公开课-一元一次方程的应用(去分母)
一元一次方程去括号 去分母 移项
一、概述在数学学习中,一元一次方程是基础而重要的内容。
解一元一次方程时,常常需要进行去括号、去分母和移项等操作。
这些操作对于我们解题有着重要的作用,我们有必要深入理解和掌握这些操作的方法和技巧。
本文将就一元一次方程去括号、去分母和移项进行详细讲解,以帮助读者更好地掌握解题技巧。
二、一元一次方程去括号1、定律当一元一次方程中有括号时,应根据分配律原则展开括号,并进行合并同类项的操作。
对于方程3(x+2)=5x-1,我们首先要将括号内的式子展开,得到3x+6=5x-1。
2、实例分析以方程3(x+2)=5x-1为例,展开括号后得到3x+6=5x-1。
我们可以将方程中的x移至一侧,将常数项移到另一侧,最终可得到x=7。
这就是利用去括号的方法解一元一次方程的过程。
三、一元一次方程去分母1、原理当一元一次方程中含有分数形式时,应首先进行去分母的操作。
去分母的方法是将方程两侧乘以分母的最小公倍数,使分母消失,从而化简方程。
对于方程2x-3/4=5,我们可以将两端同乘4,即得到8x-3=20。
2、举例说明以方程2x-3/4=5为例,我们可以通过将两端同乘4的方式,将方程化简为8x-3=20。
接下来,我们只需按照移项和合并同类项的原则,即可解得x=23/8。
四、一元一次方程移项1、步骤在解一元一次方程时,移项是一个基本的操作。
具体来说,就是将方程中的未知数移到一个侧,将常数项移到另一个侧。
对于方程2x+5=3x-7,我们可以将3x移到等号左侧,将5移到右侧,得到2x-3x=-7-5,即-x=-12。
2、案例演练以方程2x+5=3x-7为例,我们可以通过移项的方法得到-x=-12。
解得x=12。
五、总结在解一元一次方程时,去括号、去分母和移项是三个基本而重要的操作。
通过本文的讲解,我们可以发现,针对这些操作,我们需要掌握一些基本的数学技巧和规律,例如利用分配律等原则,以及合并同类项的方法。
通过不断练习和实践,我们可以更加熟练地运用这些技巧,解出更多更复杂的一元一次方程。
一元一次方程应用名师公开课获奖课件百校联赛一等奖课件
答:卖这两件衣服总旳亏损了8元。
销售问题
1.填空: (1)某商品原来每件旳零售价是50元,现每
行程问题
例1.A、B两地相距230千米,甲队从A地出发两小 时后,乙队从B地出发与甲相向而行,乙队出发20 小时后相遇,已知乙旳速度比甲旳速度每小时快1 千米,求甲、乙旳速度各是多少?
分析:设:甲速为x千米/时,则乙速为(x+1)千米/时
230KM
AC
D
B
甲2小时所走 旳旅程 2x
甲20小时所走 乙20小时所走
25 60
×48 B
乙走 X
小时所走旳旅程
72x
C
相等关系:
甲走旳旅程=乙走旳旅程
课练二、(只列方程不解)
行程问题
甲、乙两位同学练习赛跑,甲每秒跑7米,乙每秒跑6.5 米.(1)假如甲让乙先跑5米,几秒钟后甲能够追上 乙? (2)假如甲让乙先跑1秒,几秒钟后甲能够追上 乙?
解:(1)设x秒后甲能够追上乙,根据题意,得
解:设这种凉鞋每双旳成本是x元. 列方程 0.8×(1+0.4)x=15 解,得 x=128 答:这种凉鞋每双旳成本是128元.
销售问题
练习:1、某商场把进价为1980元旳商
品按标价旳八折出售,仍获利10%,
则该商品旳标价为
元;
利润 = 售价-进价
解:设该商品旳标价为x元.打利润x 折率旳=售利进价润价=原价×1x0
110-5x=6x,
11x=110
X=10
22-x=12
答:应安排10名工人生产螺钉,12名工人生产螺母。
解一元一次方程去分母省公开课一等奖全国示范课微课金奖课件
1.为庆贺校运会开幕,七年级(1)班学生接收了制 作校旗任务.原计划二分之一同学参加制作,天 天制作40面.而实际上,在完成了三分之一以后, 全班同学一起参加,结果比原计划提前一天半完 成任务.假设每人制作效率相同,问共制作小旗 多少面?
2.小张和父亲预定搭乘家门口公共汽车赶往火车站, 去故乡探望爷爷.在行驶了三分之一旅程后,预 计继续乘公共汽车将会在火车开车后半小时抵达 火车站,便随即下车改乘出租车,车速提升了一 倍,结果赶在火车开车前15分钟抵达火车站.已 知公共汽车平均速度是40千米/时,问小张家到 火车站有多远?
解: 设鸡x只,列方程 2x+4(21-x) =66 解,得 x=9 所以兔个数为: 21-x=12(只)
答: 笼中有鸡9只,兔12只.
第33页
2.李白街上走,提壶去买酒,遇店加一倍, 见花喝一斗;三遇店和花,喝光壶中酒,试 问酒壶中原有多少酒?
斗: 古代一个计量单位; 1斗 = 10升 .
第34页
3.去分母与去括号这两 步分开写,不要跳步, 预防忘记变号。
第7页
例:2: 解方程
解: 去分母(方程两边同乘12),得
3(x-1) -4(2x+5) =-3×12
去括号,得
3x-3-8x-20=-36
移项,得
3x-8x=-36+3+20
合并同类项,得
-5x=-13
系数化为1,得
13
x
5
第8页
解: 去分母(方程两边同乘12),得 4(-x+4)-12x+5×12=4(x-3)-3(x-1) 去括号,得 -4x-16-12x+60=4x-12-3x+3 移项,得 -4x-12x-4x+3x=-12+3+16-60 合并同类项,得 -17x=-53 系数化为1,得
初一数学-解一元一次方程——去括号与去分母市公开课获奖课件省名师示范课获奖课件
3
巩固训练
解下列方程:
(1) x 1 4x 2 2(x 1)
2
5
(3) 5x 1 2x 1 2
4
4
(4) Y 4 Y 5 Y 3 Y 2
3
32
课堂小结
解一元一次方程旳一般环节:
变形名称 •
详细旳做法
去分母
• 乘全部旳分母旳最小公倍数.
• 根据是等式性质二
去括号
• 先去小括号,再去中括号,最终去大 括号.
系数化为1,得 x 7.5 .
解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2) (2) 3(2-3x)-3[3(2x-3)+3]=5.
【例 1】一艘船从甲码头到乙码头顺 流行驶,用了 2 小时;从乙码头返回 甲码头逆流行驶,用了 2.5 小时.已 知水流的速度是 3 千米/时,求船在 静水中的速度.
题目:一种两位数,个位上旳数是2,
十位上旳数是x,把2和x对调,新两位
数旳2倍还比原两位数小18,你能想出
x是几吗?
去括号错 移项错
小方: 解:(10x 2) 2(x 20) 18 .
去括号,得 10x+2-2x-20=18 . 移项,得 10x 2x 18 20 22 . 合并同类项,得 8x=40 .
6x+6x -12 000=150 000 移项
6x+6x =150 000+12 000 合并同类项
12x=162 000 系数化为1
x=13 500
解下列方程:
( 1) 3x 7(x 1) 3 2( x 3) (2)4x 3(2x 3) 12 (x 4)
期中数学考试后,小明、小方和小华 三名同学对答案,其中有一道题三人答案 各不相同,每个人都以为自己做得对,你 能帮他们看看究竟谁做得对吗?做错旳同 学又是错在哪儿呢?
《解一元一次方程(二)——去括号与去分母》公开课教案
《解一元一次方程(二)——去括号与去分母》公开课教案XX中学王老师教学目标1. 知识与技能:掌握一元一次方程中去括号与去分母的基本方法与步骤。
2. 过程与方法:通过实际例子和互动,培养学生的逻辑思维能力和问题解决能力。
3. 情感态度与价值观:增强学生学习数学的兴趣和信心,体会数学在日常生活中的应用。
教学重点与难点教学重点:理解并掌握去括号和去分母的方法。
教学难点:灵活运用去括号和去分母解决实际问题。
教学过程一、导入故事引入:讲述一个生活中的小故事,比如小华和小刚分饼干,小华分了两次,每次分一半,结果发现总量没有变化。
引导学生思考:这和我们今天要学习的去括号与去分母有什么关系?二、新课讲授1. 去括号定义:去括号是指把括号内的项通过分配律展开。
举例:例如3(2x + 4),我们可以展开为6x + 12。
互动:提问学生:如果是4(3y 2),我们该如何去括号?2. 去分母定义:去分母是指通过乘以方程的最小公倍数,使分母消失。
举例:例如方程1/2x + 1/3 = 5,如何去分母?步骤:1. 找到最小公倍数:62. 方程两边都乘以6:6(1/2x + 1/3) = 653. 化简:3x + 2 = 30互动:让学生尝试解方程2/(3x) 1/4 = 1,讨论他们的步骤和方法。
3. 实际应用情境设置:假设你和朋友一起做了一个项目,收入按比例分配。
你们一起赚了240元,你得到的比例是1/3,你朋友得到的比例是1/2。
设你朋友的收入为x元,列出方程并解答。
学生讨论:x/2 + x/3 = 240,解方程。
三、练习巩固1. 课堂练习解以下方程,并去括号与去分母:1. 5(2x 3) = 42. 1/3y + 1/2 = 5互动:学生解答后,同桌互相检查,并讨论解决过程中的难点。
2. 教师讲解针对学生易错点进行讲解和纠正。
四、回顾反思、课堂小结总结:今天我们学习了去括号和去分母的方法,这些方法在解一元一次方程中非常重要。
解一元一次方程-去分母应用
错误地找公共分母
在去掉分母时,需要找到各项的最小公倍数作为公共分母 。错误地找公共分母会导致计算错误。
例如,对于方程 $frac{x}{2} + frac{x}{3} = 1$,各项的最小 公倍数是 $6$,因此应该以 $6$ 作为公共分母。如果错误 地以 $2$ 或 $3$ 作为公共分母,会导致计算错误。
一元一次方程的定义
STEP 02
STEP 01
一元一次方程是只含有一 个未知数,且未知数的最 高次数为1的方程。
STEP 03
一元一次方程是数学中最基 本的方程之一,也是解决许 多实际问题的重要工具。
一元一次方程的一般形式为$ax + b = 0$,其中$a$、$b$为已 知数,$a neq 0$,$x$为未知 数。
拓展数学能力
掌握去分母的方法有助于培养学生的 数学思维和解决问题的能力,为学习 更高级的数学知识打下基础。
通过去分母,可以减少计算步骤和运 算量,提高解题速度和准确性。
掌握去分母的技巧和方法
找公分母
首先观察方程中的分母,找出它 们的最小公倍数作为通分母。
检验解的合理性
将求得的解代入原方程进行检验, 确保解的正确性。
去分母
将方程两边同时乘以通分母,从 而消去分母,得到整式方程。
求解整式方程
利用整式方程的求解方法,解出 未知数的值。
展望未来的研究方向
深入研究去分母的算法
进一步探索和优化去分母的算法, 提高解题效率和准确性。
培养学生的数学素养
通过教授去分母等数学方法,提高学 生的数学素养和解决问题的能力,为 未来的学习和工作打下坚实基础。
去分母的意义和目的
去分母是解一元一次方程的重 要步骤之一,它可以简化方程, 降低解题难度。
3.3.2去分母解一元一次方程(教案)
-能够将实际问题的数量关系转化为含有分母的一元一次方程,并成功求解。
举例:对于方程$\frac{2}{3}x + \frac{5}{4} = \frac{7}{6}$,学生需要知道首先找到分母3、4和6的最小公倍数12,然后将方程两边同时乘以12,得到$8x + 15 = 14$,进而解出$x$的值。
3.能够熟练运用去分母的方法解决实际问题,提高解题能力。
二、核心素养目标
本节课的核心素养目标包括:
1.培养学生的逻辑推理能力,通过分析一元一次方程中分母的影响,理解去分母的必要性,掌握解题方法。
2.增强学生运用数学知识解决实际问题的能力,使学生能够将现实生活中的问题转化为数学方程,并运用所学知识求解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解什么是一元一次方程以及去分母的方法。一元一次方程是只含有一个未知数且最高次数为一的方程。当方程中含有分母时,我们需要通过去分母的方法来简化方程,使其易于求解。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将一个含有分母的实际问题转化为方程,并运用去分母的方法求解。
此外,我认为在实践活动中的实验操作环节可以进一步丰富和深化。可能的话,我可以设计更多的互动环节,让学生在动手操作中更直观地理解去分母的步骤和原理。这样,他们就能在实践中更好地掌握这一技能。
在总结回顾环节,我强调了去分母解一元一次方程的重要性,并提醒学生要在日常生活中寻找数学的影子。我感到很高兴的是,学生们能够积极响应,表示会在课后尝试将所学知识应用到实际问题中。
另一个难点在于保持等式的平衡性。在上述例子中,学生必须意识到乘以最小公倍数时,等式两边都要乘以同样的数,以保持等式的等价性。
5.去分母解一元一次方程PPT课件(北师大版)
在方程的两边除以未知数的系数.
根据是等式性质2
课堂小测
1.解下列方程:
x 3 3x 4
(1)
5
15
5y 4 y 1
5y 5
(2)
2
3
4
12
解:去分母:3(x-3)=-(3x+4)
解:去分母:4(5y+4)+3(y-1)=24-(5y-5)
去括号:3x-9=-3x-4
2−1
3
2.将方程
=
+2
4
4(2x-1)=3(x+2)-12
− 1的两边同乘12,得_________________________.
注意事项
去分母时,方程两边同时乘各分母的最小公倍
数时,不要漏乘没有分母的项,同时要把分子(如
果是一个多项式)作为一个整体加上括号.
新知探究
1
1
例2 解方程: ( x 14) ( x 20).
去括号,得
18x+3x-3 =18-4x +2.
移项,得 18x+3x+4x =18 +2+3.
合并同类项,得 25x = 23.
23
系数化为1,得 x .
25
新知探究
方程右边的“1”
下列方程的解法对不对?如果不对,你能找出错在哪里吗?
去分母时漏乘
最小公倍数6.
解方程: 2 x 1 x 2 1
例5 火车用26秒的时间通过一个长256米的隧道(即
从车头进入入口到车尾离开出口),这列火车又以
16秒的时间通过了长96米的隧道,求火车的长度.
解一元一次方程(去分母)
想一想 去分母时要 注意什么问题?
(1)方程两边每一项都要乘以各分母的最小 公倍数
(2)去分母后如分子是多项式,应将该分子添
上括号
A
6
• 由上面的解法我们得到启示: 如果方程中有分母我们先去掉分母解起来比较方便 • 试一试,解方程:
y2 y 1 63
• 解: 去分母,得
y-2 = 2y+6
• 移项,得
花了17.5元买了果冻和巧克力共40个,若果冻每20个15元,
巧克力每30个10元,求她买了多少果冻?
分析:若设她买了X个果冻,则买了(40-X个) 巧克力;
因为 20个果冻15元,则每个1 0
1 2
5 0
元,所以买果10冻40花 x
1 2
5 0
x 元;
30个巧克力10元,则每个 3 0 元,因此花了 30 元。
过程中
所有的错误,并加以改正.
解: 去分母,得 5x-1=8x+4-2(x-1)
去括号,得 5x-1=8x+4-2x-2
移项,得 8x+5x+2x=4-2+1
合并,得
15x =3
系数化为1,得
x =5
A
10
比一比,赛一赛. 看谁做得好,看谁做得快
解方程
(1) 2 x 1 x 1
5
3
(2)y y 1 2 y
解:设先安排了x人工作4小时。根据题意,得
4x 8(x2) 1 40 40
去分母,得 4x8(x2)40勿忘我 1×40
去括号,得 4 x 8 x 1 6 4 0勿忘他 2×8
移项,得 4 x 8 x 4 0 1 6勿忘移项变号
合并,得
3.3 第2课时 利用去分母解一元一次方程
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
3.若代数式 4x-5 与2x-2 1的值相等,则 x 的值是( B )
A.1
3 B.2
C.23
D.2
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
4.解方程:(1)[2018 秋·西城区期末]2x- 3 1-3x- 4 5=2; (2)[2018 秋·皇姑区期末]x-x-5 2=2x+ 3 5-1. 解:(1)去分母,得 4(2x-1)-3(3x-5)=24. 去括号,得 8x-4-9x+15=24. 移项,得 8x-9x=24+4-15. 合并同类项,得-x=13. 系数化为 1,得 x=-13.
第2课时 利用去分母解一元一次方程
第三章 一元一次方程
3.3 第2课时 利用去分母解一元一次方程
学习指南
知识管理
归类探究
当堂测评
分层作业
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
学习指南
教学目标 1.会解含分母的一元一次方程. 2.用一元一次方程解决实际问题.
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
课件目录
首页
末页
第2课时 利用去分母解一元一次方程
解方程:x-10x6+1=2x+4 1-1. 解:去分母,得 12x-2(10x+1)=3(2x+1)-12. 去括号,得 12x-20x-2=6x+3-12. 移项,得 12x-20x-6x=3-12+2. 合并同类项,得-14x=-7. 系数化为 1,得 x=12.
生了浓厚的兴趣,并在一生中始终进行着数学研究,到了他 60 岁那年,他 提出了“百羊问题”:
解一元一次方程去分母的步骤
解一元一次方程去分母的步骤解一元一次方程去分母的步骤:一元一次方程指的是形如ax+b=0的方程,其中a和b为已知常数,x为未知数。
当方程中存在分母时,我们需要进行去分母的操作,使得方程成为标准的一元一次方程。
下面是解一元一次方程去分母的基本步骤:步骤一:观察方程中是否存在分母首先,我们需要观察一元一次方程是否存在分母。
如果存在分母,那么我们需要进行去分母处理。
步骤二:找出所有分母的公倍数在去分母之前,我们需要找出方程中所有分母的公倍数。
例如,如果方程中存在两个分母为a和b的项,那么我们需要找到a和b的公倍数。
步骤三:消除所有分母消除所有分母的方法是将方程的两边乘以所有分母的公倍数。
公式化表示如下:公倍数* (分母项/分母) =公倍数* (分子项/分母)这样,我们就可以消除掉分母,使方程变为一个没有分母的等式。
步骤四:整理方程在消除分母后,我们需要整理方程,将所有项合并在一起。
将方程中相同的项合并,并移项使得方程成为形如ax+b=0的标准一元一次方程。
步骤五:解方程最后一步是解方程,求得未知数的值。
通常我们可以通过移项将方程变为x的形式,使得方程成为x=c的形式,其中c为一个已知值。
以上就是解一元一次方程去分母的基本步骤。
下面我们通过一个具体的例子来说明如何解一元一次方程去分母:例子:解方程2/x + 3/2 = 5/4步骤一:观察方程中是否存在分母可以看到方程中存在分母,我们需要进行去分母的操作。
步骤二:找出所有分母的公倍数方程中存在分母2和4,它们的公倍数是4。
步骤三:消除所有分母将方程两边乘以公倍数4,即4 * (2/x + 3/2) = 4 * (5/4)。
得到:8/x + 6 = 5。
步骤四:整理方程将方程两边整理,合并相同项,并移项得到8/x = 5 - 6。
化简得到8/x = -1。
步骤五:解方程通过移项将方程变为x的形式,得到x = -8。
所以解方程2/x + 3/2 = 5/4的解是x = -8。
解一元一次方程(去分母)公开课教学设计
解一元一次方程(去分母)公开课教学设计本节课的主要内容是解一元一次方程(去分母)以及用方程模型解决实际问题。
研究目标包括会去分母解一元一次方程,归纳一元一次方程解法的一般步骤,以及通过列方程进一步体会模型思想。
教学重点是建立一元一次方程模型解决实际问题以及解含有分数系数的一元一次方程,归纳解一元一次方程的基本步骤。
教学难点则是准确列出一元一次方程,正确地进行去分母并解出方程。
在教学过程中,首先创设情景,引出一个有关一元一次方程的问题。
学生需要思考涉及哪些相等关系,如何设未知数并根据相等关系列出方程。
这样的选材可以起到介绍悠久的数学文化的作用,并让学生感受方程的实用价值。
接着,教师提出另一个带有分数系数的一元一次方程问题,并让学生探究不同的解法。
通过比较各种解法的特点,学生可以认识到去分母的方法和依据,即在方程两边同乘各分母的最小公倍数可以去分母,去分母的依据是等式的性质2.最后,教师和学生共同分析解法,通过两边同乘各分母的最小公倍数来解出方程。
这样的教学过程可以让学生在已有经验基础上,努力尝试新的方法,进一步巩固解一元一次方程的知识。
1)解含分数系数的一元一次方程的步骤是什么?2)为什么要去分母?去分母的一般方法是什么?3)解一元一次方程的一般步骤是什么?4)在解题过程中,容易犯哪些错误?如何避免这些错误?设计意图:通过基础训练和应用拓展,巩固学生对于解含分数系数的一元一次方程的掌握,同时引导学生总结解一元一次方程的一般步骤和避免错误的方法。
同时,让学生认识到数学思维中的化归思想,提高数学思维能力。
解一元二次方程的步骤并非固定不变,需要根据方程的特点选取适当的方法和步骤。
这是学生们在讨论中得出的结论,体现了本章问题解决的主线。
这样的讨论能够巩固所学知识,让学生更好地理解解方程的步骤。
在归纳总结和反思提高环节中,教师与学生一起回顾了本节课所学的主要内容,包括去分母的依据和作用,以及解一元一次方程时需要注意的问题。
解一元一次方程去括号与去分母示范课公开课一等奖课件省赛课获奖课件
4.解方程: (1)17(2x+14)=4-2x; (2)2x-3 1-10x6+1=2x+4 1-1. 解:(1)去分母,得 2x+14=28-14x, 移项,得 2x+14x=28-14, 合并同类项,得 16x=14, 系数化为 1,得 x=78.
(2)去分母,得 4(2x-1)-2(10x+1)=3(2x+1)-12, 去括号,得 8x-4-20x-2=6x+3-12, 移项,得 8x-20x-6x=3-12+4+2, 合并同类项,得-18x=-3,系数化为 1,得 x=16.
3.解下列方程: (1)2(x-1)-(x+2)=3(4-x); (2)2(x-2)-3(4x-1)=9(1-x). 解:(1)去括号,得 2x-2-x-2=12-3x, 移项,得 2x-x+3x=12+2+2, 合并同类项,得 4x=16,系数化为 1,得 x=4. (2)去括号,得 2x-4-12x+3=9-9x, 移项,得 2x-12x+9x=9+4-3, 合并同类项,得-x=10,系数化为 1,得 x=-10.
3.3 解一元一次方程(二)—— 去括号与去分母
1.去括号 探究:解方程:
-
归纳:括号外的因数是正数,去括号后各项的符号与原括
号内对应各项的符号______相__似;括号外的因数是负数,去括号 后各项的符号与原括号内对应各项的符号________.相反
2.去分母 探究:解方程:
88
x
归纳:去分母的办法是方程两边同乘各分母的最__小__公__倍__数__. 注意:不要漏乘不含分母的项,注意分数线的括号作用.
思路导引:相向行驶时,从相碰到全部错开,两车行程关 系为甲车行程+乙车行程=甲车长+乙车长.
解:设乙车的速度为 x m/s,则甲车的速度为(x+4)m/s. 根据题意得 9(x+4)+9x=144+180, 去括号,得 9x+36+9x=144+180, 移项,得 9x+9x=144+180-36, 合并同类项,得 18x=288, 系数化为 1,得 x=16. x+4=16+4=20. 答:甲车的速度为 20 m/s,乙车的速度为 16 m/s.
去分母法解一元一次方程
去分母法解一元一次方程分母法是一种解一元一次方程的方法,它适用于方程中含有分式。
在使用分母法解一元一次方程时,我们首先要消去方程中的分母,然后得到一个不含分式的方程,再通过解这个不含分式的方程得到方程的解。
下面我将详细介绍分母法的思路和具体步骤。
1.了解分母法分母法是一种利用代数计算将方程中的分母消去的方法,从而得到一个不含分式的方程。
它适用于方程中含有分式,特别是含有有理分式的方程。
通过分母法解方程,可以将有理分式方程转化为一个整式方程,进而求得目标方程的解。
2.化简方程首先我们要将一元一次方程中的分母进行消去。
具体方法是将方程两边的分母相乘,然后化简。
例如,若方程中的分母表达式为分式A(x)/B(x),则我们要将这个分式消去,可以将其乘以B(x)得到A(x)=B(x)*C(x),其中C(x)是化简后的系数。
3.得到一个整式方程通过分母法将方程中的分母消去后,我们得到一个不含分式的有理方程。
这个有理方程是一个整式方程,可以通过常规方法进行求解。
具体解法包括移项、整理以及分解等。
4.检验解的可行性通过求解不含分式的整式方程,我们得到了这个方程的解。
但在得到解之后,我们还要进行解的可行性检验。
这是因为在分母法中,我们通过乘以分母的方式消去了原方程中的分母,而在消去的过程中可能引入了额外的解,这些解是在消去分母的过程中引入的。
因此,我们要对最终得到的解进行检验,看其是否满足原方程。
通过以上步骤,我们可以使用分母法解一元一次方程。
下面我将通过一个具体例子来进一步说明分母法的应用。
例题:求解方程(3x+4)/(2x-1) = (x+7)/(x-2)。
解:首先,我们将方程两边的分母相乘,得到(3x+4)*(x-2) =(x+7)*(2x-1)。
化简得到3x^2 -2x -8 = 2x^2 +12x -7。
合并同类项得到x^2 +14x -1 =0。
然后,我们得到了一个不含分式的有理方程x^2 +14x -1 =0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——去分母
让我们一起来回顾一下
这些方程有何特点?该如何解出它们?
X+2x+4x=140 3x+20=4x-25 2x-7(x-1)=3-2(x+3)
3x 1 2 3x - 2 2x 3 -2 10 5
阿 凡 提 分 马 的 故 事
在古代的蒙古草原上,有一个 商人拥有11匹价值连城的骏马。 商人临死前立下了一个奇怪的 遗嘱。遗嘱中说:“11匹马中的一半分
x 16
下列方程去分母的过程是否正确?不正确的请改正。 • (1) x2 x2
3
两边同乘以6,得
6
分子是多项式的要打括号
• (2)
x 1 x 1 1 6 4
2(x-2)=x+2 2x-2=x+2
两边同乘以12,得
2(X-1)-3(X+1)=1 2(X-1)-3(X+1)=12
别漏乘不含分母的项
(3)2(2x-1)-3(x-3)=1去括号,得 4x-2-3x-9=1. ( ╳) (4)2(x+1)=x+7去括号、移项、合并 同类项,得x=5. (√ )
给长子,1/4分给次子,1/6分给小儿子。”
• 正当商人的儿子们正在为怎么个 分法争论不休时,
• 阿凡提——骑着他的枣红马 来了。
填空。 (1) 3、4的最小公倍数是
12 ; ; ;
(2) 12、8 的最小公倍数是 24 (3) 2、10、5的最小公倍数是 10
3x 1 2
3x - 2 2x 3 -2 10 5
•
(3)
3x 5 2x 3 x 2 4
2(3x+5)=4x-(2x+3) 去分母,得 2(3x+5)=x-2x+3
• 1.解一元一次方程的步骤: • (1)去分母 (2)去括号 (3)移项 (4)合并同类项 (5)系数化为1. • 2.解方程的五个步骤在解题时不一 定都需要,可根据题意灵活的选用. • 3.去分母时不要忘记添括号,不漏 乘不含分母的项.
让我们来共同研究
3x 1 3x 2 2x 3 例: 例题 2:解方程 2 2 10 5
解:去分母(方程两边同时乘以10),得 5(3x +1)-10×2 = (3x -2)-2 (2x +3) 去括号,得 15x +5-20 = 3x -2-4x -6 移项,得 15x - 3x + 4x = -2-6 -5+20 合并同类项,得 16x = 7 7 系数化为1,得
必做题:课本P98第3题。Βιβλιοθήκη 选做题:解方程x 课下讨论题:
x 1
2
1
x 2
3
0.1x 0.01x 0.01 1 解方程 x 0.2 0.06 3
(1)7x=4x-3移项,得7x-4x=3. ( 2)
2x - 1 x 3 1 3 2
( ╳)
去分母,得 2(2x-1)=1+3(x-3). (╳)