大学物理习题2
大学物理(下)习题(学生用)2
大学物理(第10章上)习题1.如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 解:2. 用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度. 解:3. 若匀强电场的场强为E ,其方向平行于半径为R 的半球面的轴,如图所示.则通过此半球面的电场强度通量Φe 为(A) E R 2π (B) E R 22π(C)E R 221π (D) E R 22π (E) 2/2E R π [ ]4. 有两个电荷都是+q 的点电荷,相距为2a半径作一球形高斯面 . 在球面上取两块相等的小面积S 1和S 2,其位置如图所示. 设通过S 1和S 2的电场强度通量分别为Φ1和Φ2,通 过整个球面的电场强度通量为ΦS ,则L P(A) Φ1>Φ2,ΦS =q /ε0. (B) Φ1<Φ2,ΦS =2q /ε0. (C) Φ1=Φ2,ΦS =q /ε0.(D) Φ1<Φ2,ΦS =q /ε0. [ ]5.如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq .(C) 024εq .(D) 048εq .[ ]6.根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.[ ]7. 半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:[ ]8. 半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: 解:[ ]9.(选做)(类似习题8-7)如图,在一电荷体密度为ρ的均匀带电球体中,挖出一个以O 'EO r (A) E ∝1/r为球心的球状小空腔,空腔的球心相对带电球体中心O 的位置矢量用b表示.试证球形空腔内的电场是均匀电场,其场强表达式为b E3ερ=.10. 如图,A 点与B 点间距离为2l ,OCD 是以B 为中心,以l 为半径的半圆路径. A 、B 两处各放有一点电荷,电荷分别为+q 和-q .把另一电荷为Q (Q <0 )的点电荷从D 点沿路径DCO 移到O 点,则电场力所做的功为___________________11. 将电荷均为q 的三个点电荷一个一个地依次从无限远处缓慢搬到x 轴的原点、x = a 和x = 2a 处.求证外界对电荷所作之功为aq A 0285επ=设无限远处电势能为零.12. 真空中一“无限大”均匀带电平面,其电荷面密度为σ (>0).在平面附近有一质量为m 、电荷为q (>0)的粒子.试求当带电粒子在电场力作用下从静止开始垂直于平面方向运动一段距离l 时的速率.设重力的影响可忽略不计.+13. 一半径为R 的均匀带电球面,带有电荷Q .若规定该球面上电势为零,则球面外距球心r 处的P 点的电势U P =___________________________.14. 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为: (A)aQ 034επ .(B) a Q032επ.(C) a Q 06επ. (D) aQ 012επ .解:[ ]15. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为: (A) E =0,U =104R Qεπ.(B) E =0,U =⎪⎪⎭⎫⎝⎛-π210114R R Q ε. (C) E =204r Q επ,U =rQ04επ. (D) E =204r Q επ, U =104R Qεπ.解:[ ]16. 如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ.在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接.设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为:(A) E =0,U =r aln 20ελπ. (B) E =0,U =abln 20ελπ.(C) E =r 02ελπ,U =rb ln 20ελπ. (D) E =r 02ελπ,U =ab ln 20ελπ. 解:[ ]17.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________. 18. 一半径为R 的均匀带电圆盘,电荷面密度为σ, 设无穷远处为电势零点, 则圆盘中心O 点的电势U =__________________________________.19. 两个带等量异号电荷的均匀带电同心球面,半径分别为R 1=0.03 m 和R 2=0.10 m .已知两者的电势差为450 V ,求内球面上所带的电荷.20. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,试用电势迭加法求空腔内任一点的电势.21. 已知某静电场的电势分布为U =8x +12x 2y -20y 2 (SI),则场强分布E= _______________________________________. 22.真空中一均匀带电细直杆,长度为2a ,总电荷为+Q ,沿Ox 轴固定放置(如图).一运动粒子质量为m 、带有电荷+q ,在经过x 轴上的C 点时,速率为v .试求:(1) 粒子在经过C 点时,它与带电杆之间的相互作用电势能(设无穷远处为电势零点);(2) 粒子在电场力作用下运动到无穷远处的速率v ∞ (设v ∞远小于光速).大学物理(第10章下)习题1.一步图示为一半径为a 的、带有正电荷Q 的导体球.球外有一内半径为b 、外半径为c 的不带电的同心导体球壳.设无限远处为电势零点,试求内球和球壳的电势. 解:2. 图示为一半径为a 、不带电的导体球,球外有一内半径为b 、外半径为c 的同心导体球壳,球壳带正电荷+Q .今将内球与地连接,设无限远处为电势零点,大地电势为零,球壳离地很远,试求导体球上的感生电荷.解:3. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势((A)104R qεπ . (B)204R qεπ .(C) 102R q επ . (D) 20R qε2π .解: [ ]4.在一个原来不带电的外表面为球形的空腔导体A 内,放一带有电荷为+Q 的带电导体B ,如图所示.则比较空腔导体A 的电势U A 和导体B 的电势U B 时,可得以下结论: (A) U A = U B . (B) U A > U B .(C) U A < U B . (D) 因空腔形状不是球形,两者无法比较.解: [ ]q5.图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: (A) 204r Q E επ=,rQU 04επ=.(B) 0=E ,104r QU επ=.(C) 0=E ,r QU 04επ=.(D) 0=E ,204r QU επ=. 解: [ ]6. 半径为R 的金属球与地连接.在与球心O 相距d =2R 处有一电荷为q 的点电荷.如图所示,设地的电势为零,则球上的感生电荷q '为(A) 0. (B) 2q . (C) -2q. (D) -q . 解: [ ]7. 半径为R 的不带电的金属球,在球外离球心O 距离为l 处有一点电荷,电荷为q .如图所示,若取无穷远处为电势零点,则静电平衡后金属球的电势U =______________.8.一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为:(A) σ 1 = - σ, σ 2 = + σ.(B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-.(D) σ 1 = - σ, σ 2 = 0.解:[ ]9.A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为(A) S Q 012ε . (B) SQ Q 0212ε-.A +σ2(C)S Q 01ε. (D) SQ Q 0212ε+. 解: [ ]10. 三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2为(A) d 1 / d 2. (B) d 2 / d 1.(C) 1. (D) 2122/d d . 解:[ ]11.如图所示,两块很大的导体平板平行放置,面积都是S ,有一定厚度,带电荷分别为Q 1和Q 2.如不计边缘效应,则A 、B 、C 、D 四个表面上的电荷面密度分别为______________ 、______________、_____________、____________.12.一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为______________,极板上的电荷为______________.13. 半径分别为a 和b 的两个金属球,它们的间距比本身线度大得多.今用一细导线将两者相连接,并给系统带上电荷Q .求:(1) 每个球上分配到的电荷是多少? (2) 按电容定义式,计算此系统的电容.14. 如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,相对介电常数为εr ,壳外是真空.则在壳外P 点处(设r OP =)的场强和电位移的大小分别为+Q 2A B(A) E = Q / (4πε0εr r 2),D = Q / (4πε0r 2).(B) E = Q / (4πεr r 2),D = Q / (4πr 2).(C) E = Q / (4πε0r 2),D = Q / (4πr 2).(D) E = Q / (4πε0r 2),D = Q / (4πε0r 2). 解:[ ]15. 一平行板电容器与电源相连,电源端电压为U ,电容器极板间距离为d .电容器中充满二块大小相同、介电常量(电容率)分别为ε1、ε2的均匀介质板,如图所示,则左、右两侧介质中的电位移矢量D的大小分别为:(A) ε0U / d , ε0U / d .(B) ε1U / d , ε2U / d .(C) ε0 ε1U / d , ε0 ε2U / d .(D) U /( ε1 d ), U /( ε2 d ).解:[ ] 16.一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 (A) 保持不动. (B) 向上运动.(C) 向下运动. (D) 是否运动不能确定.解:[ ]17.一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=.解:[ ]18. 一平行板电容器,两板间距离为d ,若插入一面积与极板面积相同而厚度为d / 2 的、相对介电常量为εr 的各向同性均匀电介质板(如图所示),则插入介质后的电容值与原来的电容值之比C / C 0为 (A) 11+r ε. (B) 1+r r εε.(C)12+r r εε. (D) 12+r ε. 解:[ ]19.如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷.p+Q(2) 球心O点处,由球壳内表面上电荷产生的电势.(3) 球心O点处的总电势.解:20.1、2是两个完全相同的空气电容器.将其充电后与电源断开,再将一块各向同性均匀电介质板插入电容器1的两极板间,如图所示, 则电容器2的电压U2,电场能量W2如何变化?(填增大,减小或不变) U2_________,W2_____________.21.在相对介电常量 r = 4的各向同性均匀电介质中,与电能密度w e =2×106 J/cm3相应的电场强度的大小E =_______________________.22. 一空气平板电容器,极板A、B的面积都是S,板电势U B=0.现将一带有电荷q、面积也是S而厚度可忽略的导体片C平行插在两极板的中间位置,如图所示,试求导体片C的电势.大学物理(第11章上)习题1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中 心处的磁感强度的大小为________________. 2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B .(B) 01=B,lI B π=0222μ.(C) l IB π=0122μ,02=B .(D) l I B π=0122μ,l IB π=0222μ. 解:[ ]3. 在真空中,电流I 由长直导线1沿垂直bc 边方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行ac 边方向流出,经长直导线2返回电源(如图).三角形框每边长为l ,则在该正三角框中心O 点处磁感强度的大小B =_________________________.4. 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A) R I π20μ. (B) R I40μ. (C) 0. (D))11(20π-R I μ. (E))11(40π+R Iμ. 解:[ ]5. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b 端流出,则环中心O 点的磁感强度的大小为(A) 0. (B) R I40μ.(C) R I 420μ. (D) RI0μ.解:[ ]6. 如图所示,在宽度为d 的导体薄片上有电流I 沿此导体长度方向流aIIb a2过,电流在导体宽度方向均匀分布.试求导体外在导体中线附近处P 点的磁感强度B7.一弯曲的载流导线在同一平面内,形状如图(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远 去),则O 点磁感强度的大小是________________________.8. 已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度. 解:9. 一半径R = 1.0 cm 的无限长1/4圆柱形金属薄片,沿轴向通有电流I =10.0 A 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度. 解:P I俯视图10. 在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为 (A)2202R a a I ⋅πμ (B)22202Rr a a I -⋅πμ(C) 22202r R a a I -⋅πμ (D) )(222220a r R a a I -πμ 解: [ ]11. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll Bd 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.解:[ ] 12.半径为 0.5 cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I = 3 A 的电流.作一个半径r = 5 cm 、长l = 5 cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感强度B沿曲面的积分 =⋅⎰⎰S Bd ________________________.13. 均匀磁场的磁感强度B 与半径为r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成 封闭面如图.则通过S 面的磁通量Φ =________________.14.如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A) I l H L 2d 1=⎰⋅. (B)I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d. (D)I l H L -=⎰⋅4d.解:[ ]a R r OO ′I415. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则 (1) 在r < R 1处磁感强度大小为________________.(2) 在r > R 3处磁感强度大小为________________..16. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7T ·m/A ,铜的相对磁导率μr ≈1) 解:17. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的 作用力的大小为____________,方向_________________. 18. 通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B中,求整个导线所受的安培力(R 为已知). 解:BB18.截面积为S ,截面形状为矩形的直的金属条中通有电流I .金属条放在磁感强度为B的匀强磁场中,B的方向垂直于金属条的左、右侧面(如图所示).在图示情况下金属条的侧面将积累____________电荷,载流子所受的洛伦兹力f m =______________.(注:金属中单位体积内载流子数为n )19. 一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DSIBV .(C) IBD VS . (D) BD IVS.(E) IBVD .解:[ ] 20. 图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是 (A) Oa . (B) Ob .(C) Oc . (D) Od . 解:[ ]21. 如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω 转动时,圆环受到的磁力矩为_________________,其方向__________________________.22. 有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 解:[ ]23. (类似习题11-37)半径为R 的匀质圆盘,表面带有均匀分布的电荷Q .圆盘绕过盘中心与盘面垂直的轴旋转,角速度为ω .(1) 求圆盘产生的圆电流的磁矩p m .(2)若圆盘的质量为m ,求磁矩和动量矩之比p m / L .O解:24.如图,一半径为R 的带电塑料圆盘,其中半径为r 的阴影部分均匀带正电荷,面电荷密度为+σ ,其余部分均匀带负电荷,面电荷密度为-σ 当圆盘以角速度ω 旋转时,测得圆盘中心O 点的磁感强度为零,问R 与r 满足什么关系?解:25. 有两个半径相同的圆环形载流导线A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠一起. (B) A 不动,B 在磁力作用下发生转动和平动.(C) A 、B 都在运动,但运动的趋势不能确定. (D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行. 解:[ ]大学物理(第11章下)习题1.磁介质有三种,用相对磁导率μr表征它们各自的特性时,(A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1.(B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1.(C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr<0,抗磁质μr<1,铁磁质μr>0.[]2.一个绕有500匝导线的平均周长50 cm的细环,载有0.3 A电流时,铁芯的相对磁导率为600 .(1) 铁芯中的磁感强度B为__________________________.(2) 铁芯中的磁场强度H为____________________________.(μ0 =4π×10-7 T·m·A-1)3.长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r的某点处的磁场强度的大小H =________________,磁感强度的大小B =__________.4.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I为2.0 A时,测得铁环内的磁感应强度的大小B为1.0 T,则可求得铁环的相对磁导率μr为(真空磁导率μ 0 =4π×10-7 T·m·A-1)(A) 7.96×102(B) 3.98×102(C) 1.99×102 (D) 63.3 解:[]5.一根同轴线由半径为R1的长导线和套在它外面的内半径为R2、外半径为R3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.解:大学物理(第12章)习题1. 载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度v沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是____________________.2. 金属杆AB 以匀速v =2 m/s 平行于长直载流导线运动,导线与AB 共面且相互垂直,如图所示.已知导线载有电流I = 40 A ,则此金属杆中的感应电动势i =____________,电势较高端为______.(ln2 = 0.69)3.如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c 两点间电势差U ac =____________;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.4. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε 和a 、c 两点间的电势差U a – U c 为(A) ε =0,U a – U c =221l B ω.(B) ε =0,U a – U c =221l B ω-.(C) ε =2l B ω,U a – U c =221l B ω.(D) ε =2l B ω,U a – U c =221l B ω-.解: [ ]5. 如图所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转.O 1O 2在离细杆a 端L /5处.若已知地磁场在竖直方向的分量为B.求ab 两端间的电势差b a U U -. 解:c a的方向Bx ×××××Bab clωb6. 如图所示,两条平行长直导线和一个矩形导线框共面.且导线框的一个边与长直导线平行,他到两长直导线的距离分别为r 1、r 2.已知两导线中电流都为t I I ωsin 0=,其中I 0和ω为常数,t 为时间.导线框长为a 宽为b ,求导线框中的感应电动势. 解7. 载有电流的I 长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度 v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M - U N . 解IIOxr 1r 2 ab8. 在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB导线中产生.(B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. 解:[ ]9. 在半径为R 的圆柱形空间存在着轴向均匀磁场(如图)有一长为2R 的导体棒在垂直磁场的平面内以速度v横扫过磁场,若磁感强度B 以 0d d >tB变化,试求导体棒在如图所示的位置处时,棒上的感应电动势. 解:10.用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向? 解:[ ]11载流长直导线与矩形回路ABCD 共面,导线平行于AB ,如图所示.求下列情况下ABCD 中的感应电动势:(1) 长直导线中电流I = I 0不变,ABCD 以垂直于导线的速度v 从图示初始位置远离导线匀速平移到某一位置时(t 时刻). (2) 长直导线中电流I = I 0 sin ω t ,ABCD 不动.(3) 长直导线中电流I = I 0 sin ω t ,ABCD 以垂直于导线的速度v 远离导线匀速运动,初始位置也如图. 解:Cl12. 两线圈顺接,如图(a),1、4间的总自感为1.0 H .在它们的形状和位置都不变的情况下,如图(b)那样反接后1、3之间的总自感为0.4 H .求两线圈之间的互感系数. 解:13. 如图所示,一半径为r 的很小的金属圆环,在初始时刻与一半径为a (a >>r )的大金属圆环共面且同心.在大圆环中通以恒定的电流I ,方向如图.如果小圆环以匀角速度ω绕其任一方向的直径转动,并设小圆环的电阻为R ,则任一时刻t 通过小圆环的磁通量Φ =______________________.小圆环中的感应电流i =__________________________________________.14.图示为一圆柱体的横截面,圆柱体内有一均匀电场E,其方向垂直纸面向内,E的大小随时间t 线性增加,P 为柱体内与轴线相距为r 的一点则 (1) P 点的位移电流密度的方向为____________. (2) P 点感生磁场的方向为____________. 15.如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H的环流两者,必有:(A) >'⎰⋅1d L l H ⎰⋅'2d L l H.(B) ='⎰⋅1d L l H ⎰⋅'2d L l H.(C) <'⎰⋅1d L l H⎰⋅'2d L l H.(D) 0d 1='⎰⋅L l H解:[ ]16. 给电容为C 的平行板电容器充电,电流为i = 0.2e -t( SI ),t = 0时电容器极板上无电荷.求:(1) 极板间电压U 随时间t 而变化的关系.123(a)顺接(b) 反接(2) t 时刻极板间总的位移电流I d (忽略边缘效应).17.在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等.(B) 感应电场是保守力场. (C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念. 解: [ ]18.反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为⎰⎰⋅=VSV S D d d ρ , ① ⎰⎰⋅⋅∂∂-=SL S t B l E d d , ②0d =⎰⋅SS B, ③⎰⋅⎰⋅∂∂+=SL S t DJ l Hd )(d . ④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________ 19.(类似习题13-28)自感系数L =0.3 H 的螺线管中通以I =8 A 的电流时,螺线管存储的磁场能量W =___________________. 20.(类似习题13-28)无限长密绕直螺线管通以电流I ,内部充满均匀、各向同性的磁介质,磁导率为μ.管上单位长度绕有n 匝导线,则管内部的磁感强度为________________,内部的磁能密度为________________.21. 一无限长直导线通有电流tI I 30e -=.一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示.求:(1) 矩形线圈中感应电动势的大小及感应电流的方向;(2) 导线与线圈的互感系数.Il大学物理(第5章)习题1.在狭义相对论中,下列说法中哪些是正确的?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状 态而改变的 (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切 惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看 到这时钟比与他相对静止的相同的时钟走得慢些. (A)(1),(3),(4) (B)(1),(2),(4) (C)(1),(2),(3) (D)(2),(3),(4)解:[ ]2. 设S'系以速率=v 0.60c 相对于S 系沿xx ’轴运动,且在t=t ’=0时,x =x ’=0.(1) 若有一事件,在S 系中发生于t =7100.2-⨯s ,x =50m 处,则该事件在S ’系中发生时刻为________________________.(2)如有另一事件发生于S 系中t=7100.3-⨯s ,x =10m 处,在S ’系中测得这两个事件的时间间隔为__________________.3. 设有两个参考系S 和S ’,它们的原点在t =0和t ’=0时重合在一起.有一事件,在S ’系中发生在t ’=8100.8-⨯s ,x ’=60m ,y ’=0,z ’=0处,若S ’系相对于S 系以速率v =0.60c 沿xx ’轴运动,问该事件在S 系中的时空坐标x =______________,y=_____________,z =____________,t =_______________4. 在惯性系S 中,某事件A 发生在1x 处,6100.2-⨯s 后,另一事件B 发生在2x 处,已知12x x -=300m .问:(1) 能否找到一个相对S 系作匀速直线运动的参照系S ’,在S ’系中,两事件发生于同一地点?(2) 在S ’系中,上述两事件之间的时间间隔为多少?解:5. 设在正负电子对撞机中,电子和正电子以速度0.90c 相向飞行,它们之间的相对速度为_______________________.6.一固有长度为4.0m 的物体,若以速率0.60c 沿x 轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为_____________________.7. 半人马星座α星是离太阳系最近的恒星,它距地球10103.4⨯m .设有一宇宙飞船自地球往返于半人马星座α星之间.若宇宙飞船的速率为0.999c ,按地球上时钟计算,飞船往返一次需要的时间为_____________________.如以飞船上时钟计算,往返一次的时间为_______________________.8. 在S 系中有一长为0l 的棒沿x 铀放置,并以速率u 沿xx ’轴运动.若有一S ’系以速率v 相对S 系沿xx ’轴运动,试问在S ’系中测得此棒的长度为多少?9.一火箭的固有长度为L,相对于地面作匀速直线运动的速度为1v ,火 箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹.在火箭上测得子弹从射出到击中靶的时间间隔是:(A)21v v L + (B)2v L(C)21v v L- (D)211)(1c v v L - (c表示真空中光速)解:[ ]10.某地发生两件事,静止位于该地的甲测得时间间隔为4s,若相对甲作匀速直线运动的。
长江大学《大学物理》习题课2
4、一根同轴线由半径为R1的长导线和套在它外面 的内半径为R2、外半径为R3的同轴导体圆筒组 成.中间充满磁导率为μ的各向同性均匀非铁磁绝
缘材料,如图.传导电流I沿导
线向上流去,由圆筒向下流回,
R3 R2 R 1 I
在它们的截面上电流都是均匀
分布的.求同轴线内外的磁感 强度大小B的分布.
I
如果做成永磁体 容易退磁
.
4、长直电缆由一个圆柱导体和一共轴圆筒状导体组 成,两导体中有等值反向均匀电流I通过,其间充满 磁导率为 的均匀磁介质.介质中离中心轴距离为r
I 的某点处的磁场强度的大小H =_________ 2 r ,磁感强
I 度的大小B =__________ . 2 r
(A) 21 212
(B) 21 12 (C) 21 12 1 (D) 21 12 2
I S 1 I 2S 2
二、填空题 1、有一半径为a,流过稳恒电流为I的1/4圆弧形载
流导线bc,按图示方式置于均匀外磁场中,则该
载流导线所受的安培力大小为
aIB
.
c a O I a
a (A) B = 0,因为B1 = B2 = B3 = 0. 1 (B) B = 0,因为B1+B2=0,B3= 0. O (C) B≠0,因为虽然B1+B2=0, 2 I 但B3≠ 0. b (D) B≠0,因为虽然B3= 0,但 B1 B2 0 . I
c
2、如图所示,导线框abcd置于均匀磁场中(B的方向 竖直向上),线框可绕AA′轴转动.导线通电时,转过 a 角后,达到稳定平衡.如果导线改用密度为原来1/2 的材料做,欲保持原来的稳定平衡位置(即a 不变), 可以采用下列哪一种办法?(导线是均匀的) (A) 将磁场B减为原来的1/2或线框中电流减为原来的 1/2. B d (B) 将导线的bc部分长度减小 a A A′ 为原来的1/2. b c (C) 将导线ab和cd部分长度减 小为原来的1/2. (D) 将磁场B减少1/4,线框中电流也减少1/4.
大学物理课后习题(第二章)
第二章 能量守恒 动量守恒选择题2-1 有一劲度系数为k 的弹簧(质量忽略不计),垂直放置,下端悬挂一质量为m 的小球.现使弹簧为原长,而小球恰好与地面接触.今将弹簧上端缓慢地提起,直到小球刚脱离地面为止,在上提过程中外力做的功为 ( A )(A)222m g k ; (B)222m g k ;(C) 224m g k; (D) 224m g k.2-2 一弹簧长00.5m l =,劲度系数为k ,上端挂在天花板上,当下端吊一小盘后,长度变为10.6m l =.然后在盘中放一物体,使弹簧长度变为20.8m l =.放物后,在弹簧伸长的过程中,弹性力所做的功为 ( C )(A) 0.80.6d kx x -⎰; (B) 0.80.6d kx x ⎰;(C) 0.30.1d kx x -⎰; (D) 0.80.1d kx x ⎰.2-3 如图所示,一单摆在点A 和点A '之间往复运动,就点A 、点B 和点C 三位置比较,重力做功的功率最大位置为 ( B )(A) 点A ; (B) 点B ; (C) 点C ; (D) 三点都一样.2-4 今有质量分别为1m 、2m 和3m 的三个质点,彼此相距分别为12r 、23r 和31r .则它之间的引力势能总和为 ( A )(A) 233112122331m m m m m m G r r r ⎛⎫-++ ⎪⎝⎭; (B) 233112122331m m m m m m G r r r ⎛⎫++ ⎪⎝⎭; (C) 2331121223312m m m m m m G r r r ⎛⎫-++⎪⎝⎭; (D) 2331121223312m m m m m m G r r r ⎛⎫++ ⎪⎝⎭.2-5 有下列几种情况:(1) 物体自由落下,由物体和地球组成的系统; (2) 使物体均匀上升,由物体和地球组成的系统;(3) 子弹射入放在光滑水平面上的木块,由子弹和木块组成的系统; (4) 物体沿光滑斜坡向上滑动,由物体和地球组成的系统.机械能守恒的有 ( C )(A) (1)、(3); (B) (2)、(4); (C) (1)、(4); (D) (1)、(2).2-6 质量分别为m 和4m 的两个质点,沿一直线相向运动.它们的动能分别为E 和4E ,它们的总动量的大小为 ( C )(A)(C)-.2-7 质量为m 的小球,以水平速度v 与竖直的墙壁作完全弹性碰撞.以小球的初速度v的方向为O x 轴的正方向,则此过程中小球动量的增量为 ( D ) (A) m i v ; (B) 0; (C) 2m i v ; (D) 2m -i v .2-8 如图所示,质量为1k g 的弹性小球,自某高度水平抛出,落地时与地面发生完全弹性碰撞.已知在抛出1s 后又跳回原高度,而且速度的大小和方向和刚抛出时相同.在小球与地面碰撞的过程中,地面给它的冲量的大小和方向为 ( A )(A) 19.8kg m s -⋅⋅,垂直地面向上;19.8kg m s-⋅⋅,垂直地面向上;(C) 119.6kg m s -⋅⋅,垂直地面向上; (D) 14.9kg m s-⋅⋅,与水平面成o45角.2-9 一炮弹由于特殊原因,在弹道最高点处突然炸成两块,如果其中一块做自由落体下落,则另一块的着地点 ( A )(A) 比原来更远; (B) 比原来更近; (C) 仍和原来一样; (D) 条件不足,不能判定.2-10 在下列陈述中,正确的是 ( A ) (A) 物体的动量不变,动能也不变; (B) 物体的动能不变,动量也不变; (C) 物体的动量变化,动能也一定变化; (D) 物体的动能变化,动量却不一定也变化.2-11 如图所示,一光滑圆弧形槽m '放置于光滑的水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力,对这一过程,下列陈述正确的为 ( C )(A) 由m 和m '组成的系统动量守恒; (B) 由m 和m '组成的系统机械能守恒; (C) 由m 、m '和地球组成的系统机械能守恒; (D) m 对m '的正压力恒不作功.2-12 如图所示,质量为20g 的子弹,以1400m s-⋅的速率沿图示方向射入一原来静止的、质量为980g 的摆中.摆线不可伸缩,质量忽略不计.子弹射入后,摆的速度为 ( A )(A) 14m s -⋅; (B) 18m s -⋅; (C) 12m s -⋅; (D) 11.79m s -⋅. 计算题2-13 用力推物体,使物体沿O x 轴正方向前进,力在O x 轴上的分量为510x F x =+式中x 的单位为m ,x F 的单位为N .求当物体由0x =移到4m x =时,力所做的功.解 在物体由0x =移到4m x =的过程中,力所做的功为()214d 510d 100J x x x A F x x x ==+=⎰⎰2-14 一个不遵守胡克定律的弹簧,它的弹性力F 与形变x 的关系为3F kx b x =--式中,411.1610N m k -=⨯⋅,531.610N mb -=⨯⋅,求弹簧变形由10.2m x =到20.3mx =时,弹性力所做的功.解 在弹簧变形由1x 到2x 的过程中,弹性力所做的功为221132244212111d ()d ()()24x x x x A F x kx b x F x k x x b x x ==-+=----⎰⎰将10.2m x =和20.3m x =代入上式,可得2244212142254411()()2411 1.1610(0.30.2) 1.6010(0.30.2)J 550J24A k x x b x x =----⎡⎤=-⨯⨯⨯--⨯⨯⨯-=-⎢⎥⎣⎦2-15 如果子弹穿入墙壁时,所受的阻力与穿入的深度h 成正比,证明当子弹的初速度增大为原来的2倍时,子弹进入墙壁的深度也增大2倍.证 在穿进墙壁后,子弹所受的阻力为F kh =-,式中k 为常数.设子弹进入墙壁的最大深度为m h ,则在子弹穿入过程中,阻力做的功为m 2m 01d 2h A kh h kh =-=-⎰子弹在最大深度m h 时的速度为零.由外力的功等于始末二状态之间的动能的增量,有22m ax 01122kh k -=-v式中0v 是子弹的初速度,即子弹与墙壁接触瞬间的速度.k 和子弹质量m 均为常数,因此子弹的初速度0v 和子弹进入墙壁的最大深度m h 成正比,子弹的初速度增大为原来的2倍时,子弹进入墙壁的最大深度也增大为原来的2倍.2-16 如图所示,一质量为4k g 的小球,从高度3m h =处落下,使弹簧受到压缩.假定弹簧的质量与小球相比可以略去不计,弹簧的劲度系数1500N m k -=⋅.求弹簧被压缩的最大距离.解 小球从开始下落,到弹簧达到最大压缩x 量为止,下落距离为h x +.这期间, 由小球、弹簧和地球组成的系统机械能守恒.由于小球的动能增量为零,因此21()02kx m g h x -+=即2220m g m g x x h kk--=将2249.80.1568500m g k⨯⨯==,3m h =代入上式,可解得0.769m x =2-17 测定矿车的阻力因数μ(即阻力与矿车对轨道正压力的比值)的设施如图所示.测定时使矿车自高度h 处从静止开始下滑,滑过一段水平距离2l 后停下.已知坡底的长度为1l ,证明12h l l μ=+.证 设矿车质量为m ,则矿车在坡道上下滑时所受的正压力大小为co s m g θ.式中θ为斜面与水平面的夹角.由功能原理,矿车所受的力在全过程中所做的功,等于其始末二状态之间的动能增量,而动能的增量为零,于是2co s 0co s l m g h m g m g l μθμθ--=由此可得12()h l l μ=+2-18 一颗子弹由枪口射出时速率为0v ,当子弹在枪筒内被加速时,它所受的合外力为F a bt =-式中a 、b 为常量.(1) 设子弹走到枪口处,所受的合力刚好为零,求子弹走完枪筒全长所需的时间; (2) 求子弹所受的冲量; (3) 求子弹的质量.解 (1) 子弹走到枪口处,所受的合力刚好为零:00F a bt =-=由此可得子弹走完枪筒全长所需的时间为0a t b=(2) 在[]00,t ,子弹所受的冲量为022200011()d ()222t a aaI a b t t a t b t ab bb b=-=-=-=⎰(3) 由动量原理I m =∆v ,而子弹的初速度为零,于是有0I =m v由此可得子弹的质量为2I a b ==m v v2-19 一质量为m 的质点,在O xy 平面上运动,其位置矢量为cos sin a t b t ωω=+r i j求从0t =到π2t ω=时间内,质点所受的合外力的冲量.解 质点的速度为d sin co s d a t b t tωωωω==-+r i j v0t =时, 质点的速度为1b ω=j vπ2t ω=时, 质点的速度为2ππsin co s 22a b a ωωωωωωω=-+=-i j i v由动量原理, 在0t =到π2t ω=时间内质点所受的合外力的冲量为21m m m a m b ωω=-=--I i j v v2-20 有一横截面积为20.2m S =的直角弯管,水平放置,如图所示.管中流过流速为13.0m s-=⋅v 的水.求弯管所受力的大小和方向.解 d m 的水转过直角,经历的时间为∆l t =v,式中l 为弯管14圆弧的长度;动量改变的大小为d m ,方向与水平成o45角.由动量定理,弯管给d m 的水的平均作用力的大小为2d d d d m m m F l tl===∆v圆弧弯管长度的水的质量为d m mS l ρ==⎰.这么多的水转过直角,弯管所给的平均作用力的大小为2223231100.20 3.0N 2.5510NS l F S ll====⨯⨯⨯=⨯v v v方向与水平成o45角,斜向上.此力的反作用力即为水管所受的力,大小为32.5510N F '=⨯方向与水平成o45角,斜向下.2-21 水力采煤是利用水枪在高压下喷出来的强力水柱,冲击煤层而使煤层破裂.设所用水枪的直径为30m m ,水速为160m s-⋅,水柱与煤层表面垂直,如图所示.水柱在冲击煤层后,沿煤层表面对称地向四周散开.求水柱作用在煤层上的力.解 设水在煤层表面均匀四散,则煤层所受的合力在沿煤层表面的方向上的分量为零.在t ∆时间内,有质量为m tS ρ=∆v 的水到达煤层表面.式中v 为水速, S 为水柱截面积.在垂直于煤层的方向上,其动量的变化为()2x m tS ρ∆=-∆v v由动量定理,()x x F t m ∆=∆v ,可求得水柱所受的冲力在垂直于煤层的方向上的分量为x F S ρ=-2v水柱作用在煤层上的力是x F i 的反作用力,垂直指向煤层,大小为2432π 3.01011060N 2545N 4F S ρ-⨯⨯'==⨯⨯⨯=2v2-22 在铁轨上,有一质量为40t 的车辆,其速度为11.5m s -⋅,它和前面的一辆质量为35t 的静止车辆挂接.挂接后,它们以同一速度前进.求:(1) 挂接后的速率;(2) 质量为35t 的车辆受到的冲量. 解 (1) 由动量守恒定律,有21122()m m m m +=+v v v式中11 1.5m s -=⋅v 是140t m =的车辆的初速度,20=v 是230t m =的车辆的初速度;v 是两辆车一起运动的速度.由此可得311113124010 1.5m s0.8m s(4035)10m m m --⨯⨯==⋅=⋅++⨯v v(2) 质量为235t m =的车辆受到的冲量等于其动量的增量:34235100.8N s 2.8010N s I m ==⨯⨯⋅=⨯⋅v2-23 一个质量为60kg 的人,以12.0m s -⋅速率跳上一辆以11.0m s -⋅的速率运动的小车.小车的质量为180k g .(1) 如果人从小车后面跳上去,求人和小车的共同速度 (2) 如果人从小车前面跳上去,求人和小车的共同速度. 解 以小车前进方向为正方向.由动量守恒定律121122()m m m m +=+v v v式中v 是人和小车的共同速度, 1v 是人的速率, 12 1.0m s -=⋅v 是小车的速率. 由上式可得112212m m m m +=+v v v(1) 如果人从小车后面跳上去,则人的速度11 2.0m s -=⋅v ,人和小车的共同运动的速度为1111221260 2.0180 1.0m s1.25m s(60180)m m m m --+⨯+⨯==⋅=⋅++v v v(2) 如果人从小车前面跳上去,则人的速度11 2.0m s -=-⋅v ,人和小车的共同运动的速度为1111221260( 2.0)180 1.0m s0.25m s(60180)m m m m --+⨯-+⨯==⋅=⋅++v v v2-24 一炮弹竖直向上发射,初速度为0v .在发射后经过时间t ,在空中自动爆炸.假定炮弹爆炸后分成质量相等的A 、B 、C 三块碎片.其中A 块的速度为零, B 、C 两块的速度大小相同,且B 块的方向与水平成α角.求B 、C 两块碎片的速度大小和C 块的方向.解 临爆炸前,炮弹的速度在竖直方向,大小为0g t =-v v .其方向可能竖直向上,亦可能竖直向下.设炮弹的质量为m ,爆炸后瞬时B 、C 两块的速度分别为B v 和C v .由动量守恒定律B C 1133m m m +=v v v图示为速度竖直向上时的动量守恒的矢量图,图中π2βα=-.若速度竖直向下,亦可作出相似的动量守恒的矢量图.由于B 、C 两块的速度大小相同,即B C =v v ,因此动量守恒的矢量图为等腰三角形,C v 与竖直面的夹角亦为β,与水平面的夹角亦为α;与B v 之间的夹角为π2α-,且B C 11sin sin 33m m m αα+=v v v将0g t =-v v 和B C =v v 代入,即可求得B 、C 两块碎片的速度大小为0B C 32sin g t α-==v v v2-25 如图所示,有一空气锤,质量为200kg m =,由高度0.45m h =处受工作气缸中压缩空气的压力及重力的作用而落下,摩擦阻力可以忽略.已知工作气缸内压缩空气对锤头的平均压力37.0010N F =⨯,锤头与工件的碰撞时间为0.010s t =,求锤头锻打工件时的平均冲力.解 设锤头到达工件,与工件接触瞬时的速度为v .由功能原理,有21()2F m g h m +=v由此可得=v这时,汽缸内的压强已经很小,对锤头的压力可以忽略.锤头锻打工件时的过程中,受到的向上的平均冲力为1F .以竖直向下为正方向,由动量原理,有()1Fm g t m -+∆=-v可得1F 的大小为15200 2009.8N 1.29010N0.010m F m g m gt ⎛⎫=+=⎪∆⎝⎭⎛⎫=⨯⨯=⨯ ⎪ ⎪⎝⎭v工件所受的打击力是1F 的反作用力,平均大小亦为51.29010N ⨯,方向竖直向下.若不忽略汽缸内的压缩空气对锤头的压力,且认为大小亦为37.0010N F =⨯,则有()1F F m g t m '-++∆=-v由此可得锤头和工件所受的打击力的平均大小()53511 1.290107.0010N1.3610N F F F '=+=⨯+⨯=⨯2-26 两个形状相同质量均为m '弧形光滑导轨A 和B ,放在光滑地板上,且在同一竖直平面内,A 和B 的下端均和地板相切,如图所示.今有一质量为m 的小物体,由静止从高度为0h 的A 的顶端下滑,求m 在B 导轨上上升的最大高度.解 设小物体下滑至地面时,物体速度为v ,导轨A 的速度为A v .在小物体下滑的过程中,小物体、导轨A 和地球组成的系统机械能守恒,有22A 01122m m m g h '+=v v小物体和导轨A 组成的系统在水平方向上动量守恒,有A 0m m '+=v v联立解此二方程,可得=v设小物体沿导轨B 上升的最大高度为h ,此时二者一起运动的速度为B v .在小物体上升的过程中,小物体、导轨B 和地球组成的系统机械能守恒,有221B 11()22m m g h m m '=++v v小物体和导轨B 组成的系统在水平方向上动量守恒,有B ()m m m '=+v v联立解此二方程,可得22()m h m m g'='+v将=v 代入上式,可得20m h h m m '⎛⎫= ⎪'+⎝⎭。
大学物理习题2
(C )无论q 是正是负金属球都下移。
(D )无论q 是正是负金属球都不动图1 图2 图32.已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度如图2所示,则板外两侧的电场强度的大小为:( ) (A )02εσ=E ; (B )02εσ=E ; (C )0εσ=E ; (D )02εσdE = 3.真空中一半径为R 的未带电的导体球,在离球心O 的距离为a (a >R )处放一点电荷q ,设无穷远处电势为0,如图3所示,则导体球的电势为( )。
(A )Rq 04πε (B )aq 04πε (C )()04q a R πε- (D )⎪⎭⎫⎝⎛-R a q1140πε 二、填空题1.在电量为+q 的点电荷电场中放入一不带电的金属球,从球心O 到点电荷所在处的矢径为r,则金属球的感应电荷净电量q ′= ,这些感应电荷在球心O 处建立的电场强度E= 。
2.一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如右图所示,则图中P 点的电场强度Ep = ;若用导线将A 和B 连接起来,则A 球的电势U= 。
(设无穷远处电势为零)3.在静电场中有一立方形均匀导体,边长为a ,如图所示。
知立方导体中心O 处的电势为0U ,则立方体顶点A 的电势为 。
4. 有两个大小不相同的金属球,大球直径是小球的两倍,大球带电,小球不带电,两者相距很远.今用细长导线将两者相连,在忽略导线的影响下,大球与小球的带电之比为 。
三、计算题1.三个平行金属板A 、B 、C ,面积均为S =200平方厘米,A 、B间相距d 1 = 4毫米,A 、C间相距d 2 = 2毫米,B 和C 两板都接地。
如果使A 板带正电q = 73.010-⨯库仑,求:(1)B 、C 板上感应电荷。
(2)A 板电势。
Bo A Pr Ar Cr B qoR2. 有两个同轴圆柱面,内圆柱面半径为R1,电势为U1,外圆柱面半径为R2,电势为U2,求两圆柱面间距轴线垂直距离为r1和r2两点的电势差.练习14 静电场中的电介质班级姓名学号一、选择题1. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S 面内必定(A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷.(C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.2.在空气平行板电容器中,平行地插上一块各向同性均匀电介质板。
大学物理课后习题2第二章答案
(B) aA>0 , aB<0.
(C) aA<0 , aB>0.
(D) aA<0 , aB=0. F
B
A
x
答案:(D)。
题 2.1(5)图
2.2 填空题 (1) 质量为 m 的小球,用轻绳 AB、BC 连接,如图所示,其中 AB 水平.剪断绳 AB 前后的瞬间,绳 BC 中的张力比 T : T′=____________.
说
法
中
:
()
(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
答案:(C)。
(4) 一质量为 M 的斜面原来静止于水平光滑平面上,将一质量为 m 的木块轻
轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将
()
(A) 保持静止.
(B) 向右加速运动.
(C) 向右匀速运动. (D) 向左加速运动.
受的合力为 F =( a bt )N( a,b 为常数),其中 t 以秒为单位:(1)假设子弹运行
到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的
冲量;(3)求子弹的质量.
解: (1)由题意,子弹到枪口时,有
F (a bt) 0 ,得 t a b
(2)子弹所受的冲量
,
物体与水平面间的摩擦系数为
。
答案: v2 ; 2s
v2 . 2gs
(5) 在光滑的水平面内有两个物体 A 和 B,已知 mA=2mB。(a)物体 A 以一定的动
能 Ek 与 静 止 的 物 体 B 发 生 完 全 弹 性 碰 撞 , 则 碰 撞 后 两 物 体 的 总 动 能
大学物理习题答案02质点动力学
大学物理练习题二一、选择题1. 质量为m的小球在向心力作用下,在水平面内作半径为R、速率为v的匀速圆周运动,如下左图所示。
小球自A点逆时针运动到B点的半周内,动量的增量应为:(A )mv 2j (B )jmv2 (C )i mv 2 (D )i mv 2 [ B ]解: j mv j mv v m v m p A B)(j mv 2 ; 另解:取y 轴为运动正向,mv mv mv p 2)( , pj mv 22. 如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A ).2mv (B )22/2v R mg mv(C )v Rmg / (D )0。
[ C ]解: v /R 2T ,2/T t ,t mgd I T 20v /R mg(注)不能用0v m v m p I,因为它是合力的冲量。
3. 一质点在力)25(5t m F (SI )(式中m 为质点的质量,t 为时间)的作用下,0 t 时从静止开始作直线运动,则当s t 5 时,质点的速率为(A )s m /50 (B )s m /25 (C )0 (D )s m /50 [ C ]mvR解:F 为合力,00 v ,0525)25(5525t tt mt mt dt t m Fdt由mv mv mv Fdt tt 00可得0 v解2:由知)25(5t m F 知)25(5t a ,550)25(5dt t adt v v0)5(5520 t t v v , (00 v )4. 质量分别为m和4m的两个质点分别以动能E和4E沿一直线相向运动,它们的总动量大小为(A ),22mE (B )mE 23, (C )mE 25, (D ) mE 2122 。
[ B ]解:由M p Mv E k 22122,有k ME p 2 ,mE 2p 1 ,12p 4)E 4)(m 4(2p ,1123)(p p p p 总m E 235. 一个质点同时在几个力作用下的位移为:k j i r654 (SI ) 其中一个力为恒力k j i F953 (SI ),则此力在该位移过程中所作的功为 (A) 67J (B) 91J (C) 17J (D) –67J [ A ]解:恒力作功,z F y F x F r F A z y x69)5()5(4)3()(67J6. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加。
大学物理2习题参考答案
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
大学物理练习题2(动力学)
大学物理练习题2:“力学—动力学”一、填空题1、一质量为m 的小球,当它以速率ν做匀速直线运动时,受到的合力大小等于 0 ;当它以加速度a做匀变速直线运动时,受到的合力大小等于ma ;当它做自由落体运动时,受到的合力大小等于mg 。
2、质量为m 的汽车,驶过曲率半径为R 的拱桥时速率为v ,当汽车驶过如右图所示的位置时,它对桥面的压力大小为=N F R m v m g 2-。
3、质量为m 的子弹以速率0v 水平射入沙土中。
若子弹所受阻力与速率成正比(比例系数为k ),忽略子弹重力的影响,则:(1)子弹射入沙土后,=)(t v t m k ev -0;(2)子弹射入沙土的深度=)(t x kmv e k mv t m k 00+--。
4、一质量为m 、半径为R 的均匀圆盘,以圆心为轴的转动惯量为221mR ,如以和圆盘相切的直线为轴,其转动惯量为223mR 。
5、一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω。
设它所受阻力矩与转动角速度成正比,即ωk M -=(k 为正的常数),则圆盘的角速度为20ω时其角加速度α=J k 20ω-;圆盘的角速度从0ω变为20ω时所需的时间为2ln k J 。
二、选择题 1、汽车急转弯时人往往要向外倾倒,从地面上的观察者看来,是何种缘故造成的?(C )。
A 、离心力;B 、离心惯性力;C 、惯性;D 、无法确定。
2、下述说法中,正确的是( D )。
A 、在两个相互垂直的恒力作用下,物体可以作匀速直线运动;B 、在两个相互垂直的恒力作用下,物体可以作匀速率曲线运动;C 、在方向和大小都随时间变化的力的作用下,物体作匀速直线运动;D 、在方向和大小都不随时间变化的力的作用下,物体作匀加速运动。
3、一个人在平稳地行驶的大船上抛篮球,则( D )。
A 、向前抛省力;B 、向后抛省力;C 、向侧抛省力;D 、向哪个方向都一样。
4、完全相同的甲乙二船静止于水库中,一人从甲船跳到乙船上,不计水的阻力,则( C )。
大学物理下册习题二
大学物理下册习题二第1页共1页习题二静电场中的导体和电介质习题学院班序号___________姓名习题二一、选择题1.图示一均匀带电球体,总电荷为+Q,其外部同心地罩一内、外半径分别为r1、r2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r的P点处的场强和电势为[]:40r40r2+Qr2rP2.半径为R的金属球与地连接.在与球心O相距d=2R处有一电荷为q的点电荷.如图所示,设地的电势为零,则球上的感生电荷q为[]q(A)0.(B).2q(C)-.(D)q.2ROdq3.如图,在一带电量为Q的导体球外,同心地包有一各向同性均匀电介质球壳,相对介电常数为r,壳外是真空.则在壳外P点处(设OPr)的场强和电位移的大小分别为[](A)E=Q/(40rr2),D=Q/(40r2).22(B)E=Q/(4rr),D=Q/(4r).Qr(C)E=Q/(40r2),D=Q/(4r2).O(D)E=Q/(40r2),D=Q/(40r2).p4.一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m、带电荷为+q的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去,则该质点[]-Q(A)保持不动.(B)向上运动.+q(C)向下运动.(D)是否运动不能确定.m+Q5.C1和C2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C1中插入一电介质板,如图所示,则[](A)C1极板上电荷增加,C2极板上电荷减少.C1C2(B)C1极板上电荷减少,C2极板上电荷增加.(C)C1极板上电荷增加,C2极板上电荷不变.(D)C1极板上电荷减少,C2极板上电荷不变.二、填空题1.一空心导体球壳带电荷q,当在球壳内偏离球壳中心某处再放一电荷为q的点电荷时,则导体球壳内表面上的电荷为,(填是或不是)均匀分布;外表面上的电荷为,(填是或不是)均匀分布。
大学物理实验习题 2
绪论部分一、选择题1、依据获得测量结果方法的不同,测量可分两大类,即()A:多次测量和单次测量B:等精度测量和不等精度测量C:直接测量和间接测量D:以上三种分类都正确2、以下哪个不属于物理实验()A:利用卷尺测量物体的长度B:利用弹簧秤称小铁块的重量C:伽里略的斜塔实验D:爱因斯坦发现光的粒子性3、对一物理量进行等精度多次测量()A:误差的平方和为最小B:测量值(或误差)一定遵从正态分布C:测量值(或误差)一定遵从均匀分布D:其算术平均值是误差为零的值4、对一物理量进行多次等精度测量,其目的是()A:消除系统误差B:消除随机误差C:减小系统误差D:减小随机误差5、以下说法正确的是()A:多次测量可以减小随机误差B:多次测量可以消除随机误差C:多次测量可以减小系统误差D:多次测量可以消除系统误差6、对一物理量进行等精度多次测量,其算术平均值是()A:真值B:最接近真值的值C:误差最大的值D:误差为零的值7、测量结果的标准表达式为X=X±U,其含义为()A:被测量必定等于(x-U)或(x+U)B:被测量可能等于(x-U)或(x+U)C:被测量必定在(x-U)和(x+U)之间D:被测量以一定概率落在(x-U)或(x+U)之间8、下列测量结果中,准确度最高的是()A :1L =102.3±0.2 ㎝B :2L =103.52±0.05㎝C :3L =1.246±0.005㎝D :4L =0.0056±0.0002㎝9、对某测量对象进行多次测量,测量结果为)(x u x x c ±=,其中)()()(22x u x u x u B A c += , ()(x u A 、)(x u B 分别为其A 类不确定度、B 类不确定度。
问被测量的真值落在)](),([x u x x u x c c +-范围内概率为 ( )A .68.3%B .95%C .57.7%D .100%10、对某测量对象进行单次测量,测量结果为)(x u x x c ±=,其中)()(x u x u B c ==3A,)(x u B 为其B 类不确定度。
大学物理实验习题2
大学物理实验习题21、选择题1的引言部分,根据获取测量结果的不同方法,测量可分为两类。
即()A:多次测量和单次测量B:等精度测量和不等精度测量c:直接测量和间接测量d:以上三种分类正确2。
下列哪一项不属于物理实验a:用卷尺测量物体的长度b:用弹簧秤称一个小铁块的重量c:伽利略的斜塔实验D:爱因斯坦发现了光的粒子性质3,对物理量进行多次等精度测量a:误差平方和最小为B:测量值(或误差)必须遵循正态分布c:测量值(或误差)必须遵循均匀分布d:算术平均值为4,误差为零。
对一个物理量进行多次等精度测量,其目的是a:消除系统误差b:消除随机误差c:减少系统误差d:减少随机误差5,以下陈述是正确的:a:多次测量可以减少随机误差b:多次测量可以消除随机误差c:多次测量可以减少系统误差d:多次测量可以消除系统误差6,并且可以对一个物理量进行多次等精度测量。
算术平均值为a:真值B:最接近真值的值c:最大误差值d:零误差值7。
测量结果的标准表达式为x = x u,其含义为A:待测值必须等于(x-u)或(x+u) b:待测值可以等于(x-u)或(x+u) c:待测值必须介于(x-u)和(x+u)d:待测值在(x-u)或(x+u) 8之间,在以下测量结果中有一定的概率。
最高精度为))))))))(((a:L1 = 102.3 0.2 \1321 b:L2 = 103.52 0.05 \13211x?Uc(x),其中uc(x)?uA(x)?UB(x)、(uA(x)和uB(x)分别是它们的a类不确定度和b 类不确定度。
询问测量的真实值是否在22[x范围内?uc(x),x?uc(x)]范围内的概率为()a . 68.3%b . 95%c . 57.7%d . 100%10。
对于测量对象的单次测量,测量结果为x?x?Uc(x),其中uc(x)?uB(x)=A3,[x?uc(x),x?uc(x)]范围内的概率为uB(x),是其b类不确定性。
大学物理习题2
《普通物理》作业:动量与角动量 No.2序号 姓名 院系. 专业. 年级 成绩 你最感兴趣的题目是 你认为最困难的题目是一. 选择题[ ] 1. A. B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示,若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为 (A)21。
(B) 2。
(C) 2。
(D) 2/2。
解:以m A . m B 及弹簧为研究对象,系统所受合外力为零,动量守恒 0=+B B A A v m v m分量式为0=-B B A A v m v m∴ 2==AB B A m m v v ∴ 222121212222=⨯=⎪⎪⎭⎫ ⎝⎛==B A B A B B A A KB KAv v m m v m v m E E ∴选B[ ] 2. 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度为)43(j i +,粒子B的速度为)72(j i -,由于两者的相互作用,粒子A 的速度变为)47(j i -,此时粒子B 的速度等于(A) j i 5-。
(B)j i 72-。
(C) 0。
(D)j i 35-。
解:以两个粒子为研究对象,无外力作用,动量守恒,即:B B A B A v m j i m j i m j i m +-=-++)47()72()43(∴ B AB A B v m m j i j i m m j i +-=-++47)72(43 将4=AB m m 代入,得j i v B 5-=,选A 。
[ ] 3. 如图所示,砂子从h =0.8m 高处落到以3m /s 的速率水平向右运动的传送带上,取重力加速度g =10m /s 2,传送带给予砂子的作用力的方向为(A) 与水平夹角 53向下。
(B) 与水平夹角 53向上。
(C) 与水平夹角 37向下。
(D) 与水平夹角 37向下。
大学物理课后习题及答案(2)
习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。
[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。
(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。
对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。
半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。
所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。
13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。
大学物理习题作业2
质点动力学一.选择题1•竖立的圆筒形转笼,半径为R ,绕中心轴00 •转动,物块A 紧靠在圆 筒的内壁上,物块与圆筒间的摩擦系数为 筒转动的角速度•■至少应为[] (A) (B) (C) (D)2•—光滑的内表面半径为10cm 的半球形碗,以匀角速度「绕其对称轴 0C 旋转,已知放在碗内表面上的一个小球 P 相对碗静止,其位置高于 碗底4cm ,则由此可推知碗旋转的角速度约为[]」,要使物块A 不下落,圆 O ①:* ;(A) 13rad s';0(B) 17rad -s^ ;(C) 10rad s';I丿(D) 18rad s'。
V丿c3. 质量为m的质点,以不变速率:沿图中正三角形ABC的水平光滑轨道运动,质点越过A角时,轨道作用于质点的冲量的大小为[ ](A) 3m ;(B) 、3m ;(C) 、2m ;(D) 2m 。
4•一质点在如图所示的坐标平面内作圆周运动,有一力F二F o(xi yj) 作用在质点上。
在该质点从坐标原点运动到(0, 2R)位置过程中,力F对它所作的功为(A) .2F o R1 2;(B) 2F o R2;(C) 3F o R2;(D) 4F o R2。
5.—质量为m的质点,在半径为R的半球形容器中,由静止开始自边缘上的A点滑下,到达最低点B点时,它对容器的正压力数值为N,则质点自A滑到B的过程中,摩擦力对其作的功为[]1(A) ,R(N-3mg);1(B) ^RQmg-N);1(C) ,R(N -mg);1(D) -R(N -2mg)。
二.填空题1.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为m i 的物体的加速度a1 =2•倔强系数为k的弹簧,上端固定,下端悬挂重物。
当弹簧伸长x o,重物在0处达到平衡,现取重物在0处时各种势能均为零,则当弹簧长度为原长时,系统的重力势能为_____________________系统的弹性势能为_____________________系统的总势能为_______________________ _3•如图所示,一斜面倾角为,,用与斜面成,角的恒力F将一质量为m的物体沿斜面拉升了高度h,物体与斜面间的摩擦系数为■,摩擦力在此过程中所作的功W f =4. 质量为m的物体,从高出弹簧上端h处由静止自由下落到竖直放置在地面上的轻弹簧上,弹簧的倔强系数为k,则弹簧被压缩的最大距离x = 。
大学物理实验习题2
绪论部分一、选择题1、依据获得测量结果方法的不同,测量可分两大类,即()A:多次测量和单次测量B:等精度测量和不等精度测量C:直接测量和间接测量D:以上三种分类都正确2、以下哪个不属于物理实验()A:利用卷尺测量物体的长度B:利用弹簧秤称小铁块的重量C:伽里略的斜塔实验D:爱因斯坦发现光的粒子性3、对一物理量进行等精度多次测量()A:误差的平方和为最小B:测量值(或误差)一定遵从正态分布C:测量值(或误差)一定遵从均匀分布D:其算术平均值是误差为零的值4、对一物理量进行多次等精度测量,其目的是()A:消除系统误差B:消除随机误差C:减小系统误差D:减小随机误差5、以下说法正确的是()A:多次测量可以减小随机误差B:多次测量可以消除随机误差C:多次测量可以减小系统误差D:多次测量可以消除系统误差6、对一物理量进行等精度多次测量,其算术平均值是()A:真值B:最接近真值的值C:误差最大的值D:误差为零的值7、测量结果的标准表达式为X=X±U,其含义为()A:被测量必定等于(x-U)或(x+U)B:被测量可能等于(x-U)或(x+U)C:被测量必定在(x-U)和(x+U)之间D:被测量以一定概率落在(x-U)或(x+U)之间8、下列测量结果中,准确度最高的是()A :1L =102.3±0.2 ㎝B :2L =103.52±0.05㎝C :3L =1.246±0.005㎝D :4L =0.0056±0.0002㎝9、对某测量对象进行多次测量,测量结果为)(x u x x c ±=,其中)()()(22x u x u x u B A c += , ()(x u A 、)(x u B 分别为其A 类不确定度、B 类不确定度。
问被测量的真值落在)](),([x u x x u x c c +-范围内概率为 ( )A .68.3%B .95%C .57.7%D .100%10、对某测量对象进行单次测量,测量结果为)(x u x x c ±=,其中)()(x u x u B c ==3A,)(x u B 为其B 类不确定度。
大学物理习题二
(3)
1 P cos ( r 1)
; 2 P cos 0 ( r 1) 2 r R1 2 r R2
12、厚度为 b 的无限大平板内分布有均匀电荷密度(>0)的自由电荷,在板外两侧 分别充有介电常数为 1、2 的电介质,如图所示。求(1)板内 外的电场分布;(2)板外的 A 点与 B 点分别距左右两板壁为 l, 求电势差 UAB 解:板内存在一平面 E 为零,以此面为原点建立图示坐标,设 d1、d2,d1+d2=b,作高斯面 1、2、3,见图示 板内
C
C1
C 2 C3
C
1
C
C1 (C 2 C3 ) 25F C1 C 2 C3
C
2
C
3
(2)设 AB 两端的电压为 U
Q1 CU 25 10 6 100 2.5 10 3 C
B
U1
Q1 2.5 10 3 50V C1 50 10 6
r R1 U q内 q内 q Q 内 4 0 r 40 R 2 4 0 R 3 U q内 Q R2 r R3 4 0 R 3 q Q 内 r R3 40 r
R1 r R 2
注上式采用带电球壳的电势叠加,也可用 u E d l 获得 2、半径为 R1 和 R2 (R1<R2 )的相互绝缘的两同心导体球壳,现使内球壳带上+q 电量时 求: (1) 外球的电荷与电势;(2) 若把外球接地后再重新绝缘,外球的电势与电荷; (3) 然后把内球壳再接地,这时内球的电荷为多少?这时外球的电势又为多少? 解: (1)
q1 d1 0S
1.0 10 7 4.0 10 3 2.3 10 3 V 8.85 10 12 0.2
大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解
2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。
B.它的动量不变,对圆心的角动量不断改变。
C.它的动量不断改变,对圆心的角动量不变。
D.它的动量不断改变,对圆心的角动量也不断改变。
答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。
B.系统的总动量。
C.系统的总动能。
D.系统的总角动量。
答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。
不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.①、②是正确的。
B.②、③是正确的。
C.只有②是正确的。
D.只有③是正确的。
答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为 。
答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。
< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。
练习2大学物理习题及答案
的损失为
4 17
m02r
2
。
J1
1 2
mr
2
J2
1 2
mr 2
8mr 2
B A
角动量守恒 J10 J2
E1
1 2
J102
又:
E2
1 2
J
2
2
E E2 E1
0 r 2r
6题图
三、计算题:
1.以30N·m的恒力矩作用在有固定轴的飞轮上,在10s内飞轮的转速 由零增大到5rad/s,此时移去该力矩,飞轮因摩擦力矩的作用经90s 而停止,试计算此飞轮对其固定轴的轴)转动。开始 时棒与水平成60°角并处于静止状态。无初转速地
l o•
60
释放以后,棒、球组成的系统绕O轴转动,系统
2题图
绕O轴转动惯量J=
3 4
ml
2,释放后,当棒转到水
m
J miri2
平位置时,系统受到的合外力矩M=
1 2
mgl,角
2g
m(
l 2
)2
解:
N1
1
T3
a1
T1' T1
M1g
m1 g
T3'
2 N2
M2g
T2'
T2 a2
m2 g
分析受力,设定各物的加速 度方向,如图
物块: m2g T2 m2a2 T1 m1g m1a1
滑轮: T3r T1'r J1
T2'r T3'r J1
N1
1
T3
a1
大学物理习题2第二篇
v
v p
/
O2
vp
=1/4.
H2
(C) 图中b表示氧气分子的速率分布曲线;v p
O2
/
vp
=1/4.
H2
(D) 图中b表示氧气分子的速率分布曲线;v p
O2
/
vp
=4.
H2
第二册
热学
8
浙江理工大学理学院物理系
制作:石永锋
10、在一容积不变的封闭容器内理想气体分子的平均速率若提 高为原来的2倍,则
制作:石永锋
32、在大气中有一绝热气缸,其中装有一定量 的理想气体,然后用电炉徐徐供热(如图所示), 使活塞(无摩擦地)缓慢上升.在此过程中,以下 物理量将如何变化?(选用“变大”、“变小”、 “不变”填空)
(1) 气体压强______不__变______; (2) 气体分子平均动能___变__大____; (3) 气体内能___变__大____.
第二册
热学
28
浙江理工大学理学院物理系
制作:石永锋
30、要使一热力学系统的内能增加,可以通过_外__界__对__系__统_作__功__ 或_向__系__统__传__递__热__量___两种方式,或者两种方式兼用来完成.
热力学系统的状态发生变化时,其内能的改变量只决定于 ___始__末__两__个__状__态___,而与___所__经__历___的__过__程____无关。
5 N12
kT+N2
3 2
kT.
第二册
热学
1
浙江理工大学理学院物理系
制作:石永锋
3、关于温度的意义,有下列几种说法:
(1) 气体的温度是分子平均平动动能的量度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12 ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =- ②222a m g m T =- ③ 联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度. 解: 2s m 83166-⋅===m f a x x 2s m 167-⋅-==mf a y y (1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i j i jt a i t a t v r y x--=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mkev )(0-;(2) 由0到t 的时间内经过的距离为x =(km v 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k mv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-= 分离变量,得m t k v v d d -= 即 ⎰⎰-=v v t mtk v v 00d d kt e v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===tttk ke kmv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞, 故有 ⎰∞-=='00d km v t ev x tm k (4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下 (2) 2m 对地加速度为22ga a a =-'= 方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a+=' ∴ g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6一质量为m 的质点以与地的仰角θ=30°的初速0v从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p-=∆由矢量图知,动量增量大小为0v m,方向竖直向下.2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒? 解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量12v m v m p-=∆方向竖直向上,大小 mg mv mv p =--=∆)(12碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.2-8 作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量. 解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得 j b m pω=1,i a m p ω-=2 ,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -kmT2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得 1,121+=+=k mm k km m ① 又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+=② 2211v m v m mv += ③ 联立①、③解得12)1(kv v k v -+= ④将④代入②,并整理得21)(2v v kmT-= 于是有 kmT v v 21±= 将其代入④式,有mkTv v 22±= 又,题述爆炸后,两弹片仍沿原方向飞行,故只能取kmTv v m kT v v 2,221-=+= 证毕.2-12 设N 67j i F -=合.(1) 当一质点从原点运动到m 1643k j i r++-=时,求F 所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F为恒力,∴ )1643()67(k j i j i r F A++-⋅-=⋅=合J 452421-=--= (2) w 756.045==∆=t A P (3)由动能定理,J 45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=. 设第二锤外力的功为2A ,则同理,有⎰-==21222221d y kky y ky A ② 由题意,有2)21(212kmv A A =∆== ③即 222122kk ky =-所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为nP r k r E /)(=, 试求质点所受保守力的大小和方向. 解: 1d )(d )(+-==n rnkr r E r F 方向与位矢r的方向相反,即指向力心.2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势 能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为12222211121212k k x k x k E E p p =∆∆= 2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少?解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM GrmM G-=地月经整理,得R M M M r 月地月+==2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯m 1032.386⨯= 则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h(2)质量为kg 1的物体在P 点的引力势能为()r R M GrM GE P ---=地月()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ 式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m kh gh m m v +-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。