四边形专题复习

合集下载

四边形复习(一)

四边形复习(一)
C形
两组对边分 四个角都 别平行且相 是直角 等
对角线互相平分且 中心对称、
相等
轴对称

A

B
O
C
有一组邻边 相等的平行
D
四边形
四条边都相等
两组对角 分别相等
对角线互相垂直平分 且每一条对角线平分 一组对角
中心对称、 轴对称
B



O
A
有一个角是直 角且有一组邻 边相等的平行
四条边都相等 四个角都 是直角
两组对角分别相等 平行四边形
两条对角线互相平分
四条边相等
矩形
一组邻边相等、一个角是直角 对角线互相垂直且相等
正方形
菱形
四、关系
四边形 平行四边形 矩形 菱形
正方形
五、其他重点知识回顾
1、直角三角形斜边上的中线的性质:
A
直角三角形斜边上的中线等于斜边的一半。
符号语言:
在RtABC中,B 90,D为AC的中点
变式3:如图,四边形 ABCD中,点E, F,G, H分别是AD, BD, BC, AC的中点, 顺次连接 E,F,G,H,判断四边形 EFGH的形状。
D E A
F H
B
G
C
变式3:如图,四边形ABCD中,点E, F,G, H分别是AD, BD, BC,
AC的中点,顺次连接E,F,G,H, (1)若AB CD,则四边形EFGH的形状是________________。 (2)若AB CD,则四边形EFGH的形状是________________。
(3)若AB CD, AB CD,则四边形EFGH的形状是___________。
AE
D

2022年中考数学专题复习:四边形

2022年中考数学专题复习:四边形

板块八【四边形中考】2022年长沙中考板块精炼【高频考点】1.多边形的内角和与外角和的关系与计算;2.特殊四边形:平行四边形、矩形、菱形、正方形的性质与判定,以及综合应用;【真题训练】一、选择题1.(2021常德)一个多边形的内角和为1800°,则这个多边形的边数为()A.9B.10C.11D.122.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°3. (2021北京)下列多边形中,内角和最大的是()A.B.C.D.4.(2021株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°5.(2021娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形6. (2021福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A.108°B.120°C.126°D.132°7.(2021湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.448. (2021安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3B.2+23C.3D.1+239.(2021常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A.BE=12AE B.PC=PD C.∠EAF+∠AFD=90°D.PE=EC10.(2021怀化)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数33yx(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为()A.ME=53B.ME=43C.ME=1D.ME=2311.(2021郴州)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A.B.C.D.12.(2021衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③二、填空题13.(2021益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).14.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为.15. (2021邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.16.(2021衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O—A—D —O,点Q的运动路线为O—C—B—O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A—D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.17.(2021张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=6.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为6;④S正方形ABCD=5+22,其中正确结论的序号为.18.(2021北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).19.(2021湘潭)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AB 的中点.已知BC =10,则OE = .20.(2021兰州)如图,在矩形ABCD 中,AB =1,AD =3.①以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;②分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为 .三、解答题21.(2021长沙)如图,□ABCD 的对角线AC ,BD 相交于点O ,△OAB 是等边三角形,AB =4.(1)求证:□ABCD 是矩形; (2)求AD 的长.O QP E D22.(2021怀化)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.23. (2021湘潭)如图,矩形ABCD中,E为边BC上一点,将△ABE沿AE翻折后,点B 恰好落在对角线AC的中点F上.(1)证明:△AEF≌△CEF;(2)若AB=3,求折痕AE的长度.23.(2021株洲)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=23,求线段BG的长度.24.(2021郴州)如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF.连接BE,DF,若BE=DF.证明:四边形ABCD是平行四边形.25. (2021衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.26.(2021邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.27.(2021岳阳)如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是;(2)添加了条件后,证明四边形AECF为平行四边形.28.(2021张家界)如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,对角线AC所在的直线绕点O顺时针旋转角α(0°<α <120°),所得的直线l分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当旋转角α为多少度时,四边形AFCE为菱形?试说明理由.29.(2020长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=23,AD=4,求EC的长;(3)若AE-DE=2EC,记∠BAF=α,∠F AE=β.求tanα+tanβ的值.板块八【四边形中考】2022年长沙中考板块精炼【答案或简析】【高频考点】1.多边形的内角和与外角和的关系与计算;2.特殊四边形:平行四边形、矩形、菱形、正方形的性质与判定,以及综合应用;【真题训练】一、选择题1.(2021常德)一个多边形的内角和为1800°,则这个多边形的边数为()A.9B.10C.11D.12【答案或简析】D.2.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°【答案或简析】B.3. (2021北京)下列多边形中,内角和最大的是()A.B.C.D.【答案或简析】D.4.(2021株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°【答案或简析】B.5.(2021娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是()A.平行四边形B.矩形C.菱形D.正方形【答案或简析】A.6. (2021福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A.108°B.120°C.126°D.132°【答案或简析】C.7.(2021湘西)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.44【答案或简析】D.8. (2021安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为()A.3+3B.2+23C.2+3D.1+23【答案或简析】B.9.(2021常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A.BE=12AE B.PC=PD C.∠EAF+∠AFD=90°D.PE=EC【答案或简析】C.10.(2021怀化)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数33yx(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为()A.ME=53B.ME=43C.ME=1D.ME=23【答案或简析】D.解:过N作y轴和x轴的垂线NG,NH,设N(b,a),∵反比例函数y=33x(x>0)的图象经过点N,∴ab 3,∵四边形ABCD是菱形,∴BD⊥AC,DO=12BD=2,∵NH⊥x轴,NG⊥y轴,∴四边形NGOH是矩形,∴NG∥x轴,NH∥y轴,∵N为CD的中点,∴DO•CO=2a•2b=4ab43∴CO23∴tan∠CDO=33 OCDO.∴∠CDO=30°,∴∠DCO=60°,∵四边形ABCD是菱形,∴∠ADC=∠ABC=2∠CDO=60°,∠ACB=∠DCO=60°,∴△ABC是等边三角形,∵AE⊥BC,BO⊥AC,∴AE=BO=2,∠BAE=30°=∠ABO,∴AM=BM,∴OM=EM,∵∠MBE=30°,∴BM=2EM=2OM,∴3EM=OB=2,∴ME=23,故选:D.11.(2021郴州)如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A.B.C.D.【答案或简析】A.12.(2021衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③【答案或简析】C.二、填空题13.(2021益阳)如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).【答案或简析】①.14.(2021长沙)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为.【答案或简析】12.15. (2021邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.【答案或简析】3.16.(2021衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O—A—D —O,点Q的运动路线为O—C—B—O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A—D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案或简析】23317.(2021张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE的垂线交AE于点P,若DE=DP=1,PC=6.下列结论:①△APD≌△CED;②AE⊥CE;③点C到直线DE的距离为6;④S正方形ABCD=5+22,其中正确结论的序号为.【答案或简析】B.18.(2021北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是(写出一个即可).【答案或简析】例如AE=EC.19.(2021湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE=.【答案或简析】5.20.(2021兰州)如图,在矩形ABCD中,AB=1,AD=3.①以点A为圆心,以不大于AB长为半径作弧,分别交边AD,AB于点E,F,再分别以点E,F为圆心,以大于12EF 长为半径作弧,两弧交于点P,作射线AP分别交BD,BC于点O,Q;②分别以点C,Q为圆心,以大于12CQ长为半径作弧,两弧交于点M,N,作直线MN交AP于点G,则OG长为.【答案或简析】524三、解答题21.(2021长沙)如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:□ABCD是矩形;(2)求AD的长.【答案或简析】(1)证明:∵△AOB为等边三角形,OQPE D∴∠BAO =∠AOB =60°,OA =OB , ∵四边形ABCD 是平行四边形 ∴OB =OD =12BD ,OA =OC =12AC , ∴BD =AC ,∴▱ABCD 是矩形;(2)解:∵▱ABCD 是矩形, ∴∠BAD =90°, ∵∠ABO =60°,∴∠ADB =90°﹣60°=30°, ∴AD =3AB =43.22. (2021怀化)已知:如图,四边形ABCD 为平行四边形,点E 、A 、C 、F 在同一直线上,AE =CF .求证:(1)△ADE ≌△CBF ;(2)ED ∥BF .【答案或简析】证明:(1)∵四边形ABCD 为平行四边形, ∴DA =BC ,DA ∥BC , ∴∠DAC =∠BCA ,∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°, ∴∠EAD =∠FCB , 在△ADE 和△CBF 中,,,,AE CF EAD FCB AD CB , ∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF , ∴∠E =∠F , ∴ED ∥BF .23. (2021湘潭)如图,矩形ABCD 中,E 为边BC 上一点,将△ABE 沿AE 翻折后,点B恰好落在对角线AC 的中点F 上. (1)证明:△AEF ≌△CEF ;(2)若AB =3,求折痕AE 的长度. 【答案或简析】(1)证明:∵四边形ABCD 是矩形,∴∠B =90°,∵将△ABE 沿AE 翻折后,点B 恰好落在对角线AC 的中点F 上,∴∠AFE =∠B =90°,AF =CF , ∵∠AFE +∠CFE =180°,∴∠CFE =180°﹣∠AFE =90°, 在△AEF 和△CEF 中,,,,AF CF AFE CFE EF EF ∠∠, ∴△AEF ≌△CEF (SAS ).(2)解:由(1)知,△AEF ≌△CEF , ∴∠EAF =∠ECF ,由折叠性质得,∠BAE =∠EAF , ∴∠BAE =∠EAF =∠ECF , ∵∠B =90°,∴∠BAC +∠BCA =90°, ∴3∠BAE =90°, ∴∠BAE =30°,在Rt △ABE 中,AB =3,∠B =90°,∴AE =32cos3032AB .23.(2021株洲)如图所示,在矩形ABCD 中,点E 在线段CD 上,点F 在线段AB 的延长线上,连接EF 交线段BC 于点G ,连接BD ,若DE =BF =2. (1)求证:四边形BFED 是平行四边形; (2)若tan ∠ABD =23,求线段BG 的长度.【答案或简析】证明:(1)∵四边形ABCD 是矩形, ∴DC ∥AB , 又∵DE =BF ,∴四边形DEFB 是平行四边形; (2)∵四边形DEFB 是平行四边形, ∴DB ∥EF , ∴∠ABD =∠F ,∴tan ∠ABD =tan F =23, ∴23BG BF , 又∵BF =2, ∴BG =43.24.(2021郴州)如图,四边形ABCD 中,AB =DC ,将对角线AC 向两端分别延长至点E ,F ,使AE =CF .连接BE ,DF ,若BE =DF .证明:四边形ABCD 是平行四边形.【答案或简析】证明:在△BEA 和△DFC 中,,,,AB DC AE CF BE DF ∴△BEA ≌△DFC (SSS ), ∴∠EAB =∠FCD , ∴∠BAC =∠DCA , ∴AB ∥DC , ∵AB =DC ,∴四边形ABCD 是平行四边形.25. (2021衡阳)如图,点E 为正方形ABCD 外一点,∠AEB =90°,将Rt △ABE 绕A 点逆时针方向旋转90°得到△ADF ,DF 的延长线交BE 于H 点. (1)试判定四边形AFHE 的形状,并说明理由; (2)已知BH =7,BC =13,求DH 的长.【答案或简析】(1)四边形AFHE 是正方形,理由如下:由旋转得∠AEB =∠AED =90°,AE =AF ,∠DAF =∠EAB. ∴∠AFH =90°.∵四边形ABCD 是正方形, ∴∠DAB =90°,∴∠F AE =∠F AB +∠BAE =∠F AB +∠DAF =∠DAB =90°, ∴∠AEB =∠AFB =∠F AE =90°,∴四边形AFHE 是矩形. 又∵AE =AF ,∴四边形AFHE 是正方形. (2)连接BD ,由题意得,BC =CD =13, ∴在Rt △BCD 中,BD =22132CD CB .∵四边形AFHE 是正方形, ∴∠EHD =90°,∴∠DHB =90°, 在Rt △DHB 中,DH =22,BD BH又∵BH =7,∴DH =17.26.(2021邵阳)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC 上的两点,且AE =CF .连接DE ,DF ,BE ,BF . (1)证明:△ADE ≌△CBF . (2)若AB =4,AE =2,求四边形BEDF 的周长.【答案或简析】(1)证明:由正方形对角线平分每一组对角可知:∠DAE =∠BCF =45°, 在△ADE 和△CBF 中,,,,AD BC DAE BCF AE CF ∠∠ ∴△ADE ≌△CBF (SAS ). (2)解:∵AB =AD =42, ∴BD =228AB AD ,由正方形对角线相等且互相垂直平分可得:AC =BD =8,DO =BO =4,OA =OC =4, 又AE =CF =2,∴OA ﹣AE =OC ﹣CF , 即OE =OF =4﹣2=2, 故四边形BEDF 为菱形. ∵∠DOE =90°, ∴DE =22224225DO EO .∴4DE =85,故四边形BEDF 的周长为85.27.(2021岳阳)如图,在四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F . (1)请你只添加一个条件(不另加辅助线),使得四边形AECF 为平行四边形,你添加的条件是 ;(2)添加了条件后,证明四边形AECF 为平行四边形.【答案或简析】解:(1)添加条件为:AE =CF , 故答案为:AE =CF ;(2)证明:∵AE ⊥BD ,CF ⊥BD , ∴AE ∥CF , ∵AE =CF ,∴四边形AECF 为平行四边形.28.(2021张家界)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,∠AOB =60°,对角线AC 所在的直线绕点O 顺时针旋转角α(0°< α <120°),所得的直线l 分别交AD ,BC 于点E ,F . (1)求证:△AOE ≌△COF ;(2)当旋转角α为多少度时,四边形AFCE 为菱形?试说明理由.【答案或简析】 证明:(1)∵四边形ABCD 是矩形, ∴AD ∥BC ,AO =CO , ∴∠AEO =∠CFO , 在△AOE 和△COF 中,,,,AEO CFO AOE COF AO CO ∠∠∠∠, ∴△AOE ≌△COF (AAS );(2)当α=90°时,四边形AFCE 为菱形, 理由:∵△AOE ≌△COF , ∴OE =OF , 又∵AO =CO ,∴四边形AFCE 为平行四边形, 又∵∠AOE =90°,∴四边形AFCE 为菱形.29.(2020长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F . (1)求证:△ABF ∽△FCE ;(2)若AB =23,AD =4,求EC 的长;(3)若AE -DE =2EC ,记∠BAF =α,∠F AE =β.求tan α+tan β的值.【答案或简析】(1)证明:∵四边形ABCD 是矩形, ∴∠B =∠C =∠D =90°, ∴∠CEF +∠EFC =90°, ∵△AEF 由△AED 翻折得到, ∴∠AFE =∠D =90°, ∴∠AFB +∠EFC =90°, ∴∠CEF =∠AFB , ∴△ABF ∽△FCE ; (2)∵四边形ABCD 是矩形, ∴AB =CD =23,AD =BC =4,设CE =x ,则DE =23-x , ∵△AEF 由△AED 翻折得到, ∴AD =AF =4,DE =EF =23-x ,在Rt △ABF 中,BF =AF 2-AB 2=42-(23)2=2, ∴CF =BC -BF =4-2=2,在Rt △CEF 中,EF 2=CE 2+CF 2,即(23-x )2=x 2+22, 解得x =233,即EC =233;(3)如解图,设EC =x ,DE =a ,则易得EF =a ,AB =a +x , ∵AE -DE =2EC ,∴AE -a =2x ,即AE =2x +a ,由勾股定理得:AF =AE 2-EF 2=(2x +a )2-a 2=4ax +4x 2, CF =EF 2-CE 2=a 2-x 2,由(1)知∠CEF =∠AFB ,∴∠BAF =∠CFE =α,∴cos ∠BAF =AB AF =a +x 4ax +4x 2,cos ∠CFE =CFEF =a 2-x 2a ,∴a +x 4ax +4x2=a 2-x 2a , a +x4x (a +x )=(a +x )(a -x )a,a (a +x )=(a +x )4x (a -x ), a =4ax -4x 2, 整理得(a -2x )2=0, ∴a =2x ,∴sin ∠CFE =CE EF =x a =x 2x =12,即∠CFE =∠BAF =α=30°,∴∠DAF =60°, ∴∠EAF =β=30°.∴tan α+tan β=tan 30°+tan 30°=233.。

九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)

九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)

九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(一)1.综合与实践问题情境在数学活动课上,老师提出了这样一个问题:如图①,已知正方形ABCD,点E是边上一点,连接AE,以AE为边在BC的上方作正方形AEFG.数学思考(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,求∠FCD的度数;实践探究(3)如图②,当点E在BC的延长线上时,连接AE,以AE为边在BC的上方作正方形AEFG,连接FC,若正方形ABCD的边长为4,CE=2,则CF的长是.2.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒.(1)当x=1时,S△AQE=平方厘米;当x=时,S△AQE=平方厘米.(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围.(3)若△AQE的面积为平方厘米,直接写出x值.3.如图,在平行四边形ABCD中,∠BAD的平分线交C于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.4.如图1,正方形ABCD沿GF折叠,使B落在CD边上点E处,连接BE,BH.(1)求∠HBE的度數;(2)若BH与GF交于点O,连接OE,判断△BOE的形状,说明理由;(3)在(2)的条件下,作EQ⊥AB于点Q,连接OQ,若AG=2,CE=3,求△OQR 的面积.5.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.6.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.7.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.8.已知,在平行四边形ABCD中,点F是AB上一点,连接DF交对角线AC于E,连接BE.(1)如图1,若∠EBC=∠EFA,EC平分∠DEB,求证:平行四边形ABCD是菱形;(2)如图2,对角线AC与BD相交于点O,当点F是AB的中点时,直接写出与△ADF 面积相等的三角形(不包括以AD为边的三角形).9.如图,四边形ABCD是平行四边形,∠BAC=90°,AB=AC,点H为边AB的中点,点E在CH的延长线上,且AE⊥BE.点F在线段AE上,且BF⊥CE,垂足为G.(1)若BF=AF,且EF=3,BE=4,求AD的长;(2)求证:BF+2EH=CE.10.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,则线段AE与DF的关系是;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(3)如图2,连接AC,当△ACE为等腰三角形时,请你求出CE:CD的值.参考答案1.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS);(2)解:如图①,过点F作FH⊥BC,交BC的延长线于点H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠ABE=90°,∴△EHF≌△ABE(SAS),∴FH=EB,EH=AB=BC,∴CH=BE,∴CH=FH,∴∠FCH=45°,∴∠FCD=45°;(3)解:过点F作FH⊥BC,交BC的延长线于点H,如图②,由(2)知△EHF≌△ABE,∴EH=AB,FH=BE,∵AB=BC=4,CE=2,∴BE=FH=6,CH=CE+EH=6,∴CF==6.故答案为:6.2.解:(1)①∵E为CD的中点,∴DE=1,∵动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,∴当x=1时,AQ=1,∴S△AQE=×AQ×AD=×1×2=1,②∵AQ=,∴点Q在AB上,∴S△AQE=×AQ×AD=;故答案为:①1;②.(2)根据题意,得,解得:.∴x的取值范围是.(3)①当点Q在AB上,∵S△AQE=×x×2=,∴x=,②当点Q在BC上时,∵S△AQE=S梯形ABCE﹣S△ABQ﹣S△CQE=×2×(x﹣2)﹣×1×(4﹣x)=.∴x=,③当点Q在CD上时,∵S△AQE=,∴x=.综合以上可得x=或或.3.证明:(1)∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)△BDG是等边三角形,理由如下:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°,由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD===26,∴DM=BD=13.4.解:(1)如图1中,过点E作EN⊥AB于N,过点B作BM⊥EA′于M.由翻折可知,∠ABF=∠FEA′=90°,FB=FE,∴∠FBE=∠FEB,∴∠EBN=∠BEM,∵∠ENB=∠BME=90°,BE=EB,∴△ENB≌△BME(AAS),∴EN=BM,∵四边形ABCD是正方形,∴∠NBC=∠C=∠A=∠ENB=90°,AB=BC,∴AB=BM=BC,∵BH=BH,BE=BE,∴Rt△BAH≌Rt△BMH(HL),Rt△BME≌Rt△BCE,∴∠ABH=∠MBH,∠EBM=∠EBC,∴∠HBE=∠MBH+∠EBM=∠ABC=45°.(2)结论:△BOE是等腰直角三角形.理由:如图2中,由翻折的旋转可知,FG垂直平分线段BE,∴∠OBE=∠OEB=45°,∴OB=OE,∠BOE=90°,∴△BOE是等腰直角三角形.(3)如图3中,过点O作OM⊥EQ于M,ON⊥AB于N,过点G作GJ⊥BC于J.∵∠A=∠ABJ=∠BJG=90°,∴四边形ABJG是矩形,∴AG=BJ=2,AB=GJ=BC,∵FG⊥BE,∴∠EBC+∠BFG=90°,∠BFG+∠JGF=90°,∴∠CBE=∠JGF,∵∠C=∠GJF=90°,BC=GJ,∴△GJF≌△BCE(AAS),∴FJ=CE=3,∴BF=EF=5,CF==4,∴BC=BF+CF=9,∴BE===3,∴OB=OE=3,∵EQ⊥AB,∴∠ONB=∠OME=∠OMQ=∠MQN=90°,∴四边形MQNO是矩形,∴∠MON=∠BOE=90°,∴∠BON=∠EOM,∴△ONB≌△OME(AAS),∴ON=OM,∴四边形MQNO是正方形,设OM=OM=NQ=MQ=x,∵∠C=∠CBQ=∠BQE=90°,∴四边形BCEQ是矩形,∴BQ=EC=3,EQ=BC=9,在Rt△BON中,则有x2+(x+3)2=(3)2,解得x=3或﹣6(舍弃),∴OM=QM=3,EM=BN=6,∵∠BQR=∠OMR=90°,∠BRQ=∠ORM,BQ=OM=3,∴△BQR≌△OMR(AAS),∴QR=MR=∴S△OQR=•QR•OM=××3=.5.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=AD cos∠A=4×=2,∴BD===2.6.解:(1)∵正方形ABCD的面积是8,∴BC=CD==2,∴BD=×2=4.∵四边形ABCD为正方形,∴∠DCO=∠BCO=∠CDO=∠MBN=45°,∵CM平分∠ACD,∴∠DCM=∠MCO=22.5°,∴∠BMC=∠CDO+∠DCM=45°+22.5°=67.5°.∵MN⊥CM,∴∠CMN=90°,∴∠BMN=90°﹣67.5°=22.5°,∴∠BMN的度数为22..5°.(2)∵∠MCO=22.5°,∠BCO=45°,∴∠BCM=∠BCO+∠MCO=67.5°,又∵∠BMC=67.5°,∴∠BCM=∠BMC,∴BM=BC=CD=2,∴DM=BD﹣BM=4﹣2.∵∠DCM=22.5°,∠BMN=22.5°,∴∠DCM=∠BMN.∴在△DCM和△BMN中,,∴△DCM≌△BMN(ASA),∴BN=DM=4﹣2,∴BN的长为4﹣2.7.解:(1)∵点D坐标是(,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=,BD=BC﹣CD=,∵将矩形沿直线DE折叠,∴DF=CD=,∴BF===2,∴AF=6﹣2=4,∴点F(4,4).(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=﹣x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(,6),∵DJ=JE,∴J(,),∵PJ=JF,∴P(﹣,3).(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(,),M(,),M′(,),当点M落在x轴上时,=0,解得m=﹣,当点M′落在X轴上时,=0,解得m=﹣9,∴满足条件的点N的坐标为(﹣,)或(﹣9,﹣17).8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠EFA,∵∠EBC=∠EFA,∴∠EBC=∠EDC,∵EC平分∠DEB,∴∠DCE=∠BCE,在△CED和△CEB中,,∴△CED≌△CEB(AAS),∴CD=CB,∵四边形ABCD为平行四边形,∴平行四边形ABCD为菱形;(2)解:与△ADF面积相等的三角形(不包括以AD为边的三角形)为△AOB、△BOC、△COD、△DFB;理由如下:∵四边形ABCD是平行四边形,∴OA=OB,OC=OD,∴△AOB的面积=△BOC的面积=△COD的面积=△ABD的面积,∵点F是AB的中点,∴△ADF的面积=△DFB的面积=△ABD的面积,∴△AOB的面积=△BOC的面积=△COD的面积=△DFB的面积=△ADF的面积.9.解:(1)∵AE⊥BE.EF=3,BE=4,∴BF=,∵BF=AF,∴AF=5,∴AE=3+5=8,∴AB,∵∠BAC=90°,AB=AC,∴BC=,∵四边形ABCD是平行四边形,∴AD=BC=4;(2)在CH上截取HM=HE,连接BM和AM,如图,∵BE⊥AE,∴∠AEB=90°,∵点H为边AB的中点,∴EH=AH=BH=MH,∴四边形AEBM是矩形,∴∠EAM=90°,∵∠BAC=90°,∴∠BAF=∠CAM,∵BF⊥CE,∴∠EGB=90°,∴∠EBG+∠BEG=90°,∵∠EBG+∠BFE=90°,∴∠BEG=∠BFE,∵矩形AEBM中,BE∥AM,∴∠BEG=∠AMH,∴∠BFE=∠AMH,∴∠AFB=∠AMC,∵AB=AC,∴△ABF≌△ACM(AAS),∴BF=CM,∵CM+EM=CE,EM=EH+MH=2EH,∴BF+2EH=CE.10.解:(1)结论:AE=DF,AE⊥DF,理由:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;故答案为:AE=DF,AE⊥DF.(2)成立.理由如下:如图2中,∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3)有两种情况:①如图3﹣1中,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE==a,则CE:CD=a:a=.②如图3﹣2中,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE==a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2,即CE:CD=或2.。

2023中考数学复习-专题22 四边形(讲通)(学生版)

2023中考数学复习-专题22 四边形(讲通)(学生版)

专题22 四边形1.掌握平行四边形、菱形、矩形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.2.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.3.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°;(2)推论:四边形的外角和是360°.例1.一个多边形的外角和是内角和的,这个多边形的边数为()A.5B.6C.7D.8二、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.5.平行四边形的面积:1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.例2.如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE▭BD,BM▭AC、DN▭AC,CF▭BD垂足分别是E、M、N、F,求证:EN▭MF.三、矩形的定义、性质与判定1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且相等.②角的性质:四个角都是直角.③对角线性质:对角线互相平分且相等.④对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得.3.矩形的判定判定①:有一个角是直角的平行四边形是矩形.判定②:对角线相等的平行四边形是矩形.判定③:有三个角是直角的四边形是矩形.四、菱形的定义、性质与判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角.注意:菱形也具有平行四边形的一切性质.3.菱形的判定①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形④有一条对角线平分一组对角的平行四边形是菱形⑤对角线互相垂直且平分的四边形是菱形4.菱形的面积①对角线乘积的一半(只要是对角线互相垂直的四边形都可用);②设菱形的边长为a,一个夹角为x°,则面积公式是:S=a²·sinx5.菱形的周长菱形周长=边长×4用“a”表示菱形的边长,“C”表示菱形的周长,则C=4a例3.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)判断四边形EHFG的形状;(2)在什么情况下,四边形EHFG为菱形?五、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等;(2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式:S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).六、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:▭n个正多边形中的一个内角的和的倍数是360°;▭n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.1.(2022·泉州市东海中学)在四边形ABCD中,E,F,G,H分别为各边的中点,顺次连结E,F,G,H,得到中点四边形EFGH.当AC=BD时,则四边形EFGH是()A.平行四边形B.矩形C.菱形D.正方形2.(2022·黑龙江九年级期末)如图,矩形ABCD中8AB=把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F.若254AF=,则AD的长为()A.4B.5C.6D.7 3.(2022·重庆实验外国语学校九年级月考)下列命题中,真命题是()A.对角线互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.四条边相等的四边形是矩形D.有一组对边平行且相等的四边形是平行四边形4.(2022·深圳市罗湖区翠园初级中学)如图,平行四边形ABCD中,对角线AC、BD相交于点O,则下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC▭BD时,它是菱形C.当AC=BD时,它是矩形D.当AC垂直平分BD时,它是正方形5.(2022·沙坪坝·重庆八中九年级月考)如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定ABE ADF≌的是()A.BE DF∠=∠∠=∠C.AE AF=B.BAF DAE=D.AEB AFD 6.(2022·重庆实验外国语学校九年级开学考试)下列说法不正确的是()A.平行四边形两组对边分别平行B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的两组对边分别平行且相等7.(2020·浙江杭州市·九年级)若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是3:2,则梯形的上、下底长分别________.8.(2022·沈阳市第四十三中学九年级月考)如图,在▭ABC中,▭A=50°,AB=AC,点D 在AC边上,以CB、CD为边作平行四边形BCDE,则▭E的度数为_____.9.(2022·济南市章丘区实验中学九年级月考)已知:如图,平行四边形ABCD中,AC,BD⊥于点F.交于点O,AE BD⊥于点E,CF BD求证:OE OF=.10.(2019·宁波市慈湖中学九年级)如图,在梯形ABCD中,AD▭BC,AB=DC,若点M为线段AD上任意一点(M与A、D不重合).问:当点M在什么位置时,MB=MC,请说明理由.。

八年级下学期数学四边形专题复习试卷一(含答案)

八年级下学期数学四边形专题复习试卷一(含答案)

八年级下学期数学四边形专题复习试卷一班级: 姓名: 学号:一、判断题:(每小题3分,共15分)1、n 边形的n 个外角中最多有三个钝角。

( )2、一组对边相等,另一组对边平行的四边形是平行四边形。

( )3、对角线平分相应的一组对角的平行四边形是菱形。

( )4、对角线垂直且相等的四边形是正方形。

( )5、菱形对角线交点到各边的距离相等。

( )二、填空题:(每小题3分,共18分)6、若n 边形的每个外角都等于200,则边数n = 。

7、平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

8、若矩形的对角线长为8,两条对角线的一个交角为600,则该矩形的面积为 。

9、若边长为4cm 的菱形的两邻角度数之比为1∶2,则该菱形的面积为 cm 2。

10、若菱形的两对角线之比为3∶4,对角线之差为2cm ,则该菱形的周长为 cm 。

11、梯形ABCD 中,AD ∥BC ,若∠A ∶∠B ∶∠C =2∶7∶3,则∠D = 度。

三、选择题:(每小题3分,共27分)12、n 边形的对角线总条数是( )A 、2n B 、)2(-n n C 、2)3(-n n D 、)3(-n n 13、矩形、菱形、正方形都具有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角线平分对角14、四边形ABCD 的对角线相交于点O ,能判定该四边形是正方形的题设是( )A 、AB =CD ,AB ∥CD ,AC =BD B 、AB =CD ,BC =ADC 、OA =OB =OC =OD ,AB =BC D 、AC =BD ,AC ⊥BD15、已知一个四边形ABCD 的边长分别为a 、b 、c 、d ,其中a 、c 为对边,且 满足条件bd ac d c b a 222222+=+++,则该四边形ABCD 的对角线( )A 、相等B 、相互平分C 、相互垂直D 、垂直且相等16、正方形的边长是2cm ,则它的一个顶点和另两边中点所构成三角形的面积为( )A 、21cm 2 B 、1cm 2 C 、23cm 2 D 、2cm 2 17、一个正方形的边长为4cm ,顺次连结它的各边中点所得的四边形的面积是( ) A 、4cm 2 B 、8cm 2 C 、12cm 2 D 、16cm 218、若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必然是( )A 、菱形B 、对角线相互垂直的四边形C 、正方形D 、对角线相等的四边形19、以下图形中,是轴对称图形,但不是中心对称图形的是( )A 、平行四边形B 、矩形C 、菱形D 、等腰梯形20、如果矩形的四个内角的平分线能够围成一个四边形,那么这个四边形是( )A 、平行四边形B 、矩形C 、菱形D 、正方形四、解答题:(每小题10分,共60分)21、如图,E 、F 为平行四边形ABCD 对角线AC 延长线上的点,且AE =CF ,连结BF 、BE 、DF 、DE 。

2023中考数学专题复习——第七章 四边形

2023中考数学专题复习——第七章    四边形

2023中考专题复习——第七章四边形时间:45分钟满分:80分一、选择题(每题4分,共32分)1.下列各组条件中,不能判断一个四边形是平行四边形的是() A.两组对边分别平行的四边形B.两组对角分别相等的四边形C.两条对角线互相平分的四边形D.一组对边平行另一组对边相等的四边形2.如图,在△ABC中,∠A=90°,点M,N分别为边AB和AC的中点,若AB =2,AC=4,则MN的长度为()A.2 3 B. 3 C.2 5 D. 5(第2题)(第3题)3.如图,在▱ABCD中,连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=()A.80°B.100°C.120°D.140°4.如图,四边形ABCD是菱形,其中A,B两点的坐标分别为A(0,3),B(4,0),则点D的坐标为()A.(0,1) B.(0,-1)C.(0,2) D.(0,-2)(第4题)(第5题)5.如图,在正方形ABCD的外侧作等边三角形CDE,连接AE,则∠DAE的度数是()A.15°B.20°C.12.5°D.10°6.如图,在矩形ABCD中,AB=4,BC=8,对角线AC,BD相交于点O,过点O作OE⊥AC交AD于点E,则DE的长是()A.3 B.5 C.2.4 D.2.5(第6题)(第7题)7.如图,在▱ABCD中,AB=BC=5,对角线BD=8,则▱ABCD的面积为() A.20 B.24 C.40 D.488.将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C. △BEF的面积D. △AEH的面积(第8题)(第9题)二、填空题(每题4分,共16分)9.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有________条.10.在平面直角坐标系xOy中,已知点A(2,0),B(5,4),若四边形OABC是平行四边形,则▱OABC的周长等于________.11.如图,在Rt△ABC中,AC=3,BC=4,点D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E,F,则线段EF的最小值为________.(第11题)(第12题)12.如图,四边形ABCD是菱形,点E,F分别在边AB,AD上,且AE=DF,连接BF与DE相交于点G,已知AF=2DF,若FG =3,则GB=________.三、解答题(共32分)13.(8分)如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,且BE=DF,AF=CE.求证:四边形ABCD为平行四边形.(第13题)14.(24分)如图,已知在矩形ABCD中,点M,N分别是边AD,BC的中点,点P,Q分别是边BM,DN的中点.(1)求证:BM∥DN;(2)求证:四边形MPNQ是菱形;(3)当矩形ABCD的边AB与AD满足什么数量关系时,四边形MPNQ为正方形?请说明理由.3(第14题)答案一、1.D 2.D 3.C 4.D 5.A 6.A7.B8.C二、9.410.1411.12 512. 63点拨:如图,过点F作FP∥AB,交DE于点P,则△DFP∽△DAE.∵AF=2DF,∴FPAE=DFDA=13.∵四边形ABCD是菱形,∴AB=AD.∵AE=DF,∴BE=AF,∴BE=2AE,∴FPBE=FP2AE=16.∵FP∥AB,∴△FPG∽△BEG,∴GFGB=FPBE=16,∴GB=6GF=6 3.(第12题)三、13.证明:∵AF=CE,∴AF-EF=CE-EF,即AE=CF.∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.∵BE=DF,∴△ABE≌△CDF.∴AB=CD,∠BAE=∠DCF.∴AB∥CD.∴四边形ABCD为平行四边形.14.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC.∵点M,N分别为边AD,BC的中点,∴DM=BN,∴四边形DMBN是平行四边形.∴BM∥DN.(2)证明:由(1)可知四边形DMBN是平行四边形,∴BM=DN,BM∥DN.5∵点P,Q分别为边BM,DN的中点,∴MP=NQ.∴四边形MPNQ是平行四边形.如图,连接MN.(第14题)由(1)可知AD∥BC,AD=BC.∵点M,N分别为边AD,BC的中点,∴DM=CN,∴四边形DMNC是平行四边形.由题可知∠C=90°,∴四边形DMNC是矩形,∴∠DMN=∠C=90°.∵点Q是边DN的中点,∴MQ=NQ,∴四边形MPNQ是菱形.(3)解:当矩形ABCD的边AB与AD满足AB=12AD时,四边形MPNQ为正方形.理由:∵AB=12AD,点M是边AD的中点,∴AB=AM.易得矩形ABNM是正方形.∵P为正方形ABNM对角线BM的中点,∴∠NPM=90°.由(2)知四边形MPNQ是菱形,∴四边形MPNQ是正方形.。

初中数学四边形复习教案

初中数学四边形复习教案

初中数学四边形复习教案1. 知识与技能目标:使学生掌握四边形的定义和性质,能够识别和判断各种四边形,了解四边形在实际生活中的应用,提高学生的空间想象能力和抽象思维能力。

2. 过程与方法目标:通过观察、操作、猜想、验证等数学活动,培养学生的探究能力和合作能力,使学生在解决实际问题中能够灵活运用四边形的性质。

3. 情感、态度与价值观目标:学生在学习过程中能够积极参与,勇于尝试,体验数学学习的乐趣,增强自信心,培养克服困难的勇气和信心。

二、教学内容1. 四边形的定义和性质2. 四边形的分类和特点3. 四边形在实际生活中的应用三、教学重点与难点1. 教学重点:四边形的定义和性质,四边形的分类和特点。

2. 教学难点:四边形性质的探究和应用。

四、教学过程1. 导入新课通过展示一些生活中的四边形物体,如梯子、窗户、自行车等,引导学生关注四边形,激发学生学习四边形的兴趣。

然后提出问题:“你们知道四边形有哪些性质吗?”从而导入新课。

2. 探究四边形的性质(1)小组合作,观察探究将学生分成若干小组,每组发一些四边形的图片,让学生观察四边形的特点,探讨四边形的性质。

(2)汇报交流各小组汇报探究成果,教师引导学生总结四边形的性质,如对边相等、对角相等、对边平行等。

3. 四边形的分类和特点(1)长方形、正方形、梯形的定义和性质引导学生了解长方形、正方形、梯形是特殊的四边形,掌握它们的定义和性质。

(2)四边形的分类根据四边形的性质,引导学生对四边形进行分类,了解各种四边形的特点。

4. 四边形在实际生活中的应用通过一些实际问题,让学生运用四边形的性质解决问题,提高学生运用数学知识解决实际问题的能力。

5. 总结与反思本节课我们学习了四边形的定义、性质和分类,以及四边形在实际生活中的应用。

请大家回顾一下,我们是如何得出四边形的性质的?这个过程中,我们运用了哪些数学方法?通过这个问题,引导学生总结本节课的学习内容,提高学生的反思能力。

中考专题复习:中点四边形

中考专题复习:中点四边形
2、连接对角线相等的四边形四条边中点得到 的四边形是菱形
3、连接对角线互相垂直的四边形四条边中点 得到的四边形是矩形
试一试
1、如图,四边形ABCD中,E,F,G,H分别是AB,
BC,CD,DA边上的中点,请你添加一个条件使四边
形EFGH是菱形,应添加的条件是

使四边形EFGH是矩形,应添加的条件是
四边形EFGH,四边形MNPQ的形状是( A )
A)矩形,菱形
B)菱形,矩形
C)矩形,矩形
D)矩形,正方形
4、如图,四边形ABCD中,AC=12,BD=8,面积 为40,点E、F、G、H分别是边AB、BC、CD、DA 中点,求:四边形 EFGH的周长是多少
D H A E
B
解:∵E、F分别是AB、BC中点
腰梯形中的哪一种,并写出证明过程。
A
DA
DA
D AQ D
F
B
E CB E
F CE B
M P
CE B N F
C F
小结:
本节课你学到了哪些知识?还有需要老师帮 你解决的难题吗?
D
D1
C3
C2
C1
B3 B2
C
A D2 O
D3
A1
A3
A2
B1
B
3、如图,在正方形ABCD中,点E,F分别是BC,CD的中点,AF,DE
相交于点G,则可得结论:
①AF=DE ②AF⊥DE(不须证明)
⑴如图②,若点E,F不是正方形ABCD的边BC,CD的中点,但满足
CE=DF则上面的结论①②是否仍然成立?(请直接回答“成立”

D
H A
G C
F E
B

中考 四边形(矩形 平行四边形 梯形 菱形)专题 数学思想方法 总复习

中考  四边形(矩形  平行四边形  梯形  菱形)专题   数学思想方法 总复习
解:延长 与 的延长线相交于 ,则有
∽ , ∽ , ∽
第六类:把对角线交点与一边中点连结,构造三角形中位线
经典例题6.已知:如右上图6,在平行四边形 中, , ,
交 于 ,求
解:连结 交 于点 ,连结
∵四边形 为平行四边形
专题二梯形中的辅助线
常见的梯形辅助线规律口诀为:梯形问题巧转化,变为△和□;要想尽快解决好,添加辅助线最重要;平移两腰作出高,延长两腰也是关键;记着平移对角线,上下底和差就出现;如果出现腰中点,就把中位线细心连;上述方法不奏效,过中点旋转成全等;灵活添加辅助线,帮你度过梯形难关;想要易解梯形题,还得注意特题特解;注意梯形割与补,巧变成为□和△.基本图形如下:
(4)对角线相等且互相平分的四边形.四边形ABCD是矩形.
5.菱形的性质:
因为ABCD是菱形
6.菱形的判定:
四边形四边形ABCD是菱形.
7.正方形的性质:
ABCD是正方形
8.正方形的判定:
四边形ABCD是正方形.
名称
定义
性质
判定
面积





两组对边分别平行的四边形叫做平行四边形。
1对边平行;
②对边相等;
∴ ,即 解得 故选A
第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
经典例题3.已知:如左下图3,四边形 为平行四边形
求证:
证明:过 分别作 于点 , 的延长线于点F


∵四边形 为平行四边形∴ ∥ 且 ,
∴ ∵
∴ ∴

第四类:延长一边中点与顶点连线,把平行四边形转化为三角形。

∴ 是直角三角形,∵ , ,

八年级数学四边形专题复习(精编)

八年级数学四边形专题复习(精编)

四边形专题复习【知识要点】 一 一般四边形1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°;(2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n -2)180°;(2)任意多边形的外角和等于360°.3.若n 是多边形的边数,则对角线条数公式是:2)3n (n -.二 平行四边形的判定与性质1. 平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

2. 平行四边形是中心对称图形,对称中心是两条对角线的交点。

3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( 4.平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫.三 矩形的判定与性质1. 矩形定义1:有一个角是直角的平行四边形叫做矩形2. 矩形定义2:有三个角是直角的四边形叫做矩形3. 矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线。

4.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 5. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形.四 菱形的判定与性质1. 菱形定义1:有一组邻边相等的平行四边形叫做菱形.2. 菱形定义2:四条边都相等的四边形叫做菱形。

3. 菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点, 对称轴是对角线所在的直线。

A BCD 1234AB CDABDOCABDOCA D BCADBCOCDBAO4.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所( 5.菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 五 正方形的判定与性质1. 正方形定义1:有一组邻边相等的矩形叫做正方形。

2020年九年级数学中考复习: 四边形专题复习教案

2020年九年级数学中考复习: 四边形专题复习教案

2020年九年级数学中考复习:四边形专题复习教案一、教学目标通过本教案的学习,学生将能够:1.了解四边形的定义和性质;2.掌握四边形的分类和特征;3.理解四边形的面积和周长的计算方法;4.能够解决与四边形相关的问题。

二、知识概述四边形是指由四条线段组成的封闭图形。

常见的四边形包括矩形、正方形、平行四边形和菱形等。

在九年级数学中,掌握四边形的定义、分类和性质是非常重要的,同时还需要熟练掌握四边形的面积和周长的计算方法。

2.1 四边形的定义和性质四边形是由四条线段构成的封闭图形,它有以下性质:•四边形的内角和等于360°;•对角线互相垂直的四边形是矩形;•有一对对边相等且互相平行的四边形是平行四边形;•有4个边长相等的四边形是正方形;•有一对对边相等且对角线互相垂直的四边形是菱形。

2.2 四边形的分类和特征根据边长和角度的特征,四边形可以分为以下几类:•矩形:具有四个内角都是直角的四边形;•正方形:具有四个边长相等且四个内角都是直角的四边形;•平行四边形:具有相对的两边平行的四边形;•菱形:具有四个边长相等且对角线互相垂直的四边形。

2.3 四边形的面积和周长的计算方法•矩形的面积等于长乘以宽;•正方形的面积等于边长的平方;•平行四边形的面积等于底边乘以高;•菱形的面积等于对角线的乘积的一半。

四边形的周长等于各边长的和。

三、教学重点与难点3.1 教学重点•四边形的定义和性质;•四边形的分类和特征;•四边形的面积和周长的计算方法。

3.2 教学难点•理解和应用四边形的性质;•熟练计算不同类型四边形的面积和周长。

4.1 导入与导入教师通过原生实例或者图片,引入四边形的概念,让学生了解四边形的定义。

4.2 教学内容4.2.1 四边形的定义和性质1.讲解四边形的定义和性质,介绍四边形的内角和等于360°的性质;2.分类介绍矩形、正方形、平行四边形和菱形的特征和性质。

4.2.2 四边形的面积和周长的计算方法1.讲解不同类型四边形的面积计算方法:矩形、正方形、平行四边形和菱形;2.讲解四边形的周长计算方法。

中考数学复习专题四边形的性质和判定

中考数学复习专题四边形的性质和判定

中考数学复习专题四边形的性质和判定第一局部知识梳理1.平行四边形①定义:两组对边区分平行的四边形是平行四边形.②性质:平行四边形的对边平行且相等;平行四边形的邻角互补,对角相等;平行四边形的对角线相互平分;平行四边形是中心对称图形,对角线的交点为对称中心;③判定方法定义:两组对边区分平行的四边形是平行四边形;判定方法1:两组对边区分相等的四边形是平行四边形;判定方法2:两组对角区分相等的四边形是平行四边形;判定方法3:对角线相互平分的四边形是平行四边形;判定方法4:一组对边平行且相等的四边形是平行四边形.2.菱形①定义:有一组邻边相等的平行四边形叫做菱形.②性质:具有平行四边形的一切特征;菱形的四条边都相等;菱形的对角线相互垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半;菱形是轴对称图形.③判定方法定义:有一组邻边相等的平行四边形叫做菱形;判定方法1:四条边都相等的四边形是菱形;判定方法2:对角线相互垂直的平行四边形是菱形.3.矩形①定义:有一个内角是直角的平行四边形是矩形.②性质:具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等;矩形既是轴对称图形,又是中心对称图形。

③判定方法定义:有一个角是直角的平行四边形是矩形;判定方法1:有三个角是直角的四边形是矩形;判定方法2:对角线相等的平行四边形是矩形.第二局部精讲点拨考点1.平行四边形的性质【例1】如图,在平行四边形ABCD中,DB=DC.,CE BD于E ,那么.变式1 □ABCD中,CE⊥AB,垂足为E,假设∠A=115°,那么∠BCE= .变式2 在平行四边形ABCD中,点A1.A2.A3.A4和C1.C2.C3.C4区分AB和CD的五等分点,点B1.B2和D1.D2区分是BC和DA的三等分点,四边形A4 B2 C4 D2的面积为1,那么平行四边形ABCD面积为〔〕A.2B.C.D.15变式3 如图,□ABCD中,AD=8㎝, AB=6㎝,DE平分∠ADC交BC边于点E,那么BE等于〔〕A.2cmB.4cmC.6cmD.8cm变式4如图,平分,,,那么.变式5 如图,:平行四边形ABCD中,的平分线交边于,的平分线交于,交于.求证:.考点小结:2.平行四边形的判定【例2】如图,平行四边形ABCD 中,M .N 区分为AD .BC 的中点,连结AN .DN .BM ,且AN .BM 交于点P ,CM .DN 交于点Q .四边形MGNP 是平行四边形吗?为什么?变式 1 如图,在ABCD 的各边AB .BC .CD .DA 上,区分取点K .L .M .N ,使AK =CM .BL =DN ,那么四边形KLMN 为平行四边形吗?说明理由.变式2 如图,□ABCD 中,E .F 区分在BA .DC 的延伸线上,且AE =21AB ,CF =21CD ,试证明AECF 为平行四边形. 变式3 在平行四边形ABCD 中,∠ABC 的平分线交CD 于点E,∠ADC 的平分线交AB 于点F.试证:四边形DFBE 为平行四边形.变式4 如图,在□ABCD 中,点E .F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .考点3.平行四边形综分解绩【例3】如图,△ABC 是等边三角形,D.E 区分在边BC.AC 上,且CD=CE ,连结DE 并延伸至点F ,使EF=AE ,连结AF.BE 和CF 。

八年级数学四边形复习题(专题五无答案) 人教版

八年级数学四边形复习题(专题五无答案) 人教版

专题五:四边形中的面积问题一、解决问题主要思想方法平面几何学的产生起源于人们对土地面积的测量,面积是平面几何中一个重要的概念,联系着几何图形中的重要元素边与角。

计算图形的面积是几何问题中一种常见问题,求面积的基本方法有: 1、直接法:根据面积公式和性质直接进行运算。

2、割补法:通过分割或补形,把不规则图形或不易求解的问题转化为规则图形或易于求解的问题。

3、等积法:根据面积的等积性质进行转化求解,常见的有同底等高、同高等底和全等的等积转化。

4、等比法:将面积比转化为对应线段的比。

熟悉以下基本图形中常见的面积关系:S 4S 3S 3S 2S 2S 2S 4S 3S 1S 1S 1S 2S 1二、四边形的面积公式平行四边形、矩形、菱形、正方形的面积都可以用公式:S=底×高来计算,对于特殊的平行四边形,如矩形可用长×宽求面积,菱形可用两条对角线乘积的一半求面积,正方形即可用两条对角线乘积的一半求面积,也可用边长的平方求面积。

思考:对于对角线互相垂直的四边形,也可用两条对角线乘积的一半求其面积吗?如果能请说明理由。

三、例题讲解例1、如图,在梯形A B CD 中,A D ∥BC ,E 为CD 的中点,E F ⊥AB于F ,则有S 梯形ABCD =A B ·EF ,请说明理由。

例2、如图1―4―16,菱形A B CD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合)且PE ∥BC 交AB 于 E ,PF ∥CD 交AD 于F ,则阴影部分的面积是___FE DCB A例3、如图,矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是_________例4、探究规律:如图2-6-4所示,已知:直线m∥n,A、B为直线n上两点,C、P为直线m上两点.(1)请写出图2-6-4中,面积相等的各对三角形;(2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有________与△ABC的面积相等.理由是:_________________.解决问题:如图 2-6-5所示,五边形 ABCDE是X大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图2-6-6所示的形状,但承包土地与开垦荒地的分界小路(2-6-6中折线CDE)还保留着;X大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按X大爷的要求设计出修路方案(不计分界小路与直路的占地面积).(1)写出设计方案.并画出相应的图形;(2)说明方案设计理由.例5、如图甲,AB 、CD 是两条线段,M 是AB 的中点,S △DMC 、S △DAC 、S △DBC 分别表示△DMC 、△DAC 、△DBC 的面积,当A B ∥CD 时,有2DAC DBCS S DMC S +=△△△。

四边形专题经典复习原创有解答

四边形专题经典复习原创有解答

第一讲 四边形专题复习1.平行四边形的判定和性质:注意:1.平行四边形的面积:平行四边形的面积等于它的底和该底上的高的积.如图1,2. 拓展:同底(等底)同高(等高)的平行四边形面积相等.如图2,3.平行四边对角线分得的四个三角形面积相等。

2.矩形的判定和性质5.梯形的判定和性质6.梯形中的常用辅助线:7.平行线等分线段定理(1)如果一组平行线在一条直线上截得的线段相等,那么在其它直线上所截得的线段也相等. (2)经过三角形一边中点且与另一边平行的直线必平分第三边. (3)经过梯形一腰中点且与底边平行的直线必平分另一腰. 8.三角形中位线定理:三角形的中位线平行于第三边且等于第三边的一半. 梯形的中位线平行于两底且等于两底和的一半. 典型例题: 例1.如图,ABCD 中,AE=CF ,AE 与CF 交于点O ,连结BO .求证:∠AOB=∠COB .解:作BM ⊥CF 于M ,BN ⊥AE 于N ,连接BE 、BF ;根据和AE=CF ,可证BN=BM ,于是∠AOB=∠COB .例2.如图:工人师傅要把一块三角形的钢板,通过切割焊接成一个与其面积相等的平行四边形.请你设计一种方案并在图中标出焊接线,然后证明你的结论.解:如图,分别取边AB、AC的中点D、E,沿线段DE切割开,将△ADE的边AE与边EC重合(点A与点C重合、点E与点E重合)后焊接,点D至点F处,则所得四边形DBCF为平行四边形.证明略.例3. 已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC; (2)EG=EF。

证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,BD=2BO.由已知BD=2AD,∴BO=BC,又E是OC中点,∴BE⊥AC.(2)由(1)BE⊥AC,又G是AB中点,∴∵EF是△OCD的中位线,∴又,∴例4.如图,ABCD为等腰梯形,AB∥CD,对角线AC,BD交于O,且∠AOB=60°,又E,F,G分别为DO,AO,BC的中点.求证:△EFG是等边三角形。

2023年中考数学专题复习——专项训练(五)四边形

2023年中考数学专题复习——专项训练(五)四边形

2023年中考数学专题复习——专项训练(五)四边形一、选择题(本大题共10小题,每小题3分,共30分)1. 从七边形的一个顶点作对角线,把这个七边形分成三角形的个数是()A. 7B. 6C. 5D. 42. “花影遮墙,峰峦叠窗.”苏州园林空透的窗棂中蕴含着许多的数学元素.图①中的窗棂是冰裂纹窗,图②是这种窗棂中的部分图案.若∠1=∠2=75º,∠3=∠4=65º,则∠5的度数是()A. 80ºB. 75ºC. 65ºD. 60º①②第2题图第3题图第4题图第5题图3. 如图,已知四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DGF的度数是()A.70°B.60°C.80°D.45°4. 如图,已知四边形ABCD是平行四边形,下列结论中正确的是()A. 当AB=BC时,四边形ABCD是矩形B. 当AC=BD时,四边形ABCD是菱形C. 当∠ABC=90º时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形5. 如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A. 20°B. 25°C. 30°D. 40°6. 用图①所示两种图形可以无缝隙拼接成图②所示的正方形ABCD.已知图①所示图形,∠F=45°,∠H=15°,MN=2,则图②中正方形的对角线AC的长为()A. B. C.1 D.2①②第6题图第8题图第9题图第10题图7. 已知E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,对角线AC,BD相交于点O.根据下列条件,不能证明四边形EFGH是矩形的是()A. AC⊥BDB. AB=BC,OB=ODC. AB=BC,OA=OCD. AB=BC,CD=AD8. 如图,菱形ABCD的边长为2,∠ABC=60º,CE∥BD,则△BDE的面积为()A. 1B. 2C. 3D.9. 如图,在平面直角坐标系中,四边形ABCD是正方形,点A的坐标为(0,2),∠ABO=30º,E为CD的中点,则点E的坐标为()21 B.)2 C. D.2A. )10. 如图,菱形ABCD的边长为12,∠ABC=60°,直线EF⊥AC,垂足为H,分别与AD,AB及CB的延长线交于点E,M,F.若AE∶BF=1∶2,则CH的长为()A. 12B. 10C. 8D. 6二、填空题(本大题共6小题,每小题4分,共24分)11. 六边形的内角和比它的外角和多__________度.12. 如图,在△ABC中,∠ACB=120º,分别以AC,BC为边,向△ABC外作正方形ACDE和正五边形BCFGH,则∠DCF的度数是.第12题图第13题图第14题图13. 如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上.若A(2,0),D(4,0),以点O为圆心,OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是.14. 如图,小明同学将边长为6的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移得到△A'B'C'.当两个三角形重叠部分为菱形时,A'D的长为.15. 把一张宽为2 cm的矩形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为4 cm的等腰直角三角形,则纸片的长AD为cm.第15题图第16题图16. 如图13,在□ABCD中,AE⊥BC于点E,N是EC的中点,M是AB的中点.已知S△ABD=6,BC=4,则MN的长为.三、解答题(本大题共4小题,共46分)17. (10分)如图,在□ABCD中,AE⊥BC于点E,延长BC至点F,使CF=BE,连接AF,DE,DF.求证:四边形AEFD是矩形.第17题图第18题图第19题图第20题图18. (10分)如图,在□ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等;(不写作法,保留作图痕迹)(2)若BC=8,CD=5,求CE的长.19. (12分)如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C 作CE⊥AB,交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.20.(14分)如图,在正方形ABCD中,E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N.若正方形ABCD的边长为10,P是MN上一点,求△PDC周长的最小值.参考答案专项训练(五)答案详解9. A 解析:先分别求出点C,D的坐标,再利用中点坐标求解.10. B 解析:因为四边形ABCD是菱形,所以AD∥BC,AB=BC=12,∠MAH=∠EAH.因为EF⊥AC,所以∠AHM=∠AHE=∠CHE= 90°.因为AH=AH,所以△AHM≌△AHE.所以AM=AE.因为AD∥BC,所以△AME∽△BMF.所以AM AEBM BF==12.所以AM=AE=4,BM=8.所以BF=8.所以CF=20.因为∠ABC=60°,所以△ABC是等边三角形.所以∠ACB=60°.所以CH=CF•cos 60°=10.16.52【解析】连接AC交BD于点O,连接ON,OM,取BE的中点M′,连接MM′,如图所示.易得四边形OMM′N 是矩形,则∠MON=90º.因为S□ABCD=2S△ABD=12,BC=4,所以BC•AE=12.所以AE=3.利用三角形中位线定理,得OM=2,ON=32.由勾股定理,得MN=52.第16题图三、17.证明:因为CF=BE,所以CF+EC=BE+EC,即EF=BC.因为四边形ABCD是平行四边形,所以AD∥BC,AD=BC.所以AD∥EF,AD=EF.所以四边形AEFD是平行四边形. 因为AE⊥BC,所以∠AEF=90°.所以□AEFD是矩形.18. 解:(1)如图所示,点E即为所求.第18题图(2)因为四边形ABCD是平行四边形,所以AB=CD=5,AD∥BC.所以∠DAE=∠BEA.因为AE是∠BAD的平分线,所以∠DAE=∠BAE.所以∠BAE=∠BEA.所以BE=AB=5.所以CE=BC﹣BE=3.19.(1)证明:因为AB∥CD,所以∠OAB=∠DCA.因为AC 平分DAB ∠,所以∠OAB=∠DAC.所以∠DAC=∠DCA.所以CD=AD.因为AB=AD ,所以CD=AB. 因为AB ∥CD ,所以四边形ABCD 是平行四边形.因为AD=AB ,所以□ABCD 是菱形. (2)解:因为四边形ABCD 是菱形,BD=8,所以OA=OC ,BD ⊥AC ,OB=OD=12BD=4.所以∠AOB=90°.所以所以AC=2OA=所以菱形ABCD 的面积为12AC•BD=12×8=.因为CE ⊥AB ,所以菱形ABCD 的面积为AB •CE=,解得. 20. 解:(1)结论:CF=2DG.证明:因为四边形ABCD 是正方形,所以AD=BC=CD=AB ,∠ADC=∠C=90º. 因为E 是AD 的中点,所以DE=AE.所以AD=CD=2DE.因为EG ⊥DF ,所以∠DHG=90º.所以∠CDF+∠DGE=90º,∠DGE+∠DEG=90º. 所以∠CDF=∠DEG.所以△DEG ∽△CDF.所以12DG DE CF CD ==.所以CF=2DG. (2)作点C 关于直线NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时△PDC 的周长值最小,最小值为CD+PD+PC=CD+PD+PK=CD+DK.由(1),知CD=AD=10,ED=AE=5,DG=52,所以.因为12DE •DG=12EG •DH ,所以DH=DE DGEG⋅所以EH=2DH=同法可得2DH EHHM DE⋅==,所以DM=CN=NK==1.在Rt △DCK 中,所以△PCD 的周长的最小值为10+第20题图。

中考数学专题复习:四边形(一)

中考数学专题复习:四边形(一)

中考数学专题复习:四边形(一)1.如图1,图形A、图形B是含60°内角的全等的平行四边形纸片(非菱形),先后按图2(2B)、图3(1A1B)的方式放置在同一个含60°内角的菱形中.若知道图形②与图形⑤的面积差,则一定能求出()A.图形①与图形③的周长和B.图形④与图形⑥的周长和C.图形②与图形⑤的周长和D.图形④与图形⑥的周长差2.如图,矩形ABCD中,AE⊥BD交CD于点E,点F在AD上,连接CF交AE于点G,且CG=GF=AF,若BD=4,则CD的值为()A.B.4 C.D.3.如图,矩形ABCD中,点E在BC上,且AE平分∠BAC,AE=CE,BE=2,则矩形ABCD 的面积为()A.24B.24 C.12D.124.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF,AF.若AB=2,AD=3,则∠AEF的大小为()A.30°B.45°C.60°D.不能确定5.如图,在矩形ABCD中,AB=14,BC=7,M、N分别为AB、CD的中点,P、Q均为CD边上的动点(点Q在点P左侧),点G为MN上一点,且PQ=NG=5,则当MP+GQ =13时,满足条件的点P有()A.4个B.3个C.2个D.1个6.如图,以长方形ABCD的顶点A为圆心,AD长为半径画弧,交AB于点F;再以顶点C 为圆心,CD长为半径画弧,交AB于点E.若AD=5,CD=,则EF的长度为()A.2 B.3 C.D.17.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定8.如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°9.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2 D.10.矩形ABCD中,点M在对角线AC上,过M作AB的平行线交AD于E,交BC于F,连接DM和BM,已知,DE=2,ME=4,则图中阴影部分的面积是()A.12 B.10 C.8 D.611.如图,矩形纸片ABCD中,AD=6,E是CD上一点,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.若AD=3GD,则DE的值为()A.B.C.D.12.如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2)B.(,2)C.(3,)D.(2,)13.将矩形纸片ABCD按如图方式折叠,若△DFG刚好是等边三角形,则矩形的两边AD,AB的比为()A.2:1 B.C.D.14.如图,正方形ABCD的边长为6,AC为对角线,取AB中点E,DE与AC交于点F.则sin∠DFC=()A.B.C.D.15.如图,矩形ABCD(AD>AB),分别以AD、BC为边向内作等边三角形(图1);分别以AB、CD为边向内作等边三角形(图2),两个等边三角形的重叠部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.若=8,则的值为()A.B.C.D.16.如图,在△ABC中,∠ACB=90°,作CD⊥AB于点D,以AB为边作矩形ABEF,使得AF=AD,延长CD,交EF于点G,作AN⊥AC交GF于点N,作MN⊥AN交CB的延长线于点M,MN分别交BE,DG于点H,P,若NP=HP,NF=2,则四边形ABMN的面积为()A.8 B.9 C.10 D.1117.如图,线段AB的长为8,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH 的对角线交点为O,连接OB,则线段BO的最小值为()A.5 B.4 C.D.18.如图,矩形ABCD中,对角线AC,BD交于点O,点E是边AB上一点,且OE⊥AC.设∠AOD=α,∠AEO=β,则α与β间的关系正确的是()A.α=βB.α+β=180°C.2α+β=180°D.α+2β=180°19.如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E 作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为()A.5 B.6.5 C.10 D.1220.如图,在菱形ABCD中,AB=BD,AE=DF,BF与DE相交于点G,CG与BD相交于点H.下列结论中:①∠DBC=60°;②△AED≌△DFB;③∠BGE=60°,正确的是()A.①②B.②③C.①③D.①②③参考答案1.解:设平行四边形较长的一边为x,较短的一边为y,菱形的边长为a,图形②的面积S2=sin60°(2x﹣a)(2y﹣a)=(4xy﹣2ax﹣2ay+a2),图形⑤的面积S5=sin60°(x+y﹣a)(x+y﹣a)=(x2+y2+2xy+a2﹣2ax﹣2ay),∴S5﹣S2=(x2+y2+2xy+a2﹣2ax﹣2ay)﹣(4xy﹣2ax﹣2ay+a2)=(x2+y2﹣2xy)=(x﹣y)2,图形②的C2=2(2x﹣a)+2(2y﹣a)=4x+4y﹣4a,图形⑤的C5=2(x+y﹣a)+2(x+y﹣a)=4x+4y﹣4a,∴C2+C5=(4x+4y﹣4a)+(4x+4y﹣4a)=8x+8y﹣8a,故C选项不符合题意;图形①的周长C1=2(a﹣y)+2(a﹣x)=4a﹣2y﹣2x,图形③的周长C3=2(a﹣y)+2(a﹣x)=4a﹣2y﹣2x,∴C1+C3=4a﹣2y﹣2x+4a﹣2y﹣2x=8a﹣4y﹣4x,故A选项不符合题意;图形④的周长C4=4(a﹣x),图形⑥的周长C6=4(a﹣y),∴C4+C6=4(a﹣x)+4(a﹣y)=8a﹣4y﹣4x,故B选项不符合题意;∴C4﹣C6=4(a﹣x)﹣4(a﹣y)=4(y﹣x),根据题意S5﹣S2=(x﹣y)2,为已知,即(x﹣y)为已知,故D选项符合题意,故选:D.2.解:连接AC交BD于点O,连接OG,令BD与CF交于点M,∵GF=AF,∴∠FAG=∠FGA,∵四边形ABCD为矩形,∴BD=AC=4,OB=OD,∵CG=GF,∴OG为△CAF的中位线,∴AF=2OG,OG∥AD,∴∠FDM=∠MOG,∵AE⊥BD,∴∠FGA+∠GMO=90°,∠MDF+∠FAG=90°,∴∠GMO=∠MDF,∴∠GMO=∠MDF=∠MOG=∠FMD,∴OG=GM,FM=FD,设OG=GM=x,则CG=GF=AF=2x,∴FD=FM=FG﹣MG=2x﹣x=x,∴CF=4x,AD=3x,在Rt△DCF中,由勾股定理得,CD==x,在Rt△ADC中,由勾股定理得,DC2+AD2=AC2,即15x2+9x2=48,解得x=,∴CD=x=,故选:D.3.解:∵四边形ABCD是矩形,∴∠B=90°,∴∠BAC+∠BCA=90°,∵AE平分∠BAC,AE=CE,∴∠BAE=∠EAC=∠ECA,∴∠BAE+∠EAC+∠ECA=90°,∴∠BAE=∠EAC=∠ECA=30°,∴AE=CE=2BE=4,AB=2,∴BC=BE+CE=6,∴矩形ABCD面积=AB×BC=2×6=12;故选:C.4.解:∵四边形ABCD是矩形,AD=3,AB=2,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵点E是CD的中点,FC=2BF,∴CE=DE=1,BF=1,CF=2,∴AB=CF=2,CE=BF=1,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴AF=EF,∠BAF=∠CFE,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣(∠CFE+∠AFB)=180°﹣9°=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,故选:B.5.解:如图,当P、Q在N的两侧时,设QN=x,则PN=5﹣x,∵四边形ABCD是矩形,M、N分别为AB、CD的中点,∴四边形ADNM、四边形MNCB都是矩形,∵PQ=NG=5,BC=7,AB=14,∴MN=BC=7,由勾股定理得:PM2=49+(5﹣x)2,QG2=25+x2,∴PM2﹣QG2=(PM+QG)(PM﹣QG)=49﹣10x,∵MP+GQ=13,∴PM﹣QG=,∴2PM=13+,∴PM=,QG=,∴()2=25+x2,整理得:144x2﹣600x+625=0,解得:x1=x2=;当P、Q在N的右侧时,设QN=x,同理可得:PM=,QG=,∴()2=25+x2,整理得:144x2﹣600x+625=0,解得:x1=x2=﹣(不合题意,舍去);综上,满足条件的点P只有1个.故选:D.6.解:如图,连接CE,则CE=CD=,BC=AD=5,∵△BCE为直角三角形,∴BE==,∵BF=AB﹣AF=﹣5=,∴EF=BE﹣BF=﹣=2.故选:A.7.解:连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=12.∴点P到矩形的两条对角线AC和BD的距离之和是12.故选:B.8.解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠的性质得:∠BA'E=∠A=90°,∠A'BE=∠ABE,∴∠A'BE=∠ABE=(90°﹣∠DBC)=(90°﹣24°)=33°,∴∠A'EB=90°﹣∠A'BE=90°﹣33°=57°.故选:C.9.解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=∴DE=;故选:A.10.解:过M作MP⊥AB于P,交DC于Q,如图所示:则四边形DEMQ,四边形QMFC,四边形AEMP,四边形MPBF都是矩形,∴S△DEM=S△DQM,S△QCM=S△MFC,S△AEM=S△APM,S△MPB=S△MFB,S△ABC=S△ADC,∴S△ABC﹣S△AMP﹣S△MCF=S△ADC﹣S△AEM﹣S△MQC,∴S=S四边形MPBF,四边形DEMQ∵DE=CF=2,∴S△DEM=S△MFB=×2×4=4,∴S=4+4=8,故选:C.阴11.解:过点E作EH⊥FG,交FG于点H,如图,由题意:△AEF≌△AED,则AF=AD=6,DE=EF.∵AD=6,AD=3GD,∴GD=2.∴AG=AD﹣DG=6﹣2=4.∵FG⊥AD,∴FG=.∵四边形ABCD是矩形,∴∠D=90°,∵FG⊥AD,EH⊥FG,∴四边形GHED为矩形.∴GH=DE,HE=GD=2.设DE=x,则GH=EF=x,HF=2﹣x,在Rt△HEF中,∵HF2+HE2=EF2,∴.解得:x=.∴DE=.故选:C.12.解:∵菱形ABCD,∠BCD=120°,∴∠ABC=60°,∵B(﹣1,0),∴OB=1,OA=,AB=2,∴A(0,),∴BC=AD=2,∴C(1,0),D(2,),故选:D.13.解:设AD,BC边长为a,AB,CD边长为b,∵△DFG为等边三角形,∴∠FDG=∠DGF=∠DGC=60°,∴∠CDG=30°,∵tan∠DGC==,∴GC=CD=b.∵cos∠DGC==,∴GD=2GC=b,由翻折可得BG=GD=b,∴BC=BG+GC=b+b=b,即a=b,∴==.故选:B.14.解:连接BD与AC交于点O,∵四边形ABCD为正方形,∴∠EAD=90°,AC⊥BD,OD=,AB∥CD,AD=AB=CD=6,∴∠DOF=90°,∠EAF=∠DCF,OD=3,∵E为AB中点,∴AE=AB==3,由勾股定理得,DE==3,∵∠EAF=∠DCF,∠AFE=∠DFC,∴△AFE∽△CFD,∴==,∴DF=DE=2,∴sin∠DFC===,故选:A.15.解:设AD=BC=a,AB=CD=b,如图1,由题意:∠ADN=∠BCH=60°,∴∠NDC=∠HCD=30°.∴FD=FC.∵四边形ABCD是矩形,∴AD∥BC,∴∠FNC=∠ADN=60°.∴△FNC为等边三角形.∴FN=FC,∴FN=FD.∴.在Rt△DNC中,∵tan∠NDC=,∴NC=.∴=×=.同理:S△DHF=S△AGE=S△ABE=S△BEM=.∴S1=S矩形ABCD﹣S△NFC﹣S△DFC﹣S△DHF﹣S△MBE﹣S△ABE﹣S△AGE=ab﹣;如图2,过点H作HM⊥AD于M,过点G作GN⊥AB于点N,由题意:∠E=∠G=∠GAB=∠EDC=60°,GA=AB=CD=ED=EC=GB.∴∠HAD=∠HDA=30°,∴HA=HD.∵HM⊥AD,∴AM=AD=a.∵tan∠MAH=,∴MH=AM×tan30°=,∴AD×MH=.同理:.∵△GAB为等边三角形,GN⊥AB,∴AN=AB=b,∵AG=AB=b,∴GN=.∴.同理:.∴S2=S△ABG+S△CDE+S△ADH+S△BFC﹣S矩形ABCD=.∵=8,∴.∴.解得:a=或a=.由题意可知:a<2b,∴a=.∴.故选:B.16.解:∵CD⊥AB,∠F=90°,∴∠ADC=∠F=90°,∵AN⊥AC,∠DAF=90°,∴∠FAN+∠DAN=∠DAC+∠DAN=90°,∴∠FAN=∠DAC.在△ADC和△AFN中,,∴△ADC≌△AFN(ASA),∴CD=FN=2,AC=AN.∵AN⊥AC,MN⊥AN,∴∠ACB=∠CAN=∠ANM=90°,∴四边形ACMN是矩形,∴四边形ACMN是正方形,∵∠CDB=∠DBE=90°,∴CG∥BE,又∵NP=PH,∴NG=GE,设NG=GE=x,则FG=2+x=AD,DB=GE=x,∵Rt△ACB中,CD⊥AB,∴△ADC∽△CDB,∴.∴CD2=AD×DB,∴22=(2+x)x,即x2+2x=4.四边形ABMN的面积=S正方形ACMN﹣S△ABC =AC2﹣=(AD2+CD2)﹣=(2+x)2+22﹣=x2+2x+6=4+6=10,故选:C.17.解:连接AO,∵四边形CDGH是矩形,∴CG=DH,OC=CG,OD=DH,∴OC=OD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,在△ACO和△ADO中,,∴△ACO≌△ADO(SSS),∴∠OAB=∠CAO=30°,∴点O一定在∠CAB的平分线上运动,∴当OB⊥AO时,OB的长度最小,∵∠OAB=30°,∠AOB=90°,∴OB=AB=×8=4,即OB的最小值为4.故选:B.18.解:∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA,∵∠AOD=α,∴∠OAD=(180°﹣α),∵OE⊥AC,∴∠AOE=90°,∵∠AEO=β,∠DAE=90°,∴∠OAD=∠AEO,∴(180°﹣α)=β,∴α+2β=180°.故选:D.19.解:∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD=,又∵E是边AD的中点∴,∵EF⊥BD,EG⊥AC,AC⊥BD,∴四边形EFOG为正方形,∴FG=OE=6.5.故选:B.20.解:∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°=∠DBC,又∵AE=DF,AD=BD,∴△AED≌△DFB,故①、②正确;当点E,F分别是AB,AD中点时,∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故③正确;综上所述,正确的结论有①②③,故选:D.。

初三数学中考复习专题6_四边形(含变换).

初三数学中考复习专题6_四边形(含变换).

初三数学中考复习专题6_四边形(含变换).京华中学初三数学辅导班资料6 四边形及平移旋转对称一、1、知识框图:矩形四边形平行四边形菱形梯形2、正方形一组对边平行四边形一组对边不平行3、有一个角是直角梯形两腰相等直角梯形等腰梯形图形之间的变换关系轴对称连结对应点的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等对应点与旋转中心的距离不变;每一点都绕旋转中心旋转了同样大小的角度旋转对称中心对称平移旋转在轴对称、平移、旋转这些图形变换中,线段的长度不变,角的大小不变;图形的形状、大小不变二、例题分析1、四边形例1(1)凸五边形的内角和等于______度,外角和等于______度,(2)若一凸多边形的内角和等于它的外角和,则它的边数是_______.- 1 -2.平行四边形的运用例2 如图,∠1=∠2,则下列结论一定成立的是()A. AB∥CDB. AD∥BCC. ∠B=∠DD. ∠3=∠4 若ABCD是平行四边形,则上述四个结论中那些DA是正确?你还可以得到什么结论?41 23BC3.矩形的运用例3 如图1,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、则阴影部分的面积是矩形ABCD的面积的……………………………………………()A、4.菱形的运用例4 1. 一个菱形的两条对角线的长的比是2 :3 ,面积1113 B、C、D、54310AEBO图1DFC是12 cm2 ,则它的两条对角线的长分别为_____、____.2、已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_______.5.等腰梯形的有关计算例5 已知:如图,等腰梯形ABCD中,AD∥BC,AD=3,AB=4,BC=7.求∠B的度数..AD BCE 6.轴对称的应用例6 如图,牧童在A处放牛,其家在B处,若牧童从A处出发牵牛到河岸CD边饮水后再回家,试问在何处饮水所走路程最短?_ B_ A_ C_ D- 2 -7.中心对称的运用例7 如图,作△ABC关于点O的中心对称图形△DEF AO BC8.平移作图例8 .在5×5方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平移方法是().(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格NNM图(1)M(2)图1 图图2 (第1题)9.旋转的运用例9 如图,△ABC和△ADE都是等腰直角三角形,∠C和∠AED都是直角,点C在AD上,如果△ABC经旋转后能与△ADE重合,那么哪一点是旋转中心?旋转了多少度?解:_____是旋转中心,_______方向旋转了______.B基础达标一、选择题:ACDE1. 一个内角和是外角和的2倍的多边形是________边形.2. 有以下四个命题:(1)两条对角线互相平分的四边形是平行四边形.(2)两条对角线相等的四边形是菱形.(3)两条对角线互相垂直的四边形是正方形.(4)两条对角线相等且互相垂直的四边形是正方形,其中正确的个数为() A.4 B.3 C.2 D.1- 3 -3.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直4.在一个平面上有不在同一直线上的三点,则以这三点为顶点的平行四边形有()A.1个B.2个C.3个D.4个5. 如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于() A.18° B.36° C.72°D.108° A6、下列说法中,正确的是()A 、等腰梯形既是中心对称图形又是轴对称图形.BB 、正方形的对角线互相垂直平分且相等C 、矩形是轴对称图形且有四条对称轴D 、菱形的对角线相等7、如图,在平行四边形ABCD中,下列各式不一定正确的是()A.?1??2?180 B.?2??3?180 C.?3??4?180 D.?2??4?1808、在平行四边形ABCD中,延长AD至F,延长CD至E,连接EF,则?E??F? ?B?110?,()(A)110? (B)30? (C)50? (D)70? _ F_ E_ AD_ _ B_ C0000EDC9、如图7,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC,其中正确的结论有_________.10.如图,观察下列图形,既是轴对称图形又是中心对称图形的个数是().A.3个B.4个C.5个D.6个- 4 -11.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到右图的是()..A.B.C. D.12.右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()A.90o B.60o C.45o D.30o13.图2是我国古代数学赵爽所著的《勾股圆方图注》中所画的图形,它是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是()A.它是轴对称图形,但不是中心对称图形B.它是中心对称图形,但不是轴对称图形C.它既是轴对称图形,又是中心对称图形(图2) D.它既不是轴对称图形,又不是中心对称图形14、下图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是()- 5 -A.90o B.60o C.45o D.30o14 图1515、如上图,O是正六边形ABCDE的中心,下列图形中可由△OBC平移得到的是()A.△OCD B.△OAB C.△OAF D.OEF16.如图,D、E、F是△ABC三边的中点,且DE∥AB,DF∥AC,EF ∥BC,平移△AEF可以得到的三角形是()A.△BDFB.△DEFC.△CDED.△BDF 和△CDE AFACEOBDBDC图16 图1717.将两块直角三角尺的直角顶点重合为如图17的位置,若∠AOD=110°,则∠BOC=____°18、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()① ② ③ ④A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等19.如图,已知△ABC,画出△ABC绕点C逆时针旋转90°后的图形.- 6 -ACB20、矩形纸片ABCD中,AD=4cm ,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=______cm.E B A DF CC121、若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形22.如图:已知在Rt△ABC中,∠ABC=90°,∠C =60°,边AB=6cm.(1)求边AC和BC的值;(2)求以直角边AB所在的直线l为轴旋转一周所得的几何体的侧面积.(结果用含π的代数式表示) 解:F分别在AB、AC、BC上,DE//BC,23、(2022常州市)如图,在?ABC中,点D、E、EF//AB,且F是BC的中点.求证:DE?CF- 7 -ADEBFC24.三月三,放风筝,小明制了一个风筝,如右图,且DE=DF,EH=FH,小明不用度量就知道∠DEH =∠DFH.请你用所学过的数学知识证明之.(提示:可连结DH,证明ΔDHE≌ΔDHF或连结EF,通过证明等腰三角形得证.)25.如图,E、F是□ABCD的对角线AC上两点,AE=CF.求证:(1)△ABE≌△CDF.(2)BE∥DF.DEACFB- 8 -(B层)25、如图,在□ ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AC、BD分别交于E、F,求证:四边形AFCE是菱形.AE1DOB2FC26.(2022.上海)如图1,边长为3的正方形ABCD绕点C 按顺时针方向旋转30 °后得到正方形EFCG,EF交AD于点H,那么DH的长为________.- 9 -EAHDFBCG27.如图,已知正方形ABCD的边长为2.如果将线段BD 绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan?BAD′等于__________29、(2022广东省)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.(1)求证:四边形MENF是菱形;(2)若四边形MENF是正方形,请探索等腰梯形ABCD 的高和底边BC的数量关系,并证明你的结论.- 10 -四边形及平移旋转对称答案二、考题例析例1 (n -2)·180o =360o.解得n=4. 例2 答案:B. 例3( B )例4_____4cm,6cm ___例5答案:∠B=60°.例6.中心对称的运用例7 例8 .(C)_____.AC BMM'D例9 点A是旋转中心,顺时针方向旋转了45.A'基础达标一、选择题:(D)9、(①AB∥CD;②AC⊥BD;③AO=OC;10.( B ).11.C. 12.(C )13.B.14 (C)15、D.16.(D ) 17.(_70°18、( D) 19.1.___6___2. D.3.(B )4.(C)5 ( B )6、(B 7、(D8、20、DE=___5.8___cm.21、C.菱形22.解:(1)AC=43 cm,BC=23cm (2)所求几何体的侧面积S=23、∵DE//BC,EF//AB- 11 -1?(2??23)?43?24?(cm2)2∴四边形DBFE是平行四边形∴ DE=BF,∵ F是BC的中点.∴BF=CF ∴DE?CF24.:可连结DH,证明ΔDHE≌ΔDHF或连结EF,通过证明等腰三角形得证.25.(1)证明:∵在△ABC与△EFD中,AB=EF,由EF∥AB得∠BAC=∠FED.由AD=CE得AC=ED.∴△ABC≌△EFD.(2)四边形BDFC是平行四边形.证明:∵△ABC≌△EFD,∴BC=FD,∠BCA=∠EDF.∴BC∥FD∴四边形BDFC是平行四边形.26剖析:解题时,注意区分判定定理与性质定理的不同使用.∵□ ABCD中,AE∥CF,∴?1??2. 又?AOE??COF,AO?CO.AE1D∴△AOE≌△COF,∴EO?FO. ∴四边形AFCE是平行四边形.又EF?AC,∴□ AFCE是菱形.27. _3_______. 28___2_______ 29、BO2FC- 12 -第一章图形与证明(二)1.1等腰三角形的性质和判断定理:等腰三角形的两个底角相等(简称“等边对等角”)定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

中考复习之四边形专题(精)

中考复习之四边形专题(精)

四边形复习讲义知识点回顾 【性质】【判定】⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎧⎨⎪⎩⎪⎪⎪⎪⎩两组对边分别平行的四边形边两组对边分别相等的四边形一组对边平行且相等的四边形平行四边形对角相等的四边形角邻角互补的四边形对角线对角线互相平分的四边形⎧⎪⎨⎪⎩平行四边形+一组邻边相等菱形平行四边形+对角线相等四边形+四条边相等⎧⎪⎨⎪⎩平行四边形+一个直角矩形平行四边形+对角线相等四边形+三个角是直角+⎧⎧⎪⎨⎩⎪⎪⎧⎪+⎨⎨⎪⎩⎪⎪⎪⎩一组邻边相等矩形+对角线互相垂直一个直角正方形菱形对角线相等平行四边形一个菱形特征+一个矩形特征四边形+对角线相等且互相垂直平方【平行四边形性质】1.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC +BD =24厘米,△OAB 的周长是20厘米,则EF = 厘米.2.如图2,在平行四边形ABCD ,∠B =110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F 的度数为( )A .110°B .30°C .50°D .70°3.如图3,已知□ABCD 中,AB =3,AD =2,∠B =150°,则□ABCD 的面积为( )A .2B .3 C.D .6FEODCBAFEDCBA图1图2图34.如图4,在□ABCD 中,AC ⊥BD ,若AB =6,则BC =_____________.5.如图5,平行四边形ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 .图4图5图66.如图6,在矩形ABCD 中,AB =3cm ,AD =9cm ,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则AE = ,EF = .7.如图7,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4).点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是等腰三角形时,点P 的坐标为 .8.如图8,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16cm ,BD =12cm ,则菱形ABCD 的高DH 为______.9.如图9,在菱形ABCD 中,∠A =110°,E 、F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =______10.菱形的周长为16cm ,一条对角线长为4cm ,则菱形的面积是( )cm 2. A .B .C .D .11.菱形ABCD 中,AB =4,高DE 垂直平分边AB ,则BD = ,AC =12.正方形ABCD 的边长为1cm ,以对角线AC 为一边作等边△ACE ,则BE 的长为 cm 13.如图10,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE =∠BAP ;⑤PD .其中正确的结论的序号是 .14.如图11,在正方形ABCD 中,M 是BC 上一点,连结AM ,作AM 的垂直平分线GH 交AB 于G ,交CD 于H ,若AM =10cm ,则GH =______15.如图12,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4;②S 2+S 4= S 1+ S 3;③若S 3=2S 1,则S 4=2S 2;④若S 1=S 2,则P 点在矩形的对角线上,其中正确的结论的序号是______________.P F EDCBA图10图11图12【平行四边形判定与证明】1.用两个全等的三角形按照不同的拼法,可以拼成平行四边形的个数是( ) A .1个 B .2个 C .3个 D .4个2.如图1,要使□ABCD 成为菱形,可添加一个条件: .(请填一个你认为正确的条件,不再添加其他辅助线)3.如图,在平行四边形ABCD 中,AC 与BD 交与E 点,不再添加辅助线,请你补充一个条件:当 时,平行四边形ABCD 是矩形.A4.(6分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2,求证;四边形EBFD 是平行四边形.21F E DCBA5.(6分)如图,M ,N 分别是平行四边形ABCD 的对边AD ,BC 的中点,且AD =2AB ,求证;四边形PMQN 为矩形.QM DCPN BA6.(8分)已知:如图,在□ABCD 中,AE 平分∠BAD ,与BC 相交于点E ,EF ∥AB ,与AD 相交于点F ,求证:四边形ABEF 是菱形.B7.如图,在□ABCD 中,E 、F 分别为AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .(1) 求证:AD =BG ;(2) 若四边形BEDF 是正方形,则四边形AGBD 是什么特殊四边形?并证明你的结论.A8.将矩形OABC置于平面直角系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E,随着m的变化,试探索;点E能否恰好在x轴上?若能,请求出m的值;若不能,请说明理由.9.如图,在四边形ABCD中,AB=AD,∠A=∠C=90°.(1)若CD=3,CB=5,求四边形ABCD的面积;(2)过点C作CE∥BD,交AD的延长线于E点,若BC+CD=a,△ABE的面积为9,求a的值.【综合提高】1.如图,矩形ABCD的两边AB=4,BC=3,P是AD上任一点,PE⊥AC于点E,PF⊥BD于点F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。





证明:连接CD和BE,则HI=FG=BE,且 HI∥BE∥FG,GH=FI=CD,且 GH=FI=CD (三角形的中位线平行于底边且等于 D 底边的一半),在⊿ADE和⊿AB E中,AD=AB AC=AE,且∠DAB+∠BAC =∠EAC+∠BAC ,既∠DA I C=∠BAE ∴⊿DAE≌⊿BAE,由此得 ∠ADC=∠ABE,∴∠CDB+ ∠DBE=∠ADB+∠DBA= 90°,CD=BE既 FG=GH=HI=IF∴CD⊥BE, 既FG⊥GH,∴四边形FGHI是正方形
D E G
A
B
8.如图过正方形ABCD的A点 AM∥BD且DM=DB,求AM的长 解:设D坐标为(a,a)则直线BD为 y=x,AM为y=x+a,又设坐标M为 (x,y),MD 2=(x-a)2+(y-a)2=(xa)2+(x+a-a)2=2x2-2ax+a2=2a2 解得x=(1-√3) ÷2 M AM2=(0-x)2+(a-y)2 = (√6-√2)a/2

14.如果四边形两条AB与CD对边中点 的连线等于另两条对边AD与BC是和的 一半,试证此四边形是梯形
证明:作DH∥EF ,NH∥AB,则GF是 ∥ ⊿NDH和⊿DNC中位线,NC∥FG, 连接DE并延长CB与CB的延长线 交于I,则EG是⊿DIN的中位线, ∴EG∥NI,在⊿DAE和⊿IBE中, I AE=BE,DE=IE,∠D AE=∠IEB,∴⊿DAE ≌⊿IBE,∴∠DAE=∠I BE,∴DA∥IB,∴AD∥ BC,∴四边形ABCD是梯形, 此题得证。
A E D F C H
G N
B
15.如图所示,梯形ABCD的对角线AC、BD交于 O,⊿AOD的面积为S1,⊿BOC的面积为S2,求 证,梯形ABCD的面积S=(S1)1/2 + (S2) 1/2 证明:要证S= = (S1)1/2 +(S2) 1/2 ,只需证⊿A OB的面积+⊿COD面积等于2 (S1)1/2 ×(S2) 1/2 而⊿AOB面积+⊿COD面积=S -S1- S2=1/2(AD+BC)PQ—1/2AD h1-1/2BCh2=(ADh2+BC h1),因为 ⊿AOD∽⊿BOC∴AD×OQ=BD×OP,既AD h2=BCh1,既证,而⊿AOB面积+⊿COD面 积= 1/2(AD+BC)PQ—1/2ADh1-1 /2BCh2 = 1/2 (AD+BC)PQ—ADh P A 1-BCh2=(ADh2+BC h1)=BCh1,而 2 (S1)1/2 ×(S2) 1/2 =2×1/2(AD× OP) 1/2 O 1/2 =BCh1 (BC×OQ) Q B ∴⊿AOB面积+⊿COD面积= 2 (S1)1/2

D H E
FJ k I G
C
A
B
7.如图所示,在正方形ABCD中,E、 F分别是AD和CD的中点BF和CE交 于G,求证AG=AB

证明:设点A坐标为(0,0),B(2,0),C (2,2)直线BF为y=-2x+4,直线CE为 y=x/2+1由此得交点G坐标为(1.2,1.6)则 AG2=X2+Y2=(1.2)2+(1.6) 2=4∴AG=2=AB F C

A
D
B
C
9.如图过正方形ABCD的A点 AM∥BD且DM=DB,求AM的长





解:设AP=x,MP=y,由于AM∥BD, BD⊥AC,∴AM⊥AC, ∴⊿AMP是直角三角形,因此 ⊿AMP∽⊿ODP,∴AP/ OP=MP/DP, M ∴x/(√2/2-x)=y/(√2y),∴y=2x, 由于PD2= OP2+OD2 ∴(√2/2)2=(√2/2-x) 2+(√2-y)2∴x=√2/2-1/√6,由于 AM2=y2-x2=(2x)2-x2=3x2 ∴AM=√3(√2/2-1/√6)=(√6-√2)
C
A
E F
D
3.如图所示,在正方形ABCD中E为正方形CD 边的中点,F为EC的中点, 求证:∠DAE=1/2∠BAF 证明取BC的中点J连接AJ并延长且与DC 的延 长线交于G,则⊿ABJ≌⊿GCH,∠G=∠BAG, DE=3/4CD则AF=5/4CD而 FG=AF∠G=∠GAF,而 ∠DAE=∠BAH∴∠DAE=2∠BAF此题得证
D E F C G
H
A
B
4.如图,以⊿ABC的AB和AC边源自外 做正方形ABEF和ACGH,点I是BC 的中点, 求证:FH=2AI
F
J
H G
证明:延长AI至D,使DI=AI E 则四边形ABDC是平行四边形, 在 ⊿AFH和⊿BDA中, AF= AB,AH=AC= BD,∠FAH+∠BAC= 180°∠DBA+∠BAC=180° 所以∠FAH=∠ABD,因此 ⊿AFH≌⊿BDA,由此得证 FH=AD=2AI
A C I B D
5.如图 在平行四边形ABCD中 若AC2 ·BD2=AB4+AD4 求证∠DAB=45°
A
D
C
F E B

证明:设AB=a,AD=b,AC=p,BD=q则有 p2q2=a4+b4,又p2+q2=2(a4+b4)(定理126), 根据韦达定理得:x2-2(a2+b2)x+a4+b4=0 解得:x=a2+b2+√2ab(根下2乘以 ab),q2=a2+b2-√2ab,设 AE=b‘则q2=a2+b2-2ab’,由此得b=√2b‘既AD /AE=√2由此∠A=45°此题得证
E
11.如图,正方形ABCD中, ∠EAF=45°,那么EF和 BE+DF是否相等?请说明理 由.
证明:延长EB到G,使BG=DF,则 ⊿ABG≌⊿ADF由此可证⊿AGE≌⊿AEF则 EF=GB+BE=BE+DF

A D F
G
B
E
C
12.如图所示ABCD为矩形AP⊥BD,PM⊥BC, PN⊥CD求证PM2/3+PN2/3=BD2/3 证明:设∠ABD=θ,BD =a,在直角⊿ABD中, PM⊥BC, ∴∠BPM=∠ABD=θ,∴PM=PBcosθ 在直角⊿APB中PB=ABcosθ ∴PM=ABcos2θ,――(2)在直角⊿BAD中 A AB=BDcosθ,带入(2)中得: D PM=BDcos3θ=acos3θ,同理可得: P N 2θ=asin3θ PN=PDsinθ=ADsin B M C ∴PM2/3+PN2/3 =(acos3θ) 2/3 +(asin3θ) 2/3 = a 2/3 (sin2θ+cos2θ)= a2/3=BD2/3
平行 四边 形
①对边平行且相等 ②对角相等
③两条对角线互相平分
矩 形 菱 形
①对边平行且相等 ②四个角都是直角 ③对角线互相平分且相等 ①对边平行且四条边相等 ②对角相等 ③两条对角线互相垂直平
分且对角线平分对角
①有三个角是直角的四边形 ②是平行四边形且有一个角是直角 ③是平行四边形且两条对角线相等 ①四条边都相等 ②是平行四边形且有一组邻边相等 ③是平行四边形,且两条对角线互相垂

13.在正方形ABCD中过A作BD的平行线 AE且使BE=BD,求证DE=DF
证明:作垂线BG 与EA的延长线相交于G,∵E G∥BD∴AC⊥EG ∴∠BAG =ABG=45°∵AG=BG,由 于BE2=BD2= E 2AB2=4BG2∴EB=2BE A D ∴∠BEG=DBE=30° F ∴∠DFE=∠FEA+∠FAE G =45°+30°=75°, C ∠BED=(180°-30°) B =75°∴∠DEF=DFE=75° ∴DE=EF,此题得证
O E G B C
19.如图所示,在等腰梯形ABCD中,AD∥BC,对 角线AC和BD交于O,且∠BOC=60°点E、F、G 分别是 CD、OA、OB的中点,求证:⊿EFG是正三角形

转下页
二:特殊四边形的性质和判定
类别
正 方 形




①对边平行,四条边都相等 ②对角相等 ③两条对角线互相垂直平分
①是矩形,且有一组邻 边相等 ②是菱形,且一角是直 角
梯 形 等腰 梯形
①两底平行 ①有一组对边平行的四 边形是梯形 梯形的中位线平行两底且等于两 底和的一半 ①两底平行两腰相等 ②两条对角线相等 ③同底上的两角相等 ①是梯形,且两腰相等 ②是梯形,且同底上的 两底角相等
三:四 边 形 的 面 积
长为b,高为h,面 积为S 长为a,宽为b,面 积为S S=bh
平行四边形
S=ab
矩形
菱形 正方形 梯形
长对角线为L1,短对 S=1/2L1L2 角线为L2 面积为S
边长为a,面积为S S=a2 上底长为a,下底
S=1/2(a+b)h
1如图所示 ,以⊿ABC的AB和AC边为腰,向外作等腰 直角三角形ABD和ACE,取BC、CE、ED、DB的中点 F、G、H、I,求证四边形FGHI是正方形
D
C
16.在正方形ABCD中,CE∥BD, BE=BD,求证:DH=DE
证明:设BC=1,则BE=BD =( 2)1 /2 ,在⊿BCE中,BE/ sin135°=BC/sin∠BEC,既 ( 2)1/2 /sin135°= 1/ sin∠BEC A ∴sin∠BEC=1/2∴∠BEC =30° ∴∠DHE=(45+30)°=75°=∠D EH∴DE=DH,此得证题
6.如图所示,在正方形ABCD中,E、F分别是AD 和CD的中点BF和CE交于G,求证AI=AB
证明:作FI∥BC交CE于I, GJ⊥CD,GH与FI相较于K, BC=2ED =4FI,⊿FIG∽⊿ BCG, JG:FI=4:5,KI=FI﹣GJ=1 /4 BC ﹣ 1/4BC× 4/5= 1/20BC, KG= 1/10CD,HG= 1/2BC+ 1/10BC= 3/5BC, AH= 1/2BC + 1/4 BC+ 1/20BC=4/5BC ,所以 AI2=(4/5BC)2+( 3/5BC)2 AI=BC此题得证,
相关文档
最新文档