2) - 2= 5+3a 的解不小于方程 3 = 2 的解,试 已知对于 x 的方程 4(x 求 a 的取值范围.x + 2y = 1,① 3. 已知对于 x , y 的方程组x - y =m.②(1) 求这个方程组的解 ( 用含 m 的式子表示 ) ;(2) 当 m 取何值时,这个方程组的解中,x 大于 1, y 不小于- 1.4.小诚响应“低碳环保,绿色出行”的呼吁,向来坚持跑步与步行相联合的上学方式.已知小诚家距离学校 2 200 米,他步行的均匀速度为80 米 / 分,跑步的均匀速度为200 米 / 分.若他要在不超出20 分钟的时间内从家抵达学校,起码需要跑步多少分钟?5. 某服饰厂生产一种西装和领带,西装每套订价200 元,领带每条订价40 元.厂方在展开促销活动时期,向客户供给两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按订价的90%付款.现某客户要到该服饰厂购置西装20 套,领带x (1) 若 x= 30,经过计算可知方案一购置较为合算;条.( 只填“方案一”或“方案二”,不要求解题过程 )(2) 当 x> 20 时,①该客户按方案一购置,需付款 (40x + 3__200) 元; ( 用含 x 的式子表示 ) ②该客户按方案二购置,需付款 (36x + 3__600) 元; ( 用含 x 的式子表示 ) ③这两种方案中,哪一种方案更省钱?参照答案:一、选择题。

人教版第九章《不等式与不等式组》单元测试题(含答案)

人教版第九章《不等式与不等式组》单元测试题(含答案)

靖边县第五中学第九章 不等式与不等式组一、选择题 (本大题共 6小题,每小题 4分,共 24分)1.已知实数 a ,b ,若 a >b ,则下列结论正确的是 ( ) A .a -5<b - 5 B .2+a <2+bC. < D.3a >3b 2.不等式 3(x -1)≤5- x 的非负整数解有 ( )A .1个B . 2个C .3个D .4个3.关于 x 的一元一次不等式≤- 2的解集为 x ≥4,则 m 的值为 ( )6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”. 若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买 毛巾 ( )A .4条B . 5条C . 6条D . 7条二、填空题 (本大题共 5小题,每小题 4分,共 20分)7.不等式组的解集为 _______ .8.不等式组的所有整数解的积为 _______ .9.定义新运算:对于任意实数 a ,b ,都有 a ⊕b =a (a -b ) + 1,其中等式右边是通常的 加法减法及乘法运算,如: 2⊕5=2×(2- 5)+1=2×(-3)+1=-5.那么不等式3⊕ x <13的解 集为 _______ .10.若不等式组有解,则 a 的取值范围是 ______ .11.若不等式组的解集为 3≤ x ≤4,则不等式 ax + b <0的解集为 _____ .三、解答题 ( 本大题共 7小题,共 56分)12.(6分) 解不等式- x >1,并把它的解集在数轴上表示出来.靖边县第五中学A .14B . 7C - 2D . 24.不等式组的解集在数轴上表示正确的是 ()图9-Z -15.如果关于 x 的不等式组的解集为 x <3,那么m A .m =3 B . m >3 C m <3 D . m ≥36.某种毛巾原零售价为每条 的取值范围为 ( )13.(8分)解不等式组并将它的解集在数轴上表示出来.14.(8 分)已知关于x的不等式组其中实数a是不等于2的常数,请依据a的取值情况求出不等式组的解集.15.(8分)已知关于x,y的方程组的解都为正数,求a的取值范围.16.(8分)旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时3千米,摩托艇在静水中的速度是每小时18千米.为了使参观时间不超过4小时,旅游者最远可走多少千米?17.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?18.(10 分)现有一个种植总面积为540 m2的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量利润分别如下:(12 在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?详解详析1.[答案] D2.[解析] C 去括号,得3x-3≤5-x. 移项、合并同类项,得4x≤8.系数化为1,得x≤2.∴不等式的非负整数解有0,1,2,共3个.故选 C.3.[解析] D 去分母,得m-2x≤-6,移项,得-2x≤-m-6,系数化为1,得x≥m+3.∵关于x的一元一次不等式≤-2的解集为x≥4,∴ m+3=4,解得m= 2. 故选 D.4.[解析] B 解不等式-> 1,得x<-2,解不等式3-x≥2,得x≤1,∴不等式组的解集为x<-2,故选B.5.[解析] D 由3x-1>4(x-1),得x<3,而不等式组的解集也为x<3,∴m≥3.故选 D.6.[解析] D 设购买毛巾x条.由题意得6×2+6× 0.7(x-2)<6×0.8 x,解得x>6.∵ x为整数,∴ x最小为7.故选 D.7.[答案]-1≤x<2[解析]由①,得x≥- 1.由②,得x<2,所以-1≤x<2.8.[答案] 09.[答案]x>-1[解析]由题意得3(3 -x)+1< 13,解得x>- 1.10.[答案]a>-111.[答案]x>[解析]解不等式①,得x≥.解不等式②,得x≤-a.∴不等式组的解集为≤x≤-a.∵不等式组的解集为3≤x≤4,∴=3,-a=4,∴ b=6,a=-4,∴不等式ax+b<0可化为-4x+6<0,解得x>.12.解:去分母,得4x-1-3x>3. 移项、合并同类项,得x> 4. 在数轴上表示不等式的解集如图所示:13.解:由①得-2x≥-2,即x≤1. 由②得4x-2<5x+5,即x>-7. 所以原不等式组的解集为-7< x≤1. 在数轴上表示不等式组的解集为:14.解:解不等式①,得x≥2. 解不等式②,得x< a.故当a> 2时,不等式组的解集为2≤x<a;当a<2时,不等式组无解.15.解:解方程组,得∵解都为正数,解得-< a< 4.16.解:设旅游者可走x千米.根据题意,得+≤4,解得x≤35.答:旅游者最远可走35千米.17.解:(1)设每个篮球和每个足球的售价分别为x元、y元,根据题意,得解得答:每个篮球和每个足球的售价分别为100元、120元.(2)设购买足球a个,则购买篮球(50 -a)个,根据题意,得120a+100(50 -a)≤5500,解得a≤25.答:最多可购买25个足球.18.解:(1)根据题意可知西红柿种了(24 -x)垄,则15x+30(24-x)≤540,解得x≥1又因为x ≤14,且x是正整数,所以x的值为12,13,14.故共有三种种植方案:方案一:种植草莓12垄,种植西红柿12垄;方案二:种植草莓13垄,种植西红柿11垄;2.方案三:种植草莓14垄,种植西红柿10垄.(2)方案一获得的利润为12×50×1.6+12×160×1.1=3072(元);方案二获得的利润为13×50×1.6+11×160×1.1=2976(元);方案三获得的利润为14×50×1.6+10×160×1.1=2880(元).由计算可知,方案一即种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072 元.。

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。

七年级下册数学第九章《不等式与不等式组》测试卷-人教版(含答案)

七年级下册数学第九章《不等式与不等式组》测试卷-人教版(含答案)

七年级下册数学第九章《不等式与不等式组》测试卷-人教版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.将不等式组23x x >⎧⎨≥⎩的解集表示在数轴上,正确的是( )A .B .C .D . 2.若a b >,则下列式子正确的是( )A .20222022a b ->-B .20222022a b ->-C .20222022a b ->-D .20222022a b <3.如图,数轴上表示的是某个不等式组的解集,则该不等式组可能是( )A .1020x x +≥⎧⎨->⎩B .1020x x +≤⎧⎨->⎩ C .1020x x +≤⎧⎨-≥⎩ D .1020x x +≥⎧⎨-≥⎩4.在下列数学表达式:①﹣2<0,①2y ﹣5>1,①m =1,①2x x -,①x ≠﹣2,①x +1<2x ﹣1中,是不等式的有()A .2个B .3个C .4个D .5个5.已知关于x 的不等式(a ﹣1)x >2的解集为21x a <-,则a 的取值范围是( )A .a <1B .a >1C .a <0D .a >06.已知关于x 的不等式(3)3a x a 的解集为1x <,则( )A .3aB .3aC .3a >D .3a <7.若关于x 的不等式组231232x m x x-⎧≤⎪⎨⎪->-⎩无解,则m 的取值范围是( )A .1m >B .m 1≥C .1m <D .1m8.在数学表达式:30-<,a b +,3x =,222x xy y ++,5x ≠,23x y +>+中,是一元一次不等式的有( ).A .1个B .2个C .3个D .4个9.已知点()3,1A m m --在第二象限,则m 的取值范围是( )A .3m >B .1m <C .13m <<D .无解10.将一箱书分给学生,若每位学生分6本书,则还剩10本书;若每位学生分8本书,则有一个学生分到书但不到4本.求这一箱书的本数与学生的人数.若设有x 人,则可列不等式组为( )A .()816104x x -<+<B .06108x x <+<C .()0610814x x <+--<D .86104x x <+<11.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只.A .55B .72C .83D .8912.斑马线前“车让人”,反映了城市的文明程度,但行人一般都会在红灯亮起前通过马路,某人行横道全长24米,小明以1.2m/s 的速度过该人行横道,行至13处时,9秒倒计时灯亮了,小明要在红灯亮起前通过马路,他的速度至少要提高到原来的( )A .1.1倍B .1.4倍C .1.5倍D .1.6倍二、填空题(本大题共8小题,每小题3分,共24分)13.已知关于x 的不等式组12x x m->⎧⎨≤⎩无解,则m 的取值范围是____. 14.如图是一个数据转换器,按该程序进行运算,若输入3x =,则该程序需要运行________次才停止;若该程序只运行了2次就停止了,则x 的取值范围是________.15.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q 到x ,y 轴的距离中的最大值,则称P ,Q 两点为“等距点”. 例如P (1,3),Q (3,2)两点即为“等距点”.若T 1(-1,-k -3),T 2(4,4k -3)两点为“等距点”,则k 的值为______.16.已知不等式0mx n ->的解集是23x <,则不等式0nx m +>的解集是____. 17.若一元一次不等式0mx n +>的解为3x >,则不等式0mx n -+≤的解为______.18.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的12,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm ,若铁钉总长度为cm a ,则a 的取值范围是________. 19.某超市现有n 个人在收银台排队等候结账.设结账人数按固定的速度增加,收银员结账的速度也是固定的.若同时开放2个收银台,需要20分钟可使排队等候人数为0;若同时开放3个收银台,需要12分钟可使排队等候人数为0.为减少顾客等待结账的时间,需要6分钟内使排队等候人数为0,则需要至少同时开放_______个收银台.20.把一筐苹果分给几个学生,如果每人分3个,那么余8个;如果每人分5个,那么最后一人分到,但不足3个.设学生有x 人,列不等式组为________.三、解答题(本大题共5小题,每小题8分,共40分)21.某俱乐部举行篮球联赛,组委会制定的赛制规则是:每个队都要比赛12场,每场比赛只分胜、负,胜1场积2分,负1场积1分,按积分高低确定出线名额.目前雄鹰队的战绩是4胜2负,蓝狮队的战绩是4胜5负.根据组委会赛制规则可预测,这两个队完成所有比赛后,积分高的队伍可以出线,问雄鹰队在剩下的比赛中至少需胜多少场可确保出线?22.临川仙盖山是江西省5A级乡村旅游景区,也是国家级4A级旅游景区,是江西省中小学研学实践教育基地之一.为了激发学生个人潜能和打造团队精神,抚州市某学校组织学生去仙盖山研学基地开展了为期一天的素质拓展活动.已知仙盖山景区成人票每张30元,学生票每张15元.(1)某班教师和学生一共去了50人,门票共需810元,求这个班参与活动的教师和学生各有多少人?(2)某旅行网上有两种优惠活动,活动一,买一张成人票送一张学生票;活动二,满48人可购团体票,团体票价享受9折优惠.小惠班里教师和学生一共去了50人,她计算后发现按活动二购买门票更划算,则小惠班里参与活动的教师最多有多少人?23.已知方程组31313x y mx y m+=-+⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.24.解下列不等式或不等式组,并把解集在数轴上表示.(1)515264 x x+-->(2)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩25.若不等式组2x x m >⎧⎨>⎩的解集是2x >. (1)m 的取值范围是______;(2)试化简:253m m -+-.参考答案1.D2.B3.A4.C5.A6.C7.D8.A9.A10.C11.C12.C13.3m ≤14. 3 47x ≤<15.1或216.32x <- 17.3x ≥-18.732a <≤19.620.()()(38)510(38)513x x x x ⎧+--⎪⎨+--⎪⎩>< 21.雄鹰队在剩下的比赛中至少需胜4场可确保出线.22.(1)教师有4人,学生有46人(2)523.(1)﹣2<m ≤3;(2)﹣124.(1)1x >,(2)12x -≤<,25.(1)2m ≤(2)38m -+。

人教版数学七年级下册第9章《不等式与不等式组》测试题

人教版数学七年级下册第9章《不等式与不等式组》测试题

人教版数学七年级下册第9章《不等式与不等式组》测试题(时间:90分钟,总分120分)一、选择题(每题3分,共30分)1.若a<b<0,则下列式子:①a+1<b+2;②ab>1;③a+b<ab;④1a<1b中,正确的有()A.1个B.2个C.3个D.4个2.不等式2x-6>0的解集在数轴上表示正确的是()3.A.0<x≤12B. x≤12C.0≤x<12D. x>04.把不等式组1020xx+≥⎧⎨->⎩的解集表示在数轴上,正确的是()5.解集在数轴上表示为如图所示的不等式组是()A.3,2xx⎧⎨≥⎩>-B.3,2xx⎧⎨≤⎩<-C.3,2xx⎧⎨≥⎩<-D.3,2xx⎧⎨≤⎩>-6.已知方程组2,231y x my x m-=⎧⎨+=+⎩的解x、y满足2x+y≥0,则m的取值范围是()A.m≥-43B.m≥43C.m≥1D.-43≤m≤17.用长度均为a cm的两根绳子分别围成一个正方形和一个圆,无论a取何值,圆的面积S1与正方形的面积S2的关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定8.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给会4个答案,其中只有一个答案正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应选对()道题A.18B.19C.20D.219. 若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组⎪⎪⎩⎪⎪⎨⎧+≥->--3121)(21xxax无2-3 0 3A.B.C.D.0 2-3解,则所有满足条件的整数a的值之和是()A.5 B.7 C.9 D.1010. 我们定义一个关于实数a,b的新运算,规定:a※b=4a﹣3b.例如:5※6=4×5﹣3×6.若m满足m※2<0,且m※(﹣8)>0,则m的取值范围是()A.m <B.m>﹣2 C.﹣6<m <D .<m<2二、填空题(每题3分,共24分)11. 根据长期积累的生活经验得知:甲种水果保鲜适宜的温度是2℃~10℃,乙种水果保鲜适宜的温度是5℃~12℃,将这两种水果放在一起保鲜.设最适宜的温度为x℃,则x 的取值范围是≤x≤12. 市南区举行“中华杯”国学比赛,初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)题扣1分,得分不低于80分则可以参加复试.那么,若要参加复试,初试的答对题数至少为道.13.已知x为整数,且满足-2≤x≤3,则x=_______.14.不等式组2752,312x xxx-<-⎧⎪⎨++>⎪⎩的整数解是.15.已知不等式组321xx a+⎧⎨-<⎩,≥无解,则a的取值范围是___.16.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上)则小明至少答对了______道题.17. 李明在网上经营一家水果店,销售的草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为18. 一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是分.三、解答题(共66分)19.解不等式3x+2>2(x-1),并将解集在数轴上表示出来.20.解不等式组,并把它的解集表示在数轴上:2(2)3134x xx x++⎧⎪+⎨<⎪⎩≤ , .21.解不等式组3(21)42132 1.2x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.22.已知a =43x +,b =274x -,并且2b ≤52<a .请求出x 的取值范围,并将这个范围在数轴上表示出来.23. 对于一个数x ,我们用(x ]表示小于x 的最大整数,例如:(2.6]=2,(﹣3]=﹣4. (1)填空:(10]= ,(﹣2019]= ,(]= 0 ;(2)若a ,b 都是整数,且(a ]和(b ]互为相反数,求代数式(﹣a ﹣b )2+2(a ﹣2b )﹣(a ﹣5b )的值;(3)若|(x ]|+|(x ﹣2]|=6,求x 的取值范围.根据对话的内容,试求出饼干和牛奶的标价各是多少元?25. 某游泳馆每年夏季推出两种游泳付费方式方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元. 设小明计划今年夏季游泳次数为x (x 为正整数),方式一总费用为y 1(元),方式二总费用为y 2(元).(1)根据题意,填写下表:游泳次数10 15 20 … x 方式一的总费用y 1(元) 150 175 200 … 方式二的总费用y 2(元)90135…9x(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x >20时,小明选择哪种付费方式更合算?并说明理由.26.“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?一盒饼干的标价可是整数元哦!小朋友,本来你用10元钱买一盒饼干是够的,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干打9折,两样东西请拿好!还有找你的8角钱.阿姨,我买一盒饼干和一袋牛奶(递上10元钱)(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案 一、选择题1.C2.A3.A4.C5.D6.A7.A8.B9. 解:解方程x +2a =1得:x =1﹣2a ,∵方程的解为负数,∴1﹣2a <0,解得:a >0.5,⎪⎪⎩⎪⎪⎨⎧+≥->--31210)(21x x a x∵解不等式①得:x <a ,解不等式②得:x ≥4,又∵不等式组无解,∴a ≤4,∴a 的取值范围是0.5<a ≤4,∴整数和为0+1+2+3+4=10,故选:D . 10. 解:根据题中的新定义化简得:,解得:﹣6<m <, 故选:C .二、填空题11.5,10 12. 解:设初试的答对题数为x 道,则答错(包括未答)题数为(25﹣x )道, 依题意,得:4x ﹣(25﹣x )≥80, 解得:x ≥21,∴初试的答对题数至少为21道. 故答案为:21.13. -1,0,1 14. -5、-4、-3、-2、-1、0、1 15. a ≤-1. 16. x ≥2417. 解:在促销活动中,设订单总金额为m 元, 可得(m ﹣x )×80%≥m ×70%, 即有x ≤恒成立, 由题意可得m ≥120, 可得x ≤=15,则x 的最大值为15元. 故答案为:15.① ②18. 解:设裁判员有x 名,那么总分为9.84x ; 去掉最高分后的总分为9.82(x ﹣1),由此可知最高分为9.84x ﹣9.82(x ﹣1)=0.02x +9.82; 去掉最低分后的总分为9.9(x ﹣1),由此可知最低分为9.84x ﹣9.9(x ﹣1)=9.9﹣0.06x . 因为最高分不超过10,所以0.02x +9.82≤10,即0.02x ≤0.18,所以x ≤9. 当x 取9时,最低分有最小值9.36分, 故答案为:9.36.三、解答题19. 原不等式可化为:3x +2>2x -2. 解得x>-4.∴原不等式的解集为x>-4,在数轴上表示如下:20. 原不等式组的解集为 x ≤1-.21. 3(21)4213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩,①. ②≤由①得54x -≥,由②得3x <.∴原不等式组的解集为534x -<≤.数轴表示略.不等式组的整数解是1012-,,,. 22. 依题意有不等式 2×274x -≤52<43x +,解不等式, 解得72<x ≤6.在数轴上表示图略.23. 解:(1)(10]=9,(﹣2019]=﹣2020,(]=0;故答案为9,﹣2020,0;(2)由题意得a ﹣1+b ﹣1=0, ∴a +b =2,∴(﹣a ﹣b )2+2(a ﹣2b )﹣(a ﹣5b ) =(a +b )2+2a ﹣4b ﹣a +5b =(a +b )2+(a +b ) =22+2 =6;(3)当x <0时,则x +x ﹣2>6,解得x >4,(舍去) 当x ﹣2>0时,则x +x ﹣2<6,解得x <4, ∴2<x <4;故x 的取值为2<x <4.24. 设饼干的标价每盒x 元,牛奶的标价为每袋y 元,则根据题意,得10,0.9100.8,10.x y x y x +⎧⎪+=-⎨⎪⎩><由0.9x +y =10-0.8,得y =9.2-0.9x , 把y =9.2-0.9x 代入x +y >10,得x +9.2-0.9x >10,所以x >8,由x <10,得8<x <10,因为x 是整数,所以x =9,将 x=9代入y =9.2-0.9x ,得y =9.2-0.9×9=1.1.所以饼干一盒标价9元,一袋牛奶标价1.1元. 25. 解:(1)根据题意,得:y 1=5x +100; 当x =20时,y 2=9×20=180. 故答案为:(5x +100);180.(2)当y 1=270时,5x +100=270, 解得:x =34;当y 2=270时,9x =270, 解得:x =30. ∵34>30,∴选择付费方式一,游泳的次数比较多. (3)当5x +100<9x 时,x >25; 当5x +100=9x 时,x =25; 当5x +100>9x ,x <25.∴当20<x <25时,选择选择付费方式二更合算;当x =25时,选择两种选择付费方式费用相同;当x >25时,选择选择付费方式一更合算. 26. (1)385÷42≈9.2,所以单独租用42座客车需10辆,租金为320×10=3200元.385÷60≈6.4,所以单独租用60座客车需7辆,租金为460×7=3220元.(2)设租用42座客车x 辆,则60座客车(8-x )辆,由题意得:⎩⎨⎧≤-+≥-+.)(,)(3200846032038586042x x x x 解得733≤x≤1855.而x 取整数,所以x =4,5.当x =4时,租金为320×4+460×(8-4)=3120元;当x =5时,租金为320×5+460×(8-5)=2980元.即租用42座客车5辆,60座客车3辆时,租金最少.。

新人教版七年级数学第九章《不等式与不等式组》测试题

新人教版七年级数学第九章《不等式与不等式组》测试题

七年级数学第九章《不等式与不等式组》测试题班级 姓名 坐号 成绩一、选择题(每空3分,共15分)1、在数轴上表示不等式2x ≥-的解集,正确的是( )A B C D2、下列叙述不正确的是( )A 、若0x <,则2x x > B 、如果1a <-,则a a >-C 、若43-<-a a ,则0a > D 、如果0b a >>,则b a 11-<- 3、不等式组01x x >⎧⎨<⎩的解集是( )A 、1x <B 、0x >C 、01x <<D 、无解4、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( )A 、13m -<≤B 、31m -≤<C 、22m -≤<D 、22m -<≤ 5、不等式45111x -<的正整数解为( ) A 、1个 B 、3个 C 、4个 D 、5个二、填空题(每空2分,共30分)1、用不等式表示:a 与6的和小于5: ;a 与2的差不小于-1: a 的一半不大于-2: ;a 的2倍与7的差大于3: 2、如果ab <,用“<”或“>”填空:a +8b +8;a -1 b -1;10a 10b ;-6a -6b 3、不等式323x +>的两边都加上 ,得31x >4、不等式-<212x 的两边同除以-2,可得 5、不等式组x x -<-<⎧⎨⎩2030的解集是 ,不等式组x x ->->⎧⎨⎩2030的解集是不等式组x x ->-<⎧⎨⎩2030的解集是 ,不等式组x x -<->⎧⎨⎩2030的解集是6、当x 时,2(1)x -的值不小于8三、解不等式和不等式组(每题5分,共30分)1、 3129()()-<+x x2、 243325()()x x +≤+3、 22213+≥-x x4、 x x +-<+5213225、 211841x x x x ->++<-⎧⎨⎩6、x x xx --≥+>-⎧⎨⎪⎩⎪3241231()四、(7分)求不等式3159()x x +≥-的正整数解五、(8分)求不等式组2(2)53(2)82x x x x+<+⎧⎨-+≥⎩的整数解六、(10分)已知3123250a b a b -+++-=,求不等式组27()19(3)62ax x b a x b x -->⎧⎪⎨+->⎪⎩的解集七、附加题为了保护环境,某企业决定购买10台污水处理设备。

最新人教版七年级数学下册第九章《不等式与不等式组》单元综合练习卷(解析版)

最新人教版七年级数学下册第九章《不等式与不等式组》单元综合练习卷(解析版)

人教版七年级下册第九章《不等式与不等式组》测试题一、单项选择题(每题只有一个正确答案)1.以下各式中:①:②:③:④;⑤:⑥,不等式有()A.2 个B.3 个C.4 个D.5 个2.若,则以下各式中必定建立的是()A.B.C.D.3.以下各数中,能使不等式x–3>0建立的是()A.– 3B. 5C. 3D.24.以下说法中,错误的选项是()A.不等式 x< 5 的整数解有无数多个B.不等式 x>- 5 的负整数解集有有限个C.不等式- 2x< 8 的解集是 x<- 4 D .- 40 是不等式2x<- 8 的一个解5.四个小朋友在公园玩跷跷板,他们的体重分别为P,Q, R, S,由图可知,这四个小朋友体重的大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q6.以下式子① 7> 4;② 3x≥ 2π +1;③ x+y> 1;④ x2+3> 2x;⑤ > 4 中,是一元一次不等式的有()A.4 个B.3 个C.2 个D.1 个7.“x的 3 倍与 2 的差不大于7”列出不等式是( )A. 3x-2>7B.3x-2<7C.3x- 2≥7D.3x- 2≤78.不等式组的解集在数轴上表示为( )A.B.C.D.9.若对于 x 的不等式( a– 1) x> a– 1 的解集是 x> 1,则 a 的取值范围是()A. a<0B. a> 0C. a<1D.a> 110.某次知识比赛共有 30 道题,每一题答对得 5 分,答错或不答都扣 3 分,小亮得分要超过 70 分,他起码要答对多少道题?假如设小亮答对了x 道题,依据题意列式得()A. 5x﹣ 3(30﹣ x)> 70B. 5x+3( 30﹣ x)≤ 70C. 5x﹣ 3(30+x)≥ 70D. 5x+3( 30﹣ x)> 7011.已知点在第四象限,则m的取值范围在数轴上表示正确的选项是()A. B . C . D .12.若对于x 的不等式组有 6 个整数解,则的取值范围是()mA.-4 <≤-3 B.- 3≤<-2 C.- 4≤<-3 D.-3 <≤-2m m m m二、填空题13.请你写出一个知足不等式2x-1 < 6 的正整数 x 的值: ________.14.不等式 12- 4x≥0的非负整数解是 _______15. x 的与 12 的差是负数,用不等式表示为________.16.某种商品的进价为每件100 元,商场按进价提升 60%后标价,为增添销量,准备打折销售,但要保证收益率不低于20%,则至多能够打 ________折.17.已知对于 X 的不等式组2的解集为 -1<x< 2,则 (m+n)2019的值是 _______.三、解答题18.用不等式表示:(1)7x 与 1 的差小于4;(2)x的一半比y 的 2 倍大;(3)a 的 9 倍与 b 的的和是正数.19.解以下不等式( 或组 ) ,并把解集表示在数轴上.①②③(④20.解不等式组:并写出它的全部整数解.21.小诚响应“低碳环保,绿色出行”的呼吁,向来坚持跑步与步行相联合的上学方式已知小诚家距离学校2200 米,他步行的均匀速度为80 米分,跑步的均匀速度为200 米分若他要在不超出20 分钟的时间内从家抵达学校,起码需要跑步多少分钟?22.某单位需要将一批商品封装入库,所以打算购进A、 B 两种型号的包装盒共100 个,若购置 3 个A 型包装盒和 2 个B 型包装盒共需550 元,且 A 型包装盒的单价是 3 型包装盒单价的 3 倍,每个 A 型包装盒可容纳500 件该商品,每个 B 型包装盒可容纳200 件该商品。

七年级数学(下)第9章《不等式与不等式组》综合测试题含答案

七年级数学(下)第9章《不等式与不等式组》综合测试题含答案

A CDB 七年级数学(下)第9章《不等式与不等式组》综合测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( ) A. “x 的3倍与1的和是正数”,表示为3x+1>0.B. “m 的15与n 的13的差是非负数”,表示为15m-13n ≥0. C. “x 与y 的和不大于a 的12”,表示为x+y ≤12a.D. “a 、b 两数的和的3倍不小于这两数的积”,表示为3a+b ≥ab. 2.给出下列命题:①若a>b,则ac 2>bc 2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④ 3.解不等式3x-32<2x-2中,出现错误的一步是( ) A.6x-3<4x-4 B.6x-4x<-4+3 C.2x<-1 D.x>-124.不等式12,39x x -<⎧⎨-≤⎩ 的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a 中,正确的是( ) A.①② B.①③ C.②③ D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( ) A.2场 B.3场 C.4场 D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2)273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。

人教版七年级数学下册《第9章 不等式与不等式组》测试题(有答案)

人教版七年级数学下册《第9章 不等式与不等式组》测试题(有答案)

人教新版《第9章不等式与不等式组》单元测试题一.选择题1.“x为负数”的表达式是()A.x>0B.x<0C.x≥0D.x≤02.下列不等式组中无解的是()A.B.C.D.3.下列各项表示的是不等式的解集,其中错误的是()A.B.C.D.4.下列式子中,是一元一次不等式是()(1)x2+x<1,(2),(3)x﹣3>y+4,(4)2x+3<8.A.1个B.2个C.3个D.4个5.一次知识竞赛共有30道题,规定答对一道得4分,打错或不答得﹣1分,在这次竞赛中,小明获得优(90分或90分以上),则小明至少答对()道题.A.23B.24C.25D.266.下列说法中错误的是()A.m的2倍不小于n的,可表示为2m>B.x的与y的和是非负数,可表示为x+y≥0C.a是非负数,可表示为a≥0D.x是负数,可表示为x<07.下列不等式组中,是一元一次不等式组的是()A.B.C.D.8.若不等式组的整数解有5个,则a的取值范围()A.a<﹣3B.a>﹣4C.a>﹣3D.﹣4<a≤﹣3 9.下列命题错误的是()A.若a<b<0,则>B.若m﹣3n<0,则m<3nC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b10.已知y满足不等式﹣y>2+,化简|y+1|+|2y﹣1|的结果是()A.﹣3y B.3y C.y D.﹣y+2二.填空题11.同时满足2x﹣1<0和﹣3x<1的整数x为.12.如果代数式2x﹣的值大于x+的值,那么x.13.由2﹣a>0,得a>2;.14.已知线段AB=12cm,点P是线段AB的中点,点C在线段AB上,若AC 的长是xcm,且x满足6cm<x<12cm,则点C在点和之间.15.用不等式表示“x与3的和不小于x的2倍”为.16.已知一个球队共打了14场,恰好赢的场比平的场数和输的场数都要少,那么这个球队最多赢了场.17.写出一个解为x<5的不等式(要求x的系数不为1).18.某品牌袋装奶粉,袋上注有“净含量400g”“每百克中含有蛋白质≥18.9g”,那么这样的一袋奶粉中蛋白质的含量不少于g.19.写出一个不等式组,使它的解集为﹣1<x<2:.20.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m=.三.解答题21.在数轴上表示不等式﹣3≤x<6的解集和x的下列值:﹣4,﹣2,0,,7,并利用数轴说明x的这些数值中,哪些满足不等式﹣3≤x<6,哪些不满足?22.求不等式组的整数解.23.解下列不等式,并将解集在数轴上表示出来.(1)2(x﹣6)+4<3x﹣5;(2)﹣1≤.24.解下列不等式(组).(1)≤2x;(2).25.若不等式组无解,那么不等式组有没有解?若有解,请求出不等式组的解集;若没有请说明理由?26.a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再加c克糖(c>0),则糖的质量与糖水的质量比为.生活常识告诉我们:加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼一个不等式.27.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算?参考答案一.选择题1.解:负数即为小于0的数,∴可表达为x<0,故选:B.2.解:A、无解,本选项符合题意;B、解集为﹣5<x<﹣2,本选项不合题意;C、解集为﹣2<x<5,本选项不合题意;D、解集为﹣5<x<2,本选项不合题意.故选:A.3.解:A、数轴表示的不等式的解集为:x≤2,所以正确;B、数轴表示的不等式的解集为:x>1,所以正确;C、数轴表示的不等式的解集为:x≠0,所以正确;D、数轴表示的不等式的解集为:x<1,所以不正确.故选:D.4.解:(1)不等式x2+x<1的未知数的最高次数是2,所以它不是一元一次不等式;(2)是分式不等式,所以它不是一元一次不等式;(3)不等式x﹣3>y+4中含有两个未知数,所以它不是一元一次不等式;(4)不等式2x+3<8中只有一个未知数x,且x的次数是1,所以它是一元一次不等式;综上所述,以上式子中是一元一次不等式的只有(4).故选:A.5.解:设在这次竞赛中小明答对x道题.依题意可得:4x﹣(30﹣x)≥90,解得:x≥24,∴小明至少答对24道题.故选:B.6.解:A、m的2倍不小于n的,可表示为2m≥,故A错.B、x的与y的和是非负数,可表示为x+y≥0,故B正确.C、a是非负数,可表示为a≥0,故C正确.D、x是负数,可表示为x<0,故D正确.故选:A.7.解:A、含有2个未知数,不是一元一次不等式组,故本选项错误;B、含有分式,不是一元一次不等式组,故本选项错误;C、符合一元一次不等式组的定义,故本选项正确;D、最高次数是2,不是一元一次不等式组,故本选项错误.故选:C.8.解:解不等式①得:x≥a,解不等式②得:x<2,∵不等式组的整数解有5个,∴整数解为﹣3,﹣2,﹣1,0,1,∴﹣4<a<﹣3;∵当a=﹣4时,不等式组的解集为﹣4≤x<2,此时不等式组有6个整数解,舍去,当a=﹣3时,不等式组的解集为﹣3≤a<2,此时有5个整数解,符合要求,∴a的取值范围﹣4<a≤﹣3.故选:D.9.解:A、两个同号的分子相等的分数,分母大的反而小,故该选项正确;B、根据不等式的基本性质1,在不等式的两边同加上3n,不等号的方向不变,故该选项正确;C、当c2=0时,则不等式不成立,故该选项错误;D、根据已知的不等式,知c2>0,则根据不等式的基本性质2,不等号的方向不变,故该选项正确.故选:C.10.解:﹣y>2+,去分母得,3+3y﹣6y>12+4+2y,解得,y<﹣.所以y+1<0,2y﹣1<0,|y+1|+|2y﹣1|=﹣y﹣1﹣2y+1=﹣3y.故选:A.二.填空题11.解:由题意可得不等式组,由(1)得<,由(2)得x>﹣,其解集是﹣<x<,∴同时满足2x﹣1<0和﹣3x<1的整数x=0.12.解:∵代数式2x﹣的值大于x+的值,∴2x﹣>x+,解得x>.故答案为:>.13.解:∵2﹣a>0,得a<2,故此解法错误.故答案为:错误.14.解:∵线段AB=12cm,点P是线段AB的中点,∴AP=12÷2=6cm,∵点C在线段AB上,若AC的长是xcm,且x满足6cm<x<12cm,∴点C在点P和B之间.故答案为:P,B.15.解:x与3的和不小于x的2倍,即x+3≥2x.故答案为:x+3≥2x.16.解:设赢了x场,∵这一球队共打了14场,而且恰好赢的场数比平的场数和输的场数都要少,∴有x<,∴可知这个球队最多赢了4场.17.解:由题意可得:2x<10.故填:2x<10.18.解:由题意,得这样的一袋奶粉中蛋白质的含量不少于:18.9×400÷100=75.6(g).故答案为75.6.19.解:.答案不唯一.20.解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4三.解答题21.解:根据上图可知:x的下列值:﹣2,0,满足不等式;x的下列值:﹣4,7不满足不等式.22.解:,解①得:x<3,解②得:x≥,则不等式组的解集是:3.则不等式组的整数解是:2.23.解:(1)2(x﹣6)+4<3x﹣5,去括号得,2x﹣12+4<3x﹣5,移项、合并同类项得,﹣x<3,解得,x>﹣3.将不等式的解集在数轴上表示如下:;(2)﹣1≤,去分母得,3x﹣6≤2(7﹣x),去括号得,3x﹣6≤14﹣2x,移项、合并同类项得,5x≤20,解得,x≤4.将不等式的解集在数轴上表示如下:.24.解:(1)≤2x,5x﹣1≤4x,5x﹣4x≤1,x≤1;(2),解不等式①得:x>﹣1,解不等式②得:x≤2,故不等式组的解集为﹣1<x≤2.25.解:由已知条件知﹣a≥a,得a≤0;所以a+1<1﹣a,故不等式组,有解,解集为a+1<x<1﹣a.当a=0时,无解.26.解:根据题意,得a克糖水中有b克糖,则糖的质量与糖水的质量比为;若再加c克糖,则糖的质量与糖水的质量比为;根据加的糖完全溶解后,糖水会更甜,得.27.解:设单独租用54座客车需x辆.根据题意列一元一次不等式组可得:,解得8<x<10,由于车辆数必须为整数,所以x=9,54×9=486(人),∵≈37(元),≈41,∴租用54座的客车越多越省钱,∴当租用9辆54座的客车时,正好坐满,而且最省钱.。

精选七年级数学下册第九章《不等式与不等式组》单元综合练习卷及答案

精选七年级数学下册第九章《不等式与不等式组》单元综合练习卷及答案

人教版七年级下数学第九章不等式与不等式组单元综合检测卷一、填空题(共10小题,每题3分,共30分)1.不等式组的解集为_______________.【答案】x>32.不等式5x﹣3<3x+5的非负整数解是_____.【答案】0,1,2,33.已知实数x,y满足,并且,,现有,则k的取值范围是__.【答案】4.若不等式无解,则实数a的取值范围是________.【答案】5.已知关于x的不等式组的解集为3≤x<5,则的值为_____.【答案】﹣26.已知3x+4≤2(3+x),则|x+1|的最小值为________.【答案】07.满足不等式组的整数解是_____.【答案】08.若代数式3x﹣1的值大于3﹣x,则x的取值范围是________.【答案】x>19.若关于x的不等式组恰有3个整数解,则m的取值范围是_____.【答案】10.某校高一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满;已知住宿生少于55人,则该校高一新生中住宿生人数为_____.【答案】53二、选择题(共10小题,每题3分,共30分)11.不等式组的解集是()A. ﹣1≤x≤4B. x<﹣1或x≥4C. ﹣1<x<4D. ﹣1<x≤412.把不等式x+3>4的解表示在数轴上,正确的是( )A. B. C. D.【答案】C13.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A. a=5 B. a≥5 C. a≤5 D. a<5【答案】C14.不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】D15.不等式组的解集为x<2,则k 的取值范围为()A. k>1B. k<1C. k≥1D. k≤1【答案】C16.对于任何有理数a,b,c,d,规定=ad-bc.若<8,则x的取值范围是()A. x<3B. x>0C. x>-3D. -3<x<0【答案】C17.若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()A. 3种B. 4种C. 5种D. 6种【答案】A18.已知且-1<x-y<0,则k的取值范围是()A. -1<k<-B. 0<k<C. 0<k<1D. <k<1【答案】D19.某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于()环(每次射击最多是10环)。

第九章《不等式与不等式组》综合测试题

第九章《不等式与不等式组》综合测试题

_ D_ C _ B _ A第九章 不等式与不等式组61.满足不等式45)31(22≤--x 的整数是( ) A .-1,0,1,2,3 B. 0,1,2,3 C .0,1 D. -3,-2,-1,0,12.同时使不等式x x 52)1(3-+- 与x x 237121-≤-成立的所有整数积是( ) A .12 B. 3 C. 7 D. 24 3. 已知x 和y 满足1,243 y x y x -=+,则 ( )A .76=x B. 71-=y C. 76 x D.71- y4. 已知a<b<0,下列不等式中一定成立的是 ( )A.a 1<b 1 B. ab >1. C. 3a>2b. D. 2a >ab.5、不等式组的整数解的和是 ( )A.1 B.2 C.0 D.-26. 若为非负数,则x 的取值范围是( )A.x ≥1 B.x ≥-1/2 C.x >1 D.x >-1/27.下列各式中是一元一次不等式的是( )A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x ≥0 8.若│a │>-a,则a 的取值范围是( ) A.a>0 B.a ≥0 C.a<0 D.自然数9. 不等式组53x x ≤⎧⎨>⎩的解集在数轴上表示,正确的是( ) xAB CxD10.设.表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为( )11.用恰当的不等号表示下列关系: ①a 的5倍与8的和比b 的3倍小:______________; ②x 比y 大4:______________. 12.不等式3(x+1)≥5x-3的正整数解是_________; 13.若a<1,则不等式(a-1)x>1的解集为___. 14.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______.15.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.16.2001年某省体育事业成绩显著,据统计,•在有关大赛中获是奖牌数如下表所示(单位:枚),如果只获得1枚奖牌的选手有57•人,•那么荣获3•枚奖牌的选手最多有______人. 17.解下列不等式(组)(每小题3分,共6分)(1)5(x+2)≥1-2(x-1) (2) 2731205y y y +>-⎧⎪-⎨≥⎪⎩(3) 1)1(22<---x x ,. (4) ⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325,并求其整数解.18. 关于x 的不等式a-2x<-1的解集如图所示.求a.19. (1)若x<-3,,求|3+x|的值; (2)若2<x<4,求|x-1|+|x-5|.20. x 取哪些正整数时,不等式x+3>6与2x-1<10都成立?21.已知多项式a2-5a-7减去多项式a2-11a+9的差等于不等式5-4x<0的最小正整数解,求a 的值。

第九章不等式与不等式组单元测试卷含答案.docx

第九章不等式与不等式组单元测试卷含答案.docx

第九章 单元测试卷(时间:120分钟 满分:150分)一、选择题(每题4分,共40分)1、下列各式:(1)5x -≥;(2)30y x -<;(3)50xπ+<;(4)23x x +≠; (5)333x x+≤;(6)20x +<是一元一次不等式的有( ) A. 2个 B. 3个 C. 4个 D. 5个 2、下列命题正确的是( )A. 若a b >,b c <,则a c >B. 若a b >,则ac bc >C. 若a b >,则22ac bc >D. 若22ac bc >,则a b >3、若点P (21m +,312m -)在第四象限,则m 的取值范围是( ) A.14m < B.12m > C.1123m -<< D.1123m -≤≤4、如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A.0ab >B.0a b +<C.(1)(1)0b a -+>D.(1)(1)0b a -->5、不等式组1(1)2,2331xx x ⎧+≤⎪⎨⎪-<+⎩的解集在数轴上表示正确的是( )6、已知2x =是不等式(5)(32)0x ax a --+≤的解,且1x =不是这个不等式的解,则实数a 的取值范围是( )A.1a > B .2a ≤ C.12a <≤ D.12a ≤≤ 7、若0a b +<,且0b <,则a ,b ,a -,b -的大小关系为( )A.a b b a -<-<<B.a b b a -<<-< C .a b a b -<-<< D.a b b a <<-<-8、已知4,221x y k x y k +=⎧⎨+=+⎩且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C. 01k <<D.112k <<9、若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( )A.10m -≤< B .10m -<≤ C. 10m -≤≤ D .10m -<< 10、若人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A. 21090(18)2100x x +-≥B. 90210(18)2100x x +-≤C. 21090(18) 2.1x x +-≤D. 21090(18) 2.1x x +-> 二、填空题(每题5分,共20分) 11、若不等式组0,122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是___________.12、已知实数x ,y 满足234x y -=,并且1x ≥-,2y <,现有k x y =+,则k 的取值范围是____________. 13、若不等式组20,x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,则不等式ax b +<0的解集为____________.14、某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n 应满足________________.三、解答题(15—18,每题8分;19、20每题10分;21、22每题12分;23题14分) 15、解不等式(组),并把解集在数轴上表示. (1) 122362x x x -+-<- (2)53362x-≤<16、已知实数a 是不等于3的常数,解不等式组233,11(2)022x x a x -+≥-⎧⎪⎨-+<⎪⎩,并依据a 的取值情况写出其解集.17、已知关于x ,y 的方程组2,2324x y m x y m -=⎧⎨+=+⎩的解满足不等式组30,50x y x y +≤⎧⎨+>⎩求满足条件的m 的整数值.18、小明早上7点骑自行车从家出发,以每小时12千米的速度到距家4千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分之前赶到学校,那么他步行的速度至少应为多少?19、已知关于x 的不等式(2)50a b x a b -+->的解集是107x <,求关于x 的不等式ax b >的解集.20、甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价的八折优惠.现某公司要购买3张办公桌和若干把椅子,若购买的椅子数为x 把(9x ≥).(1)分别用含x 的式子表示到甲、乙两个厂家购买桌椅所需的金额; (2)请你说出到哪家购买更划算?21、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设某工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作.租赁公司提供的挖掘机有关信息如下表所示:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?22、对x ,y 定义一种新运算T ,规定(,)2ax byx y x y+T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ .已知(1,1)2T -=-,(4,2)1T =. (1)求a ,b 的值;(2)若关于m 的不等式组(2,54)4,(,32)m m m m p T -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围.23、为极大地满足人民生活的需求,丰富市场供应,某区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的长方形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540 m 2的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了x 垄,通过计算说明共有几种种植方案,分别是哪几种; (2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?答 案一、选择题二、填空题11. 1a >- 12. 13k ≤< 13.32x > 14.100100mn m≤+ 三、解答题15.(1)4x > (2)7322x -<≤ (解集在数轴上表示略)16.解:233,11(2)0,22x x a x -+≥-⎧⎪⎨-+<⎪⎩①② 解不等式①,得3x ≤. 解不等式②,得x a <. ∵a 是不等于3的常数,∴当3a >时,不等式组的解集为3x ≤. 当3a <时,不等式组的解集为x a <. 17.解:2,2324,x y m x y m -=⎧⎨+=+⎩①②①+②,得334x y m +=+.②-①,得54x y m +=+.依题意,得340,40,m m +≤⎧⎨+>⎩解得443m -<≤-. 当m 为整数时,m =-3或m =-2.18.解:设他步行的速度为x 千米/时.由题意,得13()1212x -≥,解得x ≥4. 答:他步行的速度至少应为4千米/时. 19.解:原不等式可化为(2)5a b x b a ->-.而该不等式的解集为107x <, 说明20a b -<,且51027b a a b -=-.7(5)10(2)b a a b -=-,4527b a =,53b a =,35b a =,所以35b a =.因为20a b -<,所以3205a a -<,705a <, 所以0a <.在ax b >中,因为0a <,所以b x a <,即35x <.所以关于x 的不等式ax b >的解集为35x <.20.解:(1)到甲厂家购买桌椅所需金额为380080(9)(168080)x x ⨯+-=+(元).到乙厂家购买桌椅所需金额为(380080)0.8(192064)x x ⨯+⨯=+(元). (2)若168080192064x x +>+,解得15x >. ∵x 为整数,∴16x ≥.若168080192064x x +=+,解得15x =; 若168080192064x x +<+,解得15x <. ∵x 为整数,∴14x ≤.所以当买的椅子至少16把时,到乙厂家购买更划算; 当买的椅子为16把时,到两家厂家购买费用一样; 当买的椅子不多于14把时,到乙厂家购买更划算.21.解:(1)设租用甲型号的挖掘机x 台,乙型号的挖掘机y 台,根据题意,得8,6080540x y x y +=⎧⎨+=⎩解得5,3x y =⎧⎨=⎩答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用甲型号的挖掘机m 台,则租用乙型号的挖掘机5406080m-台,根据题意,得5406010012085080mm -+⨯≤,解得4m ≤. 又m 为非负整数, ∴0m =或1或2或3或4.将m 的值分别代入5406080m-,可知,只有当m =1时,54060680m-=,为整数,符合题意.∴符合条件的租用方案只有一种,即租用甲型号的挖掘机1台,乙型号的挖掘机6台. 22.解:(1)由,(4,2)1T =,得1(1)2211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+,即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3.(2)由(1)得3(,)2x yx y x y +T =+,则不等式组(2,54)4,(,32)m m m m p T -≤⎧⎨T ->⎩可化为105,539,m m p -≤⎧⎨->-⎩解得19325p m --≤<. ∵不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,∴93235p -<≤,解得123p -≤<-. 23.解:(1)根据题意可知西红柿种了(24)x -垄,则1530(24)540x x +-≤,解得12x ≥.又因为14x ≤,且x 是正整数,所以x =12,13,14. 故共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄;方案二:草莓种植13垄,西红柿种植11垄;方案三:草莓种植14垄,西红柿种植10垄.(2)方案一获得的利润:12×50×1.6+12×160×1.1=3072(元),方案二获得的利润:13×50×1.6+11×160×1.1=2976(元),方案三获得的利润:14×50×1.6+10×160×1.1=2880(元).由计算可知,方案一即种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章《不等式与不等式组》综合测试题1 一、选择题:(每小题3分,共30分)
1.已知a <b ,则下列不等式中不正确的是( ).A.4a <4b B.a +4<b +4 C.-4a <-4b
D.a -4<b -4
2.不等式1
132x +<的正整数解有( ).A.1个
B.2个 C.3个 D.4个
3.满足-1<x ≤2的数在数轴上表示为( ).
4.如果|x -2|=x -2,那么x 的取值范围是( ).A.x ≤2
B.x ≥2 C.x <2
D.x >2
5.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约为( ). A.1小时~2小时 B.2小时~3小时 C.3小时~4小时 D.2小时~4小时 6.不等式组102(1)x x x +<⎧⎨-⎩
,≤的解集是( ).A.x <-1
B.x ≤2 C.x >1 D.x ≥2
7.不等式2+x <6的非负整数解有( )A .2个 B .3个 C .4个 D .5个 8.下图所表示的不等式组的解集为( )
-2
34
210-1
A .x 3>
B .23x -<<
C .2x >-
D .23x ->>
9.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ).
A.m >-1.25
B.m <-1.25 C.m >1.25
D.m <1.25
10.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ).A.5千米 B.7千米 C.8千米 D.15千米 二、填空题(每题3分,共30分)
11.已知三角形的两边为3和4,则第三边a 的取值范围是________.
12.如图9-1,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为 . 13.若
11
|
1|-=--x x ,则x 的取值范围是 . 14.不等式组1
10210x x ⎧+>⎪⎨⎪->⎩,.
的解为 .15.当0<<a x 时,2
x 与ax 的大小关系是_______________.
16.若点P (1-m ,m )在第二象限,则(m -1)x >1-m 的解集为_______________. 17.已知x =3是方程
2a x -—2=x —1的解,那么不等式(2—5a )x <3
1
的解集是 . A . B. C. D.
图9-1
18.若不等式组841
x x x m
+-⎧⎨
⎩的解集是x >3,则m 的取值范围是 .
19.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔. 20.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不
低于5%,则至多可打 . 三、解答题(本题共 8个小题,共32分)
21.解不等式:112x x >+ 22.解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x x x --⎧⎪
⎨--<⎪⎩
≤,
① ②
23.x 为何值时,代数式5
1
23--+x x 的值是非负数?
24.已知:关于x 的方程m x m x =--+2
1
23的解是非正数,求m 的取值范围.
四、解答题(本题共3个小题,其中,25、26每题9分,27题10分,共28分)
25.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?
26.国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗
衣机的进货量的一半.电视机与洗衣机的进价和售价如下表: 计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元. (1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)
27.今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨. (1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
参考答案
一、选择
1.C 2.C 3.B 4.B 5.D 6.A 7.C 8.A 9.A 10.C 二、填空
11.1<a <7 12.x <2 13.x <1 14.21x -<< 15.2
x >ax 16.x >-1
17.x <
1
9
18.m <=3 19.13支 20.7折 三、解答题 21.解析:(1)1
12
x x -
>,112x >,所以2x >.
22.解析:解不等式①,得2x -≥; 解不等式②,得1
2
x <-
. 在同一条数轴上表示不等式①②的解集,如答图9-1:
所以,原不等式组的解集是1
22
x -<-≤. 23.解析:由题意可得
31025x x +--≥,解不等式x ≥17
3
-. 24.解析:解关于x 的方程m x m x =--+2123,得344
m
x -=,因为方程解为非正数,所以有344m -≤0,解之得,
m ≥34

四、
25.解析:设该宾馆一楼有x 间房,则二楼有(x +5)间房,由题意可得不等式组
4485483(5)484(5)48
x x x x <⎧⎪<⎪

+<⎪⎪+>⎩,解这个不等式组可得9.6<x <11,因为x 为正整数,所以x =10 即该宾馆一楼有10间房间.
26.解析:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得
1(100),
218001500(100)161800.x x x x ⎧
≥-⎪⎨
⎪+-≤⎩
,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.
答图9-1
(2)设商店销售完毕后获利为y元,根据题意,得y=(2000-1800)x+(1600-1500)(100-x)=100x+10000.∵100>0,
∴当x最大时,y的值最大.即当x=39时,商店获利最多为13900元.
27.解析:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,依题意,得
4x + 2(8-x)≥20,且x + 2(8-x)≥12,解此不等式组,得x≥2,且x≤4,即2≤x≤4.
∵x是正整数,∴x可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:
(2)方案一所需运费300×2 + 240×6 = 2040元;方案二所需运费300×3 + 240×5 = 2100元;方案三所需运费300×4 + 240×4 = 2160元.
所以王灿应选择方案一运费最少,最少运费是2040元.。

相关文档
最新文档