电磁场与电磁波复习
电磁场与电磁波期末复习知识点归纳课件

01
02
03
无线通信
电磁波用于无线通信,如 手机、无线网络和卫星通 信。
雷达技术
电磁波用于探测、跟踪和 识别目标,广泛应用于军 事和民用领域。
电磁兼容性
电磁波可能干扰其他电子 设备的正常工作,需要采 取措施确保兼容性。
THANKS
感谢观看
03
高强度的电磁波照射会使生物体局部温度升高,可能造成损伤。
对材料的影响
电磁感应
电磁波在导电材料中产生感应电流,可能导致材料发热或产生磁场。
电磁波吸收与散射
某些材料能吸收或散射电磁波,用于制造屏蔽材料或隐身技术。
电磁波诱导材料结构变化
长时间受电磁波作用,某些材料可能发生结构变化或分解。
对信息传输的影响
电磁场与电磁波期末复习知识 点归纳课件
ቤተ መጻሕፍቲ ባይዱ
目录
• 电磁场与电磁波的基本概念 • 静电场与恒定磁场 • 时变电磁场与电磁波 • 电磁波的传播与应用 • 电磁辐射与天线 • 电磁场与电磁波的效应
01
电磁场与电磁波的基本概 念
电磁场的定义与特性
总结词
描述电磁场的基本特性,包括电场、磁场、电位移矢量、磁感应强度等。
电磁波的折射
当电磁波从一种介质传播到另一种介质时,会发生折射现象,折射角与入射角的关系由斯涅尔定律确 定。
电磁波的散射与吸收
电磁波的散射
散射是指电磁波在传播过程中遇到障碍物时,会向各个方向散射,散射强度与障碍物的 尺寸、形状和介电常数等因素有关。
电磁波的吸收
不同介质对不同频率的电磁波吸收能力不同,吸收系数与介质的电导率、磁导率和频率 等因素有关。
微波应用
微波广泛应用于雷达、通信、加热等领域, 如微波炉利用微波的能量来加热食物。
电磁场与电磁波知识点复习

电磁场与电磁波知识点复习一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。
电场是由电荷产生的,而磁场则是由电流或变化的电场产生的。
电荷是产生电场的源,库仑定律描述了两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。
电场强度是描述电场强弱和方向的物理量,其定义为单位正电荷在电场中所受到的力。
电流是产生磁场的源,安培定律描述了电流元之间的相互作用。
磁场强度则是描述磁场强弱和方向的物理量。
二、电磁波的产生电磁波是由时变的电场和时变的磁场相互激发而产生,并在空间中以一定的速度传播。
变化的电流和电荷分布都可以产生电磁波。
例如,一个振荡的电偶极子就是一种常见的电磁波源。
当电偶极子中的电荷来回振动时,周围的电场和磁场也随之发生周期性的变化,从而产生电磁波向空间传播。
三、电磁波的性质1、电磁波是横波电磁波中的电场强度和磁场强度都与电磁波的传播方向垂直,这是电磁波作为横波的重要特征。
2、电磁波的传播速度在真空中,电磁波的传播速度恒定,等于光速 c,约为 3×10^8 米/秒。
3、电磁波的频率和波长频率和波长是描述电磁波的两个重要参数,它们之间的关系为:波长=光速/频率。
电磁波的频率范围非常广泛,从低频的无线电波到高频的伽马射线。
4、电磁波的能量电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培麦克斯韦定律。
高斯定律描述了电场的通量与电荷量之间的关系;高斯磁定律表明磁场的通量总是为零;法拉第电磁感应定律说明了时变磁场可以产生电场;安培麦克斯韦定律则指出时变电场也可以产生磁场。
这组方程统一了电学和磁学现象,预言了电磁波的存在,并奠定了现代电磁学的基础。
五、电磁波的传播电磁波在不同介质中的传播特性不同。
在均匀介质中,电磁波遵循直线传播规律;当电磁波从一种介质进入另一种介质时,会发生折射和反射现象。
电磁场与电磁波期末复习知识点归纳

哈密顿算子:矢量微分算子( Hamilton、nabla、del )
ex
x
ey
y
ez
z
★ 标量场的梯度
gradu u u xˆ u yˆ u zˆ ( xˆ yˆ zˆ)u x y z x y z
★ 矢量场的散度计算公式:
divA= • A Ax Ay Az x y z
1
2=∞ nˆ • D1 s
nˆ E1 0 nˆ B1 0
nˆ H1 Js
2、理想介质表面上 的边界条件
1=0
2=0
nˆ • (D1 D2) 0 nˆ (E1 E2 ) 0
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
圆柱坐标和球坐标的公式了解:
Bx By Bz
圆柱坐标系中的体积微元: dV=(d)(d)(dz)= d d dz
分析的问题具有圆柱对称性时可表示为:dV=2ddz
球坐标系中的体积微元: dV=(rsind)(rd)(dr)
分析的问题具有球对称性 时可表示为:
=r2sindrdd dV=4r2dr
★ 标量场的等值面方程 u x, y, z 常数C
程的解都是唯一的。这就是边值问题的唯一性定理
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q
d
’d
电磁场与电磁波概念复习资料

一、判断1. 安培环路定理中,其电流I 是闭合曲线所包围的电流;2. 恒定磁场是无源、有旋场; P1113. 体电荷密度的单位是C/m3; P344. 面电荷密度的单位是C/m2; P355. 线电荷密度的单位是C/m ; P356. 体电流密度的单位是A/m2 ;P367. 面电流密度的单位是A/m ; P378. 矢量场A 的散度是一个标量;9. 如果0F ∇∙=,则F A =∇⨯; P2710. 如果0F ∇⨯=,则F u =-∇ ;P2611. 判断回路中是否会出现感应电动势,则看回路所围面积的磁通是否变化; P6312. 静电场的电容C 比拟恒定电场的电导G ;13. 静电场的电位移矢量D 比拟恒定电场的电流密度J ;P10814. 静电场的介电常数ε比拟恒定电场的电导率σ;P10815. 时变电磁场的能量以电磁波的形式进行传播; P17216. 在无源空间中,电流密度和电荷密度处处为0; P17217. 坡印延定理描述的是电磁能量守恒关系; P17618. 电导率为有限值的导电煤质存在损耗; P20519. 在理想导体内不存在电场强度和磁场强度;20. 弱导电煤质的损耗很小; P20821. 在两种煤质的分界面上,存在面电流分布时,磁场强度H 的切向分量不连续; P7922. 在两种煤质的分界面上,不存在面电流分布时,磁场强度H 的切向分量连续; P7923. 在两种煤质的分界面上,电场强度E 切向分量连续; P7924. 在两种煤质的分界面上,磁感应强度B 的法向分量连续; P7925. 在两种煤质的分界面上,存在面电荷时,电位移矢量D 的法向分量不连续; P7926. 在两种煤质的分界面上,不存在面电荷时,电位移矢量D 的法向分量连续; P7927. 无旋场,其场量可以表示为另一个标量场的梯度; P2628.无散场,其场量可以表示为另一个矢量场的旋度;P2729.梯度的定义与坐标系无关,但具体表达式与坐标系有关;P1230.均匀平面波在理想介质中,其本征阻抗是实数;P19731.时谐电磁场中,电场强度的复数表达式中不含时间因子;P18232.载有恒定电流的两个回路之间存在相互作用力;P4533.电偶极子是相距很小距离的两个等值异号的点电荷组成的电荷系统;P4034.麦克斯韦方程表明:时变电场产生磁场,时变磁场产生电场;P7035.静态电磁场是电磁场的一种特殊形式;P8936.静电场最基本的性质是对静止电荷有作用力,表明静电场有能量;P10037.回路中的感应电动势等于穿过回路所围面积磁通量的时间变化率;P6338.静电场和恒定磁场都属于静态电磁场;P8939.在静态场情况下,电场强度可用一个标量电位来描述P90;磁感应强度可用一个矢量磁位来描述;P11140.要在导电煤质中维持恒定电流,必须存在一个恒定电场;P10641.由麦克斯韦方程可以推导建立电磁场的波动方程;P17242.位移电流= 时变电场;P7043.电磁能量是通过电磁场传输的;44.应用最多的是时谐电磁场;P18045.均匀平面波在理想介质中,电场、磁场与传播方向之间相互垂直,是横电磁波(TEM波);电场和磁场的振幅不变;波阻抗为实数;电场与磁场同相位;电磁波的相速与频率无关;电场能量密度等于磁场能量密度;P19646.均匀平面波在导电煤质中,电场、磁场与传播方向之间相互垂直,仍然是横电磁波(TEM波);电场与磁场的振幅呈指数衰减;波阻抗为复数,电场与磁场不同相位;电磁波的相速与频率有关;平均磁场能量密度大于平均电场能量密度;P20747.电磁波在良导体中,衰减常数随频率、煤质的磁导率和电导率的增加而增大;P20948.趋肤效应是良导体中的电磁波局限于导体表面附近区域;P20949.散度定理是体积分到面积分的变化;P2050.斯托克斯定理是面积分到线积分的变化;P2451.在无损耗煤质中,电磁波的相速与波的频率无关;52.标量场的梯度是一个矢量;P1353.高斯定理中,电场强度由闭合曲面内的电荷确定;54.均匀平面波在理想导体表面发生透射;55.反射系数和透射系数的差为1;P24456.在两种煤质中间插入四分之一波长的匹配层是为了消除煤质1的表面上的反射;P24057.静态场中的边值问题分为三类。
电磁场与电磁波总复习

一、 单项选择题1.两个矢量的矢量积(叉乘)满足以下运算规律( B )A. 交换律 A B B A ⨯=-⨯B. 分配率 ()A B C A B A C ⨯+=⨯+⨯C. 结合率D. 以上均不满足 2. 下面不是矢量的是( C )A. 标量的梯度B. 矢量的旋度C. 矢量的散度D. 两个矢量的叉乘 3. 下面表述正确的为( B )A. 矢量场的散度结果为一矢量场B. 标量场的梯度结果为一矢量(具有方向性,最值方向)C. 矢量场的旋度结果为一标量场D. 标量场的梯度结果为一标量 4. 矢量场的散度在直角坐标下的表示形式为( D )A .A A A x y z ∂∂∂++∂∂∂B .y x z x y z A A Ae e e x y z ∂∂∂++∂∂∂C .x y z A A A e e e x y z ∂∂∂++∂∂∂ D . y x zA A A xy z ∂∂∂++∂∂∂ 5. 散度定理的表达式为( A )体积分化为面积分 A. sVA ds AdV ⋅=∇⋅⎰⎰⎰⎰⎰Ò B.sVA ds A dV⨯=∇⋅⋅⎰⎰⎰⎰⎰ÒC.sVA ds A dV ⨯=∇⨯⋅⎰⎰⎰⎰⎰Ò D.sVA ds A dV ⋅=∇⨯⋅⎰⎰⎰⎰⎰Ò 6. 斯托克斯定理的表达式为(B )面积分化为线积分A. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ B.()LsA dl A ds⋅=∇⨯⋅⎰⎰⎰ÑC.()LsA dl A ds ⨯=∇⨯⋅⎰⎰⎰Ñ D. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ 7. 下列表达式成立的是( C ) 两个恒等式()0A ∇∇⨯=g ,()0u ∇⨯∇=A.()sVAds A dV =∇⨯⋅⎰⎰⎰⎰⎰Ò; B. ()0u ∇∇=g ;C. ()0A ∇∇⨯=g ;D. ()0u ∇⨯∇=g8. 下面关于亥姆霍兹定理的描述,正确的是( A )(注:只知道散度或旋度,是不能全面反映场的性质的)A. 研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
电磁场电磁波复习重点

电磁场电磁波复习重点(共13页) -本页仅作为预览文档封面,使用时请删除本页-电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。
4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积定义为矢量F穿过面元矢量dS的通量。
如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。
电流是磁场的旋涡源。
5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。
Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。
6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。
第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。
电磁场与电磁波名词解释复习

安培环路定律1)真空中的安培环路定綁在真空的磁场中,沿任总回路取乃的线积分.其值等于真空的磁导率乘以穿过该回路所限定面枳上的电流的代数和。
即in di=^i kk=l2)•般形式的安培环路定律在任总磁场中•磁场强度〃沿任一闭合路径的线积分等于穿过该回路所包鬧而积的自由电流(不包括醱化电流)的代数和。
即B (返回顶端)边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类边界条件下,求电位函数®的泊松方程(沪卩=一%)或拉普拉斯方程(gp=O)定解的问題。
2)恒定电场的边值问题在恒定电场中,电位函数也满足拉普拉斯方程。
很多恒定电场的问題,都可归结为在一定条件下求竝普拉斯方程(▽?信=° )的解答,称之为恒定电场的边值问题o3)恒定磁场的边值问题(1)磁矢位的边值问题磁矢位在媒质分界面上满足的衔接条件和它所满足的微分方程以及场域上给定的边界条件一起构成了描述恒定磁场的边值问题°对于平行平而磁场,分界而上的衔接条件是* 1 3A 1 dAn磁矢位*所满足的微分方程V2A = -pJ(2)磁位的边值问题在均匀媒质中.磁位也满足拉普拉斯方程。
磁位拉普拉斯方程和磁位在媒质分界面上满足的衔接条件以及场域上边界条件一起构成了用磁位描述恒定磁场的边值问題。
磁位满足的拉普拉斯方程= °两种不同媒质分界浙上的衔接条件边界条件1.静电场边界条件在场域的边界面s上给定边界条件的方式有:第•类边界条件(狄里赫利条件,Dirichlet)已知边界上导体的电位第二类边界条件(聂以曼条件Neumann)已知边界上电位的法向导数(即电荷而密度或电力线)第三类边界条件已知边界上电位及电位法向导数的线性组合5静电场分界而上的衔接条件% "和场*二丘"称为静迫场中分界面上的衔接条件。
前者表明.分界而两侧的电通壮密度的法线分址不连续,其不连续虽就等于分界面上的自由电荷血•密度:后者表明分界而两侧电场强度的切线分址连续。
电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
电磁场与电磁波复习重点

梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。
:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。
散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。
斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。
3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。
《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
电磁场与电磁波名词解释复习

安培环路定律1)真空中的安培环路定律在真空的磁场中,沿随意回路取 B 的线积分,其值等于真空的磁导率乘以穿过该回路所限制面积上的电流的代数和。
即2)一般形式的安培环路定律在随意磁场中,磁场强度 H 沿任一闭合路径的线积分等于穿过该回路所包围面积的自由电流(不包含磁化电流)的代数和。
即B( 返回顶端 )边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类界限条件下,求电位函数的泊松方程() 或拉普拉斯方程() 定解的问题。
2)恒定电场的边值问题在恒定电场中,电位函数也知足拉普拉斯方程。
好多恒定电场的问题,都可归纳为在必定条件下求拉普拉斯方程 () 的解答,称之为恒定电场的边值问题。
3)恒定磁场的边值问题( 1)磁矢位的边值问题磁矢位在媒质分界面上知足的连接条件和它所知足的微分方程以及场域上给定的界限条件一同构成了描绘恒定磁场的边值问题。
关于平行平面磁场,分界面上的连接条件是磁矢位 A 所知足的微分方程( 2)磁位的边值问题在平均媒质中,磁位也知足拉普拉斯方程。
磁位拉普拉斯方程和磁位在媒质分界面上知足的连接条件以及场域上界限条件一同构成了用磁位描绘恒定磁场的边值问题。
磁位知足的拉普拉斯方程两种不一样媒质分界面上的连接条件界限条件1.静电场界限条件在场域的界限面S 上给定界限条件的方式有:第一类界限条件( 狄里赫利条件,Dirichlet)已知界限上导体的电位第二类界限条件(聂以曼条件Neumann)已知界限上电位的法导游数( 即电荷面密度或电力线)第三类界限条件已知界限上电位及电位法导游数的线性组合静电场分界面上的连接条件和称为静电场中分界面上的连接条件。
前者表示,分界面双侧的电通量密度的法线重量不连续,其不连续量就等于分界面上的自由电荷面密度;后者表示分界面双侧电场强度的切线重量连续。
电位函数表示的分界面上的连接条件和,前者表示,在电介质分界面上,电位是连续的;后者表示,一般状况下, 电位的导数是不连续的。
电磁场与波复习资料完整版

(2.11) (2.12) (2.13) (2.14)
线密度分布电荷 3.静电场方程 积分形式 :
∫
l
r −r' ρl ( r ')dl ' 3 r −r'
1 N ∑ qi ε 0 i =1
� ∫
S
E ( r )idS =
(2.15) (2.16) (2.17) (2.18)
� ∫ E ( r )idl = 0
1.坡印廷定理 坡印廷定理表征了电磁场能量守恒关系,其微分形式为
−∇i( E × H ) =
积分形式为
∂ 1 1 ( H i B + E i D) + E i J ∂t 2 2
(4.8)
d 1 1 ( H i B + E i D )dV + ∫ E i JdV (4.9) ∫ V dt V 2 2 坡印廷定理的物理意义:单位时间内通过曲面 S 进入体积 V 的电磁能量等于单位时间
ρ ( r ) = lim
C/m3 C/m 2 C/m
(2.1) (2.2) (2.3)
“点电荷”是电荷分布的一种极限情况。当电荷 q 位于坐标原点时,其体密度 ρ ( r ) 应 为
ρ ( r ) = lim
可用 δ 函数表示为
q ⎧ ⎪0 =⎨ ∆V → 0 ∆V ⎪ ⎩∞ ρ ( r ) = qδ ( r )
Wm =
(3.37) (3.38) (3.39)
L= M 21 = ψ 21 I1 µ M= 4π
ψ I
, M 12 =
(3.41) (3.42) (3.43)
∫
c1
ψ 12 I2 dl gdl ∫ c2 r12− r21
电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
电磁场与电磁波复习资料全

一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。
(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。
高斯散度定理:任意矢量函数A的散度在场中任意一个体积的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。
2.环量、旋度、斯托克斯定理环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。
其物理意义随 A 所代表的场而定,当 A 为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。
旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。
3.亥姆霍兹定理在有限区域 V 的任一矢量场,由他的散度,旋度和边界条件(即限定区域 V 的闭合面S 上矢量场的分布)唯一的确定。
说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场力:电场对电荷的作用称为电力。
磁场力:运动的电荷,即电流之间的作用力,称为磁场力。
洛伦兹力:电场力与磁场力的合力称为洛伦兹力。
5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。
磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。
6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。
位移电流:电场的变化引起电介质部的电量变化而产生的电流。
7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面穿过的全部电流的代数和。
电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
电磁场与电磁波复习资料.

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D BH J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ= 、20n E ⨯=、2s n H J ⨯=、20n B = )1. 简述穿过闭合曲面的通量及其物理定义2.sA ds φ=⋅⎰⎰是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 在直角坐标系证明0A ∇⋅∇⨯=2.()[()()()]()()()0y x x x z z x y z x y z y y x x z z AA A A A A A e e e e e e x y z y z z x x y A A A AA A x y z y z x z x y∇⋅∇⨯∂∂∂∂∂∂∂∂∂=++⋅-+-+-∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=-+-+-=∂∂∂∂∂∂∂∂∂1. 简述亥姆霍兹定理并举例说明。
2. 亥姆霍兹定理研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
例静电场0sD ds q ⋅=∑⎰⎰0D ρ∇⋅= 有源0lE dl ⋅=⎰0E ∇⋅= 无旋1. 已知 R r r '=- ,证明RR R R e R''∇=-∇==。
电磁场与电磁波期末复习考试要点

第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。
(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。
高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。
2.环量、旋度、斯托克斯定理环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。
其物理意义随A 所代表的场而定,当A为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。
旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。
3.亥姆霍兹定理在有限区域V内的任一矢量场,由他的散度,旋度和边界条件(即限定区域V的闭合面S上矢量场的分布)唯一的确定。
说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场力:电场对电荷的作用称为电力。
磁场力:运动的电荷,即电流之间的作用力,称为磁场力。
洛伦兹力:电场力与磁场力的合力称为洛伦兹力。
5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。
磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。
6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。
位移电流:电场的变化引起电介质内部的电量变化而产生的电流。
7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。
电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子内的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
极化矢量P:单位体积内的电偶极矩矢量和。
9.磁介质的磁化、磁化矢量磁介质的磁化:当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会形成一个个小的磁偶极子,这种现象称为介质的磁化。
磁化矢量M:单位体积内磁偶极矩的矢量和。
10.介质中的三个物态方程D=εE,B=μH,J=γE11.静态场、静电场、恒定电场、恒定磁场静态场:场量不随时间变化的场。
静电场:静止电荷或静止带电体产生的场。
恒定电场:载有恒定电流的导体内部及其周围介质中产生的电场。
恒定磁场:由恒定电流或永磁体产生的磁场不随时间变化,称为恒定磁场12.静电场的位函数满足的泊松方程、拉普拉斯方程泊松方程:在有“源”的区域内,静电场的电位函数所满足的方程,即?拉普拉斯方程:场中某处有电荷密度ρ=0,即在无源区域内,这中形式的方程20φ∇=。
13.对偶定理、叠加原理、唯一性定理对偶定理:如果描述两种物理现象的方程具有相同的数学形式,并且具有相似的边界条件或对应的边界条件,那么他们的数学解的形式也将是相同的。
叠加原理:若Φ和Φ分别满足拉普拉斯方程,即和,则和的线性组合:必然也满足拉普拉斯方程.式中a、b均为常系数。
唯一性定理:对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。
14.电磁波、平面电磁波、均匀平面电磁波电磁波:同相震荡且相互垂直的电场与磁场交互形成的行进波动。
平面电磁波:对于任意时刻t,在其传播空间具有相同相位的点所构成的等相位面为平面的波称为平面波,具有这种性质的电磁波称为平面电磁波。
均匀平面电磁波:在任意时刻,波所在的平面中场的大小和方向都是不变的平面电磁波。
15.电磁波的极化均匀平面波传播的过程中,在某一波阵面上电场矢量的振动状态随时间变化的方式称为波的极化(或称为偏振)。
16.损耗正切复介电系数的虚部与实部的比值γ/ωε它代表了传导电流和位移电流密度的比值。
该比值是一个相角,可以用来描述媒质损耗的强弱,工业上称之为损耗正切。
17.正常色散介质、非正常色散介质正常色散介质:波长大的波,其相速度大,群速小于相速;非正常色散介质:是波长大的波,其相速度小,群速大于相速18.相速、群速相速:波的相位的传播速度,V=ω/k(其中k为传播常数或波速)。
通俗的说,就是电磁波形状向前变化的速度。
即正弦波的最大速度。
一般情况下,速度v是恒定相位面在波中向前推进的速度,群速:定义为V=dω/dk,群速是一个代表能量的传播速度,群速是波包络上某一恒定相位点推进的速度。
19.波阻抗、传播矢量波阻抗:媒质电阻率和电磁场测量值的关系,是媒质的固有属性,平面波的波阻抗为电磁波中电场与磁场的振幅比。
传播矢量:许多不同频率的正弦电磁波的合成信号在介质中传播的速度。
不同频率正弦波的振幅和相位不同,在色散介质中,相速不同,故在不同的空间位置上的合成信号形状会发生变化。
群速是一个代表能量的传播速度。
20.色散介质、耗散介质色散介质:不同频率的波在同一种介质中以以不同的速度传播的现象称为色散,相应的介质称为色散介质。
耗散介质:耗散介质是指其折射率的虚部为非零值的媒质,这时波在传播的过程中会逐渐衰减。
(电导率≠0,但任然保持均匀,线性及各向同性等特性)21.趋肤效应、趋肤深度趋肤效应:当交变电流通过导体时,随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体表面附近,导体内部的电流越来越小的现象;趋肤深度:将电磁波的振幅衰减到e-1时,它透入导电介质的深度定义为趋肤深度,用δ表示。
趋肤深度的表达式/ic n δω=22.全反射、全折射全反射:当电磁波入射到两种媒质交界面时,如果反射系数R=1,则投射到界面上的电磁波将全部反射回第一种媒质中,这种情况称为全反射。
全折射:当电磁波以某一入射角入射到两种煤质交界面时,如果反射系数为零,则全部电磁能量都进入到第二种媒质,这种情况称为全折射。
二、简答题1.散度和旋度均是用来描述矢量场的,它们之间有什么不同?答:散度描述的是场中任意一点通量对体积的变化率旋度描述的是场中任意一点最大环量密度和最大环量密度方向。
2.写出直角坐标系下的散度、旋度和梯度公式3.亥姆霍兹定理的描述及其物理意义是什么?答:亥姆霍茨定理:在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定;物理意义:要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.分别叙述麦克斯韦方程组微分形式的物理意义答:第一方程:电荷是产生电场的通量源第二方程:变换的磁场是产生电场的漩涡源第三方程:磁感应强度的散度为0,说明磁场不可能由通量源产生;第四方程:传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。
5.解释坡印廷矢量及其物理意义、坡印廷定理及其物理意义坡印廷矢量:S=E×H具有电磁能量密度的量纲,表示电磁能量在空间的能流密度。
瞬时坡印廷矢量表示了单位面积的瞬时功率流或功率密度。
功率流的方向与电场和磁场的方向垂直。
坡印廷定理描述的是能量守恒定律。
6.试写出静电场基本方程的微分形式,并说明其物理意义。
P101▽×E=0;▽·D=ρ前式表明静电场中E的旋度为零,即静电场不可能由漩涡源产生;后式表明产生静电场的通量源是电荷ρ,静电场是一个有源无旋场。
7.请说明镜像法、分离变量法、有限差分法。
P125镜像法:利用一个称为镜像电荷的与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,然后通过计算由源电荷和镜像电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场的方法。
分离变量法:把一个多变量的函数表示成为几个单变量函数的乘积后再进行计算的方法。
格林函数法:用镜像法或其他方法找到与待求问题对应的格林函数,然后将它代入第二格林公式导出的积分公式就可得到任一分布源的解得方法有限差分法:在待求场域内选取有限个离散点,在各个离散点上以差分方程近似代替各点上的微分方程,从而把以连续变量形式表示的位函数方程转化为以离散点位函数表示的方程组的方法。
8.叙述什么是镜像法?其关键和理论依据各是什么?镜像法:利用一个称为镜像电荷的与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,然后通过计算由源电荷和镜像电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场的方法。
关键:寻找合适的镜像电荷,在引出位函数并求解。
理论依据:唯一性定理,即所假设的位函数就是该区域上的唯一的电位函数。
9.举例说明电磁波的极化的工程应用。
A、极化波在天线设计中具有重要意义。
利用极化波进行工作时,接收天线的极化特性必须与发射天线的极化特性相同,才能获得好的接受效果,这是天线设计的基本原则之一。
例如,发射天线若辐射左旋圆极化波,则接收天线在接收到左旋极化波的时候,就收不到右旋极化波,这称为圆极化波的旋相正交性。
又如,垂直天线发射地波,而垂直极化波,因为从天线到地的E场都是垂直的,因此接收天线应具有计划特性;而水平天线则发射水平极化波,所以接收天线应具有水平极化特性。
B、为了避免对某种极化波的感应,采用极化性质与之正交的天线,如垂直极化天线与水平极化波正交;右旋圆极化天线与左旋圆极化波正交。
这种配置条件称为极化隔离。
C、无线电系统必须利用圆极化波才能进行正常工作。
例如,由于火箭等飞行器在飞行过程中,其状态和位置在不断变化,因此火箭上的天线姿态也在发生不断的变化,此时若使用线极化的发射信号来遥控火箭,在某些情况下,火箭上的天线可能收不到地面控制信号而失控。
D、两种互相正交的极化波之间所存在的潜在的隔离性质,可应用于各种双极化体制。
例如,用单个具有双极化功能的天线实现双信道传输或收发双工;用两个分立的正交极化的天线实现极化分集接收或体视观测(如立体电影)等。
E、此外,在遥感、雷达目标识别等信息检测系统中,散射波的极化性质还能提供幅度、相位信息之外的附加信息。
10.试写出波的极化方式的分类,并说明它们各自有什么样的特点。
1.如果矢量的尖端在一条直线上运动,称之为线极化波。
2.如果矢量的尖端的运动轨迹是一个圆,则称之为圆极化波,分为右旋极化波和左旋极化波。
3.椭圆极化波:电场的尖端的运动将描绘出一个椭圆。
3.1如果用右手的拇指指向波传播的方向,其它四指所指的方向正好与电场矢量运动的方向相同,这个波就是右旋极化波。
3.2如果用左手的拇指指向波传播的方向,其它四指所指的方向正好与电场矢量运动的方向相同,这个波就是左旋极化波。
4.无一定极化的波,如光波,通常称为随机极化波。
11.简述唯一性定理,并说明其物理意义唯一性定理可叙述为:对于任一静态场,在边界条件给定后,空间各处的场也就唯一的确定了,或者说这时拉普拉斯方程的解是唯一的。