模型和代码的连接

合集下载

如何进行优秀的代码可视化和模型化

如何进行优秀的代码可视化和模型化

如何进行优秀的代码可视化和模型化代码可视化和模型化是软件开发过程中非常重要的一环。

代码可视化是将代码转化为图形化的表示形式,便于程序员更好地理解代码逻辑和结构,从而更好地进行维护和开发。

模型化是将系统或软件的各组成部分用图形和符号表示出来,形成一种抽象的模型,使开发人员可以更好地理解和设计软件系统。

在本文中,我们将从代码可视化和模型化的概念、相关技术和应用价值三个方面来探讨如何进行优秀的代码可视化和模型化。

一、代码可视化和模型化的概念代码可视化是指将代码转化为图形化的表示形式,以便程序员更好地理解代码逻辑和结构。

通过代码可视化,程序员可以更快速地掌握代码,减少出错概率,提高开发效率。

代码可视化可以有多种形式,比如结构图、流程图、类图等等。

模型化是将软件系统的各组成部分用图形和符号表示出来,形成一种抽象的模型,以方便开发人员进行软件设计和开发。

模型化可以被用作软件设计、分析和测试,以及对复杂的软件系统进行可视化呈现。

二、代码可视化和模型化的相关技术1. UMLUML(统一建模语言)是一种基于图形化符号和元素的建模语言,用于描述和设计软件系统的结构、行为和交互。

UML是一个标准化的建模语言,它包括多种不同的模型类型,比如类图、用例图、顺序图等等。

2.结构化编程结构化编程是一种编程范式,注重程序结构,将程序分成若干个模块,每个模块具有单一功能,且模块之间的联系和依赖性清晰明确,以此达到代码模块化、结构化和可维护的目的。

3.可视化编程可视化编程是一种通过图形化编程环境,以拖拽模块的方式构建程序的方法。

通过可视化方式进行编程,程序员可以更直观地看到程序代码的实现方式,以及各个模块之间的关系和依赖性。

三、代码可视化和模型化的应用价值1.便于代码理解代码可视化和模型化可以将代码转化为更加直观、易于理解的形式,便于程序员更好地理解代码逻辑和结构,从而更好地进行维护和开发。

通过可视化展示代码,程序员可以更快速地掌握代码,减少出错概率,提高开发效率。

代码生成模型综述

代码生成模型综述

代码生成模型综述代码生成模型是一种利用机器学习技术自动生成代码的模型。

它可以帮助开发人员在更少的时间内编写出更高质量的代码,提高代码编写的效率和质量。

在本文中,我们将对代码生成模型进行综述,探讨其在软件开发领域中的应用与未来发展趋势。

一、代码生成模型的基本概念代码生成模型,简称CGM,是一种基于机器学习技术的程序自动生成模型。

它可以根据已有的代码样本自动生成新的代码,减少了程序员的工作量,同时也提高了代码的质量。

二、代码生成模型的应用代码生成模型可以应用于软件开发的各个环节,如测试、修改和部署等。

具体来说,它可以用于以下几个方面:1、代码自动补全:在编写代码的过程中,根据输入的代码自动补全相应的代码块,减少手动输入的时间和工作量。

2、代码推荐:根据已有的代码,推荐相似的代码块,帮助程序员更快地编写代码。

3、代码优化:根据已有的代码,自动优化其性能和效率,提高程序运行的速度和效果。

4、代码重构:根据已有的代码,自动重构其结构以提高代码的可读性和模块化程度。

三、代码生成模型的发展趋势随着人工智能技术的不断发展,代码生成模型也在不断地完善和发展。

未来,代码生成模型将朝着以下几个方向发展:1、智能化:代码生成模型将更加智能化,能够分析和理解程序员的意图,自主完成复杂的代码编写和优化。

2、适用性:代码生成模型将更好地适应各种语言和框架,能够为不同类型的项目提供定制化解决方案。

3、可扩展性:代码生成模型将更具可扩展性,能够不断地学习、进化和改进,适应不断变化的软件开发需求。

4、应用场景多样化:代码生成模型将在更多的软件开发场景中得到应用,如图形化编程、移动应用开发等。

总之,代码生成模型的发展具有广阔的前景和潜力。

它的出现将对软件开发领域产生深远的影响,有望帮助人们实现快速、高质量、可靠的软件开发。

数学建模和编程的关系

数学建模和编程的关系

数学建模和编程的关系数学建模和编程是两个紧密相关的领域,二者之间存在着深刻的关系。

数学建模是利用数学方法来描述现实世界中的问题,而编程则是将问题抽象成计算机可执行的指令。

在实际应用中,数学建模和编程常常结合在一起,共同解决现实世界中的复杂问题。

首先,数学建模和编程都需要具备抽象和逻辑思维能力。

数学建模要求将现实世界中的问题进行抽象化,找出其中的规律和模式,而编程则需要将复杂的问题进行逻辑化,分解成可执行的指令。

因此,无论是进行数学建模还是编程,都需要具备良好的抽象能力和逻辑思维能力。

其次,数学建模和编程都需要运用数学知识。

数学建模需要借助数学工具来描述和分析问题,比如微积分、概率论、线性代数等。

而在编程过程中,也会用到很多数学知识,比如算法、数据结构、数值计算等。

因此,数学建模和编程都需要对数学有深厚的理论功底。

另外,数学建模和编程都需要运用计算机技术。

在数学建模过程中,常常需要借助计算机来进行模拟和计算,以验证模型的正确性;而在编程中,则需要运用计算机语言来实现对问题的抽象和求解。

因此,计算机技术是数学建模和编程不可或缺的重要工具。

此外,数学建模和编程都需要具备解决实际问题的能力。

数学建模要求将现实世界中的问题进行抽象化和简化,找出其中的规律和模式,并提出相应的解决方案;而编程则需要将问题进行逻辑化和求解化,最终得出可执行的结果。

因此,数学建模和编程都需要具备解决实际问题的能力。

总的来说,数学建模和编程是两个相辅相成的领域,二者之间存在着紧密的关系。

数学建模提供了解决实际问题的方法论和思维方式,而编程则提供了将问题求解的技术手段。

二者结合起来,可以更好地解决现实世界中的复杂问题。

因此,掌握数学建模和编程技能对于提升问题求解能力和创新能力是非常重要的。

gamm模型的回归代码和方法

gamm模型的回归代码和方法

gamm模型的回归代码和方法Gamm模型,全称为Generalized Additive Mixed Model,是一种广义可加混合模型。

它结合了广义线性模型(Generalized Linear Model,GLM)和广义可加模型(Generalized Additive Model,GAM),同时考虑了固定效应和随机效应。

Gamm模型在许多实际问题中广泛应用,尤其适用于非线性关系和具有复杂结构的数据。

GAM模型是一种非参数的回归模型,它通过将预测变量的非线性部分用平滑函数来建模。

GAM模型的基本思想是,将自变量的非线性关系分解为一系列平滑的函数,然后将这些函数与线性部分结合起来,以建立预测模型。

通过使用平滑函数,GAM模型能够捕捉到自变量与因变量之间的非线性关系,并且能够较好地适应数据。

GAM模型通常使用的平滑函数有很多种,其中一种常用的平滑函数是样条函数。

样条函数是一种通过在数据上拟合分段多项式来建模非线性关系的方法。

在R语言中,我们可以使用mgcv包来拟合GAM 模型,并使用gam函数来建立模型。

下面是一个使用gamm模型进行回归分析的例子:```R# 导入mgcv包library(mgcv)# 读取数据data <- read.csv("data.csv")# 建立gamm模型model <- gamm(y ~ s(x1) + s(x2) + s(x3) + (1 | random_effect), data = data)# 查看模型结果summary(model)```在这个例子中,我们假设y是因变量,x1、x2、x3是自变量,random_effect是随机效应。

通过使用gamm函数,我们可以将自变量的非线性关系用样条函数来建模,同时考虑随机效应的影响。

在建立模型之后,我们可以使用summary函数来查看模型的结果。

summary函数会给出模型的系数估计值、标准误差、显著性水平等信息,帮助我们评估模型的拟合效果和变量的重要性。

AI算法与模型训练:使用代码构建人工智能算法和模型的训练

AI算法与模型训练:使用代码构建人工智能算法和模型的训练

AI算法与模型训练:使用代码构建人工智能算法和模型的训练人工智能算法和模型的训练是实现人工智能技术应用的关键环节,通过构建合适的算法和模型,可以实现各种任务的自动化和智能化。

在这篇文章中,我们将讨论如何使用代码构建人工智能算法和模型的训练过程,包括数据准备、模型选择、训练和评估等方面。

1.数据准备在训练人工智能算法和模型之前,首先需要准备好适当的数据集。

数据集的质量和数量对于模型的性能起着决定性作用。

通常情况下,数据集需要包含输入特征和对应的标签。

在实际应用中,数据集的大小可能会非常庞大,因此需要使用适当的工具和技术来处理和管理数据集。

2.模型选择选择合适的模型对于训练人工智能算法非常重要。

不同的任务和数据集适合不同的模型结构和算法。

常见的机器学习模型包括线性回归、逻辑回归、决策树、支持向量机等,深度学习模型包括卷积神经网络、循环神经网络、Transformer等。

在选择模型时,需要考虑任务的复杂度、数据集的特征以及计算资源等因素。

3.模型训练模型训练是人工智能算法和模型训练过程中的核心环节。

在模型训练过程中,需要定义损失函数、优化算法以及训练的迭代次数等参数。

通过反向传播算法和随机梯度下降等优化算法,模型可以逐步优化参数,使得模型能够更好地拟合训练数据。

以下是一个简单的示例代码,展示了如何使用Python代码构建一个简单的线性回归模型,并进行模型训练:```pythonimport numpy as npimport matplotlib.pyplot as plt#生成随机数据集np.random.seed(0)X = 2 * np.random.rand(100, 1)y = 4 + 3 * X + np.random.randn(100, 1)#可视化数据集plt.scatter(X, y)plt.xlabel('X')plt.ylabel('y')plt.show()#初始化模型参数theta = np.random.randn(2, 1)#定义损失函数def compute_cost(X, y, theta):m = len(y)predictions = X.dot(theta)cost = (1 / (2 * m)) * np.sum(np.square(predictions - y))return cost#定义梯度下降函数def gradient_descent(X, y, theta, learning_rate, n_iterations):m = len(y)cost_history = np.zeros(n_iterations)for i in range(n_iterations):predictions = X.dot(theta)errors = predictions - ygradient = (1 / m) * X.T.dot(errors)theta -= learning_rate * gradientcost_history[i] = compute_cost(X, y, theta)return theta, cost_history#在数据集上训练模型X_b = np.c_[np.ones((100, 1)), X]theta, cost_history = gradient_descent(X_b, y, theta, learning_rate=0.01, n_iterations=1000)#可视化损失函数值随迭代次数变化的曲线plt.plot(range(1000), cost_history)plt.xlabel('Iterations')plt.ylabel('Cost')plt.show()```在以上示例代码中,首先生成了一个简单的线性关系的数据集,然后定义了损失函数和梯度下降函数,最后通过多次迭代来训练模型,最终得到模型参数。

大模型代码生成技术

大模型代码生成技术

大模型代码生成技术大模型代码生成技术是指利用深度学习模型生成具有一定逻辑和语义的代码的技术。

随着人工智能技术的不断发展,大模型代码生成技术在软件开发领域逐渐得到应用,并取得了不少进展。

大模型代码生成技术的核心是使用深度学习模型来学习代码的结构和语义,然后根据给定的输入生成相应的代码。

这个过程涉及到自然语言处理、机器学习和编程语言等多个领域的知识。

为了实现大模型代码生成技术,需要构建一个强大的深度学习模型。

这个模型需要能够理解自然语言的含义,并能够将自然语言转化为可执行的代码。

为了达到这个目标,研究人员通常会使用循环神经网络(RNN)或者是变种的Transformer模型来构建代码生成模型。

这些模型可以通过学习大量的代码样本来提取代码的结构和语义信息,并在生成代码时进行合理的推断和预测。

为了训练大模型代码生成技术所需的深度学习模型,需要使用大规模的代码数据集。

这些数据集通常由开源软件项目的代码组成,涵盖了多种编程语言和应用领域。

为了提高模型的性能,研究人员通常会对代码进行预处理和特征工程,以便更好地抓取代码的结构和语义信息。

在训练完成后,大模型代码生成技术可以应用于多个领域。

例如,在软件开发过程中,可以利用大模型代码生成技术来自动生成代码片段、函数或者是整个程序。

这样可以极大地提高开发效率,减少人工编写代码的工作量。

此外,大模型代码生成技术还可以应用于代码审查、代码重构和代码迁移等方面,帮助开发人员提高代码的质量和可维护性。

然而,大模型代码生成技术也面临一些挑战和限制。

首先,深度学习模型需要大量的计算资源和训练时间才能达到较好的性能。

这对于一些小型团队或个人开发者来说可能是一个难以克服的障碍。

其次,在生成代码时,模型可能会产生语法错误或逻辑错误,需要人工进行后处理和修正。

此外,大模型代码生成技术还涉及到知识产权和安全性等问题,需要制定相应的政策和规范来保护软件的知识产权和用户的隐私。

总结来说,大模型代码生成技术是一项有潜力的技术,可以极大地提高软件开发的效率和质量。

大模型在代码开发中的应用

大模型在代码开发中的应用

大模型在代码开发中的应用主要体现在以下几个方面:
代码自动补全和智能提示:大模型可以通过分析大量的代码库和文档,提供代码自动补全和智能提示功能。

当开发者输入部分代码时,大模型可以预测接下来的代码片段,提供自动补全选项,这可以大大提高开发效率。

代码质量检查和错误预测:大模型也可以用于检测代码中的错误和潜在问题。

通过分析大量的代码样本,大模型可以学习到代码中的模式和规则,然后利用这些规则来检查新的代码片段是否存在错误。

代码重构和优化建议:大模型还可以提供代码重构和优化的建议。

通过分析代码的性能和结构,大模型可以提供优化建议,例如如何改进算法效率、如何减少代码复杂度等。

代码风格和规范检查:大模型也可以用于检查代码风格和规范。

通过分析大量的代码样本,大模型可以学习到最佳的代码实践和规范,然后用于检查新的代码是否符合这些最佳实践和规范。

自然语言处理与机器翻译:大模型在自然语言处理领域的应用还包括机器翻译,可以将代码从一种编程语言自动翻译成另一种编程语言,这有助于跨语言开发和维护。

代码生成与知识推理:基于大模型的代码生成与知识推理功能可以帮助开发人员快速生成符合业务需求的代码,而无需从头开始编写。

此外,大模型还可以通过知识推理来理解代码之间的关联关系,从而更好地组织和管理代码库。

总的来说,大模型在代码开发中的应用可以提高开发效率、减少错误、优化性能、提升可维护性,是现代软件开发中不可或缺的工具。

模型预测控制代码

模型预测控制代码

模型预测控制代码============1. 模型建立-------在模型预测控制(MPC)中,首先需要建立一个描述系统动态行为的模型。

这个模型通常是一个线性时不变(LTI)系统,或者是可以通过某种方式转化为LTI系统的非线性系统。

这个模型的建立需要基于系统的输入、输出和状态变量之间的关系。

2. 预测模型--------预测模型是用于预测系统未来的行为。

在MPC中,我们需要通过这个模型预测系统在未来一段时间内的状态,这可以帮助我们确定最佳的控制策略。

预测模型的准确性直接影响到MPC的性能。

3. 优化问题-------在MPC中,我们需要解决一个优化问题,以确定最佳的控制策略。

这个优化问题通常是一个约束优化问题,需要满足一系列的约束条件,包括系统模型的动态约束、控制变量的约束和目标函数的约束等。

4. 控制策略-------控制策略是MPC的核心,它通过优化问题确定最佳的控制输入,以实现系统的最优控制。

控制策略通常基于预测模型和优化问题的结果来制定。

5. 实现方法-------MPC的实现方法包括在线优化和离线优化。

在线优化是在每个采样时刻进行优化计算,以确定当前时刻的最佳控制输入。

离线优化是在所有可能的系统状态和输入组合上进行优化计算,以得到最佳的控制策略。

6. 稳定性分析--------稳定性分析是确保系统稳定的关键步骤。

在MPC中,我们需要通过稳定性分析来验证系统是否能够在所有可能的输入条件下保持稳定。

7. 控制器设计--------控制器设计是实现MPC的关键步骤之一。

控制器需要能够实时地接收系统的状态信息,并基于这些信息计算最佳的控制输入。

8. 系统仿真-------系统仿真是在实际应用之前验证MPC算法的有效性的重要步骤。

通过系统仿真,我们可以评估MPC算法的性能,并检查其是否满足系统的需求。

9. 实际应用-------在MPC的实际应用中,我们需要将算法应用于实际的系统,并验证其性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1997/July/2 13:44Models and code: the connectionAlan Cameron Wills, TriReme International Ltd1 The power of the Big PictureWhen you gather around a whiteboard to discuss your design withyour colleagues, the last thing you want write up there is programcode. On that whiteboard, you want to show how your piece of thesystem works, and how it interacts with things outside it. Andwhether it’s a single procedure or an entire planetwide distributedsystem, you want to fit it all on that board and convey useful thingsabout it.So we draw diagrams: sometimes ad hoc, sometimes using a recog-nised notation (like UML[2], Coad-Yourdon, use-cases, flowcharts,or many others). The great power of these pictures is their ability toexpose the important things you really want to say about the soft-ware (or indeed, about hardware or business processes) while get-ting rid of the clutter of fine detail — which you are forced into ifyou write program code.This idea of leaving out the fine detail is called abstraction . Althoughthe word sometimes has somewhat esoteric or theoretical connota-tions, it is actually essential to our capability to think: it is the onlyway a human-sized brain can grasp the whole thing at once.© 1997 Alan Cameron Wills 1997/July/2 13:44 -1 of 28But natural language (English etc) is good at abstraction. When youstand at the whiteboard, you talk. But it’s not so good at precision,nor at conveying complex relationships. Hence the diagrams andother modeling and design notation: they take the ambiguity out ofthe things you say, helping to avoid everyone coming away withdifferent understandings of what has been said and agreed.And that precision has another benefit: writing down the abstrac-tions often exposes inconsistencies and gaps that would otherwisebe glossed over. People sometimes think that it’s only when you getto program code that you find these mistakes. Not so: it’s not thedetail of programming language that exposes the problems, but itsunforgiving precision. Using a design language that is precise andyet abstract gives us a way to assess a design with confidence beforecoding.On the other hand, anything written entirely in heiroglyphs is writ-ten once and never read. In good documentation or presentation,the natural language narrative and the more formal descriptions(often supported by a design tool) should complement each other.This is not to argue that you must always complete the high-leveldocumentation before embarking on coding. There are plenty oftimes when it’s a tactical necessity to do things the other wayaround. Prototypes and Rapidly Approaching Deadlines are theusual reasons. Nor is extensive documentation always necessary. Asoftware component that may be used in many contexts is worthmore effort than a throwaway assemblage from a kit of parts.But what I do support is that the project cannot be called completeuntil the abstract documents (to whatever extent they exist) are truestatements about the delivered software; that is, the code shouldconform to the abstractions. The purpose of this article is to examineexactly what is meant by conformance. When you draw a linebetween a couple of boxes, what are you promising the user, orimposing on an implementor? And what are you not promising,what can the designer get away with?The ideas described here are part of the Catalysis approach to soft-ware design [1], developed by the present authors. Catalysis buildsupon the widely-accepted Unified Modeling Language, offeringwell-defined techniques for component-based and more traditionalstyles of software construction.-2The power of the Big PictureThe next section discusses the idea of abstract models, and how they relate to their implementations. The third section shows an example of how a design can be related to abstract models in terms of a small set of defined conformance relations.The power of the Big Picture-32An abstract modelLet’s look first at what can be done with a good abstract model.Figure 1 shows a model of a spreadsheet, together with a Dictionaryinterpreting the meaning of the pieces in the model. A spreadsheetis a matrix of named cells into each of which the user can type eithera number or a formula. In this simplified example, a formula can beonly the sum of two other chosen cells (themselves either sum ornumber cells).The model shows exactly what is expected of a spreadsheet: that itmaintains the arithmetic relationships between the cells, no matterhow they are altered: in particular, the invariant “{Sum::...” says thatthe value of every Sum-cell is always the addition of its two oper-ands.Notice that this is very much a diagram not of the code, but of whatthe user may expect. The boxes and lines illustrate the vocabulary ofterms used to define the requirement.The box marked Cell, for example, represents the idea that a spread-sheet has a number of addressable units that can be displayed. Itdoesn’t say how they get displayed, and it doesn’t say that if youlook inside the program code you’ll necessarily find a class calledCell. If the designer is keen on performance, some other internalstructure might be thought more efficient. On the other hand, if thedesigner is interested in maintainability, using a structure that fol-lows this model would be helpful to whoever will have to do theupdates.The model doesn’t even say everything that you could think of tosay about the requirements. For example, are the Cells arranged inany given order on the screen? How does the user refer to a Cellwhen making a Sum? If all the Cells won’t fit on the screen at a time,is there a scrolling mechanism?It’s part of the utility of abstract modeling that you can say or notsay as many of these things as you like. And you can be as precise orambiguous as you like — we could have put the “{Sum::...” invari-ant as a sentence in English. This facility for abstraction allows us touse modelling notation to focus just on the matters of most interest. -4An abstract modelFigure 1: Model for a SpreadsheetAn abstract model-5Although (or perhaps because) the model omits a lot of the detailsyou’d see in the code, you can do useful things with it. For example,we can draw ‘snapshots’ — instance diagrams that illustrate quiteclearly what effect each operation has.Snapshots illustrate specific example situations. Figure 2 shows asnapshots showing the state of our spreadsheet before and after anoperation. (The thicker lines and bold type represent the state afterthe operation.)Notice that because we are dealing with a requirements model here,we show no messages (function calls) between the objects: those willbe decided in the design process. Here we’re only concerned withthe effects of the operation invoked by the user. This is part of howthe layering of decisions works in Catalysis: we start with the effectsof operations, and then work out how they are implemented interms of collaborations between objects.Figure 2: Spreadsheet snapshots-6An abstract model3RefinementNow let’s consider an implementation. The first thing to be said isthat the program code is very much larger than the model, so we’llonly see glimpses of it here.1 Nor does every detail of the code fol-low the same structure as the model: for example, we’ll see thatthere is no class called Blank in the code.But suppose I’m asked in a code review to justify the differencesbetween my code and the model, which expresses requirements.What arguments do I use? The ultimate justification of course is thatwhatever the code does is at least what you’d expect from themodel, and testing should bear this out. But some kind of rationalewould give earlier and better confidence; and convince me, whileI’m designing, that I’m on the right track.The relationship between a model and a design is called ‘refine-ment’. A valid refinement does everything you’d expect from read-ing the model. (Some prefer to say that the design ‘conforms’ to themodel, and reserve ‘refinement’ to mean the act of making a confor-mant design or more detailed model.)In an object-oriented context, we can distinguish a few main kindsof refinement. Combinations of them cover most of the valid cases:you can explain most design decisions in terms of them. In a largedevelopment, the usual layers of requirements, high-level design,detailed design, and code, can be seen as successive refinements.Understanding the different kinds of refinement has several advan-tages:•It makes clear the difference between a model of requirements and a diagram more directly representing the code (one box perclass).•It makes it possible to justify design decisions more clearly.•It provides a clear trace from design to implementation.1.It can be inspected at /trireme/papers/refinement/Refinement-7Many of the well-known design patterns are refinements applied inparticular ways. The refinements we’re about to discuss are, if youlike, the most primitive design patterns.The rest of this article illustrates four principal kinds of refinement,using the Spreadsheet as an example. Briefly, the four categories are:Model conformance: An abstract model contains much less informa-tion than the program code. The class diagram is alot simpler. Model conformance is the relationshipthat says “this model represents the same conceptsas that, but with more detail.”Operation conformance: In a model, we can specify an operation bywriting down the effects it achieves (for examplewith a pair of pre and postconditions). Operationdecomposition means writing the program codethat meets the spec.Action decomposition: ‘I got money from my bank’ is an abstractionof a sequence of finer-grained actions. A refine-ment might be ‘I gave the bank my card; it told memy current balance; I asked it for $50; it gave meback my card; it gave me the cash; it debited myaccount’.Object decomposition: ‘My bank’ is an abstraction refering to a col-lection of people, buildings, machines, and so on.‘I [had some interaction with] my bank’ means Ihad some interaction with some part of it. I gavemy card to the card-reader forming part of anATM, which is in turn part of my bank; the screenof the ATM told me my balance; I pressed the keyson the ATM to tell it I wanted $50; and so on. (Andwhile we’re on the subject, “I” is an abstraction fora collection of many pieces as well.)3.1Model conformanceLooking at my code for the Spreadsheet, the first thing the reviewernotices is that the classes differ somewhat from those mentioned inthe requirements model.-8RefinementFor example, in my code, Sums can have a list of any number of operands. “So where are the left and right attributes of a Sum?” asks the reviewer. “No problem,” I reply. “All the information mentioned by the requirements is there --- it’s just that some of the names have changed. If you want to have the left and right operands of any Sum, use the first and second items on my operands list.”3.1.1Documenting model conformanceThe general rule is that, for each attribute or association in the abstract models, it should be possible to write a read-only function in the implementation code that abstracts (or ‘retrieves’) its value. It doesn’t matter if an abstraction function is hopelessly inefficient: it only needs to demonstrate that the information is in there some-where. Nor does it matter if there is more information in the code than in the model.QA departments may insist that abstraction functions should be written, even though they are not always actually used in the deliv-ered code, because:•Writing them is a good cross-check, helping to expose inconsis-tencies that might otherwise have been glossed over.•They make it clear exactly how the abstract model has been rep-resented in your code.•For testing purposes, testbeds will be written that test the post-conditions and invariants defined in the requirements models.These talk in terms of the abstract model’s attributes, so theabstraction functions will be needed to get their values.For example, during testing we could check the invariant after every user operation (Sum:: value == left().content.value + right().content.value). For that to work in my code, we’ll need my abstraction functionsdefined for Sums:class Sum1{private Vector operands; // of CellCell left () { return (Cell) operands.elementAt(0);}Cell right () { return (Cell) operands.elementAt(1);} ...Refinement-9But even worse, my design (shown in Figure 3) does not give a con-tent attribute for Cells, and (until I have to include them for theabstraction function) does not have classes Content, Blank andNumber. But the information can be abstracted:class Cell1{private Sum constraint ; // may be nullprivate int value;Content content (){if (constraint!= null) return constraint;else if (constraint.size() == 0) return new Blank();else return new Number (value);}Model conformance allows an abstract yet precise picture to be writ-ten, of the information stored in a system or component. A moredetailed model will support a more detailed account of the design,or more features.3.2Action decompositionThe next thing my code reviewer notices is that nowhere is there afunction setSum(Cell, Cell). I explain that I have decided to refine thisaction (or ‘use-case’) to a finer-grained series of interactionsbetween the User and the Spreadsheet. A diagram that more closelyrepresents my design is in Figure 3.To set a cell to be the sum of two others as per requirement, the userperforms these steps:•select the Cell in question by clicking the mouse;•type “=” and click one of the operand Cells;•type “+” and click on the other.In fact, the requirement is provided by a combination of features inmy implementation, which allows for a Cell’s contents to be equal tothe sum of one or more other cells. My “=” operation turns the Cellinto a single-operand sum, and each “+” operation adds anotheroperand. So there is no single operation with the signature “set-Sum(Cell, Cell), either at the user interface, or anywhere inside thecode.-10RefinementIn general, actions shown as ellipses between participants representsome interaction, without going into the details of the dialogue.Actions can always be documented with unambiguous postcondi-tions, stating the overall effect of the process.Notice that all participants are affected. A user who knows how touse my spreadsheet-implementation will not necessarily know howto use another design. It is the collaboration that has been refinedhere, not the participants individually.3.2.1Documenting action decompositionFor the benefit of future reviewers, maintainers, and the author ofthe user manual, we document the refinement as in Figure 4.3.2.2Action decomposition in codeAction refinement is not just about user interactions. The same prin-ciple can be sued when describing dialogues between objects in thesoftware. This enables collaborations to be described in terms of theeffects achieved by the collaborations, before going into the precisenature of the dialogue.Figure 3: A step nearer my codeRefinement-11-12RefinementFor example, in the Spreadsheet implementation, Sums register as observers of their target Cells; so when a Cell’s value changes, it must notify all its observers. The local effect is to propagate the change in value; we can document that without deciding whether the Cell sends the new value in the message, or whether the Sum calls back asking for the new value.Ordinary object-oriented function calls are the most refined stage of action decomposition.3.3Object decompositionObject decomposition often accompanies action decomposition, when it turns out that the detailed dialogue is not conducted between the participants as wholes, but between their parts.For example, the user interface of the spreadsheet should be sepa-rated from the core classes. The mouse and keyboard operations are received by different UI objects, depending on mode. By default, mouse clicks are dealt with by a Cell selector, that sets the currentFigure 4: Action decompositionCell c, Sum s :: c.value != c.old.value && c in s.operands => update ( )postcondition: The difference in value is propagated to the Sum.c.value – c.old.value == s.~constraint.value – s.old.~constraint.valueupdate occurs whenever any operation changes the Cell’s valuefocus. But after an “=” or “+” keystroke, a SumController is created and registered as mouse listener; it interprets mouse clicks as addi-tions to the focus Sum.3.3.1Documenting object decompositionThe refinement relation in object decomposition can best be docu-mented with object interaction graphs or sequence charts. The abstract object can be shown enclosing its refinements.3.4Operation conformanceThe most refined form of action is an ordinary function (or ‘opera-tion’ or ‘message’) defined on a particular receiver class. Operations may be specified in a model with pre/postcondition pairs. Any invariants should be considered to be ANDed with both the pre and the postcondition of each operationof the model. In other words, the designer may assume the invariant true to begin with, and must ensure it is restored when the operation is finished.Refinement-13A conformant operation may be produced by strengthening thepostcondition or weakening the precondition: that is, the refinementmay do more than expected, or do it in a wider range of circum-stances (or both). A refined model may also have more operationsdefined than the abstraction (because in the abstraction nothing isknown about their effects: they have completely open postcondi-tions).But the usual operation refinement is a block of program code. Theprecondition can be thought of as a test that, in debug mode, can beapplied at the beginning of the operation, if it ever turns out false,there is a problem with the caller. The postcondition has to comparestates between the start and end of the operation, and a false indi-cates a problem with the operation’s design. Some programminglanguages, such as Eiffel, provide for pre and postconditions in thesyntax, together with such a debugging mode.Sequence charts are once again useful for illustrating the working ofan operation in a typical cases, though they have the drawback thatonly one situation is shown, with one configuration of objects.-14Refinement4Software ComponentsComponent-based development is about constructing kits of partsthat can fit together in many ways to make a variety of applications.The Java Beans protocol, for example, provides a basis on whichcomponents can be built.Components need interface specifications. If we are seriously goingto build software parts each of which can be used in situations itsdesigner never envisaged, we will have to be very clear about whateach component claims to be able to do. This suggests that CBD willmotivate a higher standard of documentation than has hitherto beencommon.Its designer will have to be able to verify that a component willwork under any circumstances permitted by the model. And userswill have to be able to verify that a component they’ve aquired(with its model) will satisfy the requirements they have (expressedin their own model). This suggests an unbelievable leap in enthusi-asm for formal program proof!Component-coupling protocols (such as Beans) generally providefor two sorts of interfaces: output and input. The outputs of onecomponent are connected to the inputs of another:Using a model, the inputs can be specified using pre and postcondi-tions (whether you write them very formally or just in naturallanaguage). The inputs cause a change of state in the model; the out-puts are caused by a change of state. Outputs can be specified in thisstyle:Button::old.up && down => ^pressed ()(^marks an output event.)Software Components-155Using refinementsThe four kinds of refinement discussed here are used as the basics inthe Catalysis approach to software development. We have omittedsome complexities associated with callbacks and concurrentthreads.It is possible to construct frameworks of ‘prefabricated’ refinements,which can be used to document the relationship between model anddesign in the same way as the primitive refinements. Many of thecommon design patterns can be understood in these terms.One of the most useful aspects of an abstract model is that it isn’t theonly one: many useful ‘views’ can be constructed about one piece ofprogram code. Different users’ viewpoints, and different functionalareas are frequently useful parallel abstractions.It is unfortunate that there is very weak support for refinementamong the popular OOA/D tools. In particular, some tool vendors’boasts that their tool can extract diagrams from C++ and vice versaseem to miss the point. Why use diagrams unless they help you getaway from the C++? To express your programs in pictures is nice insome ways, but isn’t getting the most out of the notation.As we have seen, a detailed design can be related to a much moreabstract model by using combinations of refinements. This enablesthe most important design decisions to be separated from the detail,and discussed and documented without ambiguity.-16Using refinements6ReferencesD. F. D’Souza & A. C. Wills Software development with Catalysis,Addison-Wesley, in preparation.[3] UML 0.9 Documentation Set, [4] G.Leavens et al, Object specification using Larch[5] Reenskaug, Wold, Lehne: Working With Objects, Manning/Prentice Hall. NewYork 1996[6] D. D’Souza and A. Wills, Extending Fusion: Practical Rigor and Refinement: http:///papers; also in Fusion in the Real World, D. Coleman et aleds, Prentice Hall, 1995[7] B Meyer, Object oriented Program Construction, PHI 1988[8] A. Wills, “Frameworks”, in proceedings of Object-Oriented Information Systems,London Dec 1996. Also /papers/fworks.html[9] S.Cook & J.Daniels, Designing Object Systems, [PHI 1994]. Discusses abstractmodels, refinement and strong semantics for OOA models.[10] D.Coleman et al, Fusion, 1994. Discusses abstract models and refinement.References-17-18ReferencesReferences-19-20References。

相关文档
最新文档