MSAU401中文资料
EasyPactMVS

MasterPact MTE
分断能力 Icu(kA)
极数
50
3
50
3
50
3
50
3
50
3
50
3
65
3
65
3
65
3
65
3
65
3
65
3
65
3
65
3
65
3
85
3
85
3
85
3
85
3
50
4
50
4
50
4
50
4
50
4
50
4
65
4
65
4
65
4
65
4
65
4
65
4
65
4
65
4
65
4
85
4
85
4
85485来自4503
50
3
50
MTE_ 分类
MTEN04 MTEN06 MTEN08 MTEN10 MTEN12 MTEN16 MTEN20 MTEN25 MTEN32 MTEN40 MTEH06 MTEH08 MTEH10 MTEH12 MTEH16 MTEH20 MTEH25 MTEH32 MTEH40 MTEN04 MTEN06 MTEN08 MTEN10 MTEN12 MTEN16 MTEN20 MTEN25 MTEN32 MTEN40 MTEH06 MTEH08 MTEH10 MTEH12 MTEH16 MTEH20 MTEH25 MTEH32 MTEH40 MTEN04 MTEN06 MTEN08 MTEN10 MTEN12 MTEN16 MTEN20 MTEN25 MTEN32 MTEN40 MTEH06 MTEH08 MTEH10 MTEH12 MTEH16 MTEH20
陶瓷基复合材料超高温冷热冲击试验

陶瓷基复合材料超高温冷热冲击试验刘宁夫; 蒋军亮; 丛琳华; 田敏【期刊名称】《《科学技术与工程》》【年(卷),期】2019(019)028【总页数】5页(P401-405)【关键词】冷热冲击试验; 辐射加热; 对流冷却; 有限元法【作者】刘宁夫; 蒋军亮; 丛琳华; 田敏【作者单位】中国飞机强度研究所西安710065【正文语种】中文【中图分类】V416.4陶瓷基复合材料以其优异的耐高温、抗氧化和抗腐蚀等性能在航空航天和其他工业领域得到广泛的应用和关注,然而由于陶瓷材料的脆性本征,严重制约了其优异的高温性能的发挥。
研究表明[1],陶瓷构件和结构失效的原因主要包括两类:热冲击和接触损伤,其中由热冲击导致的陶瓷构件失效占到约1/3,如美国哥伦比亚航天飞机失事的主要原因就是表面陶瓷隔热瓦受热冲击剥落导致。
在陶瓷材料抗冷热冲击性能研究方面,武小峰等以裂纹间距和深度作为变量,利用最小能量原理,发展了热冲击裂纹间距预测的有限元方法,并通过水淬法研究了裂纹间距与热冲击温差之间的关系[2];陶永强等[3]利用燃气急热试验研究了材料热冲击开裂机理和裂纹间距、深度预报。
目前评价材料抗热冲击性能最常见的试验方法是水淬法和两厢法。
水淬法通过将材料淬火/淬水后的剩余强度和临界淬火/淬水温差评价材料的抗热冲击性能,但水淬法试验过程中表面热交换速率明显高于材料真实使用状态。
两厢法通过将材料在高低温环境箱内循环移动达到对高温低温环境的模拟[4],但环境箱无法模拟陶瓷材料在瞬态气动加热状态下的热环境。
由于陶瓷基复合材料在航空航天结构应用时,受气动加热影响,其始终处于一种单面受热的状态[5—7],因此热冲击试验常用的水淬法和两厢法对于陶瓷基复合材料的热冲击试验模拟并不适用,本文采用的石英灯红外辐射的加热方式模拟陶瓷基复合材料的热冲击试验,可以精确、快速地控制材料表面的瞬时温度和热流密度[8,9],在单面热冲击试验具有广泛的应用价值。
优美斯(Optimax Systems)的相位平移干扰光学测量方法白皮书说明书

The Effect Of Phase Distortion On InterferometricMeasurements Of Thin Film Coated Optical SurfacesJon Watson, Daniel SavageOptimax Systems, 6367 Dean Parkway, Ontario, NY USA*********************©Copyright Optimax Systems, Inc. 2010This paper discusses difficulty in accurately interpreting surface form data from a phase shifting interferometer measurement of a thin film interference coated surfaces.PHASE-SHIFTING INTERFEROMETRYPhase-shifting interferometry is a metrology tool widely used in optical manufacturing to determine form errors of an optical surface. The surface under test generates a reflected wavefront that interferes with the reference wavefront produced by the interferometer 1. A phase-shifting interferometer modulates phase by slightly moving the reference wavefront with respect to the reflected test wavefront 2 . The phase information collected is converted into the height data which comprises the surface under test3.Visibility of fringes in an interferometer is a function of intensity mismatch between the test and reference beams. Most commercially available interferometers are designed to optimize fringe contrast based on a 4% reflected beam intensity. If the surface under test is coated for minimum reflection near or at the test wavelength of the interferometer, the visibility of the fringe pattern can be too low to accurately measure.OPTICAL THIN-FILM INTERFERENCE COATINGSOptical thin-film interference coatings are structures composed of one or more thin layers (typically multiples of a quarter-wave optical thickness) of materials deposited on the surface of an optical substrate.The goal of interference coatings is to create a multilayer film structure where interference effects within the structure achieve a desired percent intensity transmission or reflection over a given wavelength range.The purpose of the coating defines the design of the multilayer structure. Basic design variables include:• Number of layers• Thickness of each layer• Material of each layerThe most common types of multilayer films are high reflector (HR) and anti-reflection (AR) coatings. HR coatings function by constructively interfering reflected light, while AR coatings function by destructively interfering reflected light. These coatings are designed to operate over a specific wavelength range distributed around a particular design wavelength.To produce the desired interference effects, thin-film structures are designed to modulate the phase of the reflected or transmitted wavefront. The nature of the interference effect depends precisely on the thickness of each layer in the coating as well as the refractive index of each layer. If the thickness and index of each layer is uniform across the coated surface, the reflected wavefront will have a constant phase offset across the surface. However, if layer thicknesses or index vary across the coated surface, then the phase of thereflected wavefront will also vary. Depending on the design of the coating and the severity of the thickness or index non-uniformity, the distortion of the phase of the reflected wavefront can be severe. 4Layer thickness non-uniformity is inherent in the coating process and is exaggerated by increasing radius of curvature of the coated surface.5 All industry-standard directed source deposition processes (thermal evaporation, sputtering, etc) result in some degree of layer thickness non-uniformity.5 Even processes developed to minimize layer non-uniformity, such as those used at Optimax, will still result in slight layer non-uniformity (within design tolerance).TESTING COATED OPTICS INTERFEROMETRICALLYPhase-shifting interferometers use phase information to determine the height map of the surface under test. However, surfaces coated with a thin-film interference coating can have severe phase distortion in the reflected wavefront due to slight layer thickness non-uniformities and refractive index inhomogeneity. Therefore, the measured irregularity of a coated surface measured on a phase shifting interferometer at a wavelength other than the design wavelength, may not represent the actual irregularity of the surface. Even using a phase shifting interferometer at the coating design wavelength does not guarantee accurate surface irregularity measurements. If a coating has very low reflectance over any given wavelength range (such as in the case of an AR coating), the phase shift on reflection with wavelength will vary significantly in that range.7 Figure 1 shows an example of how the phase can vary with coating thickness variations.Figure 1In this particular case, if a point at the lens edge has the nominal coating thickness and the coating at lens center is 2% thicker, expect ~38° phase difference in the measurement (~0.1 waves). This will erroneous be seen as height by the interferometer, despite the actual height change in this case being less than 7nm (~0.01 waves). Also, depending on coating design, low fringe visibility may inhibit measurements.There is an extreme method to determine the irregularity of a thin-film interference coated surface by flash coating it with a bare metal mirror coating. A metal mirror coating is not a thin-film interference coating, and the surface of the mirror represents the true surface, This relatively expensive process requires extra time, handling, and potential damage during the metal coating chemical strip process.CONCLUSIONS•There can be practical limitations to getting accurate surface form data on coated optical surfaces due to issues with phase distortion and fringe visibility.•The issues are a function of thin film coating design particulars and the actual deposition processes.1 R.E. Fischer, B. Tadic-Galeb, P. Yoder, Optical System Design, Pg 340, McGraw Hill, New York City, 20082 H.H. Karow, Fabrication Methods For Precision Optics, Pg 656, John Wiley & Sons, New York City, 19933 MetroPro Reference Guide OMP-0347J, Page 7-1, Zygo Corporation, Middlefield, Connecticut, 20044 H.A. Macleod, Thin Film Optical Filters, Chapter 11: Layer uniformity and thickness monitoring, The Institute of Physics Publishing, 2001.5 R.E. Fischer, B. Tadic-Galeb, P. Yoder, Optical System Design, Pg 581, McGraw Hill, New York City, 2008。
AD4001 AD4005 数据手册说明书

16位、2 MSPS/1 MSPS 、精密差分SAR ADC数据手册AD4001/AD4005Rev. ADocument FeedbackInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the property of their respective owners.One Technology Way, P .O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 ©2017 Analog Devices, Inc. All rights reserved. Technical Support /cnADI 中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI 不对翻译中存在的差异或由此产生的错误负责。
如需确认任何词语的准确性,请参考ADI 提供的最产品特性吞吐速率:2 MSPS/1 MSPS 可选INL :±0.4 LSB (最大值) 保证16位无失码 低功耗9.5 mW (2 MSPS),4.9 mW (1 MSPS)(仅VDD ) 80 μW (10 kSPS),16 mW (2 MSPS)(总计)SNR :典型值96.2 dB (1 kHz, V REF = 5 V);典型值95.5 dB (100 kHz) THD :典型值−123 dB (1 kHz, V REF = 5 V);典型值−99 dB (100 kHz) 易用特性可降低系统功耗和复杂性 输入过压箝位电路减少了非线性输入电荷反冲 高阻态模式 长采集阶段 输入范围压缩快速转换时间支持很低的SPI 时钟速率 SPI 可编程模式、读/写能力、状态字 差分模拟输入范围:±V REF0 V 至V REF (V REF 在2.4 V 至5.1 V 之间)单电源工作:1.8 V ,逻辑接口电压:1.71 V 至5.5 V SAR 架构:无延迟/流水线延迟,首次转换有效 精确的首次转换保证工作:−40°C 至+125°CSPI/QSPI/MICROWIRE/DSP 兼容串行接口以菊花链形式连接多个ADC ,并能提供繁忙指示10引脚封装:3 mm × 3 mm LFCSP 、3 mm × 4.90 mm MSOP 封装应用自动测试设备 机器自动化 医疗设备 电池供电设备 精密数据采集系统概述AD4001/AD4005是低噪声、低功耗、高速、16位精密逐次逼近型寄存器(SAR)模数转换器(ADC)。
Schneider SW 2524-4024-4048 集成指南说明书

Schneider SW 2524-4024-4048, KiloVault Integration GuideIntroduction3 Notes on the SW31800 & 3600 HLX/CHLX4 Basic Settings4 Advanced Settings4HAB 7.5kWh6 Basic Settings6 Advanced Settings6 2100 PLC7 Basic Settings7 Advanced Settings7Resources8 SCP SW Menu Map8 InsightCloud SW Menus9 Links11IntroductionThis guide covers the recommended set-up and configuration of the Schneider Electric Conext SW Solar Hybrid Inverter System (120/240V) using the Conext System Control Panel and InsightCloud. We’ll only be covering battery related settings. In case you are using the Schneider Conext Gateway or InsightHome/Facility, these same settings are available there as well.You can download the SW Owners’ guide here:https:///SwUsersGuideIn that guide, document number 975-0638-01-01 Rev H, you can find an SCP menu map for both Basic and Advanced Settings. A menu map is also reproduced in the Resources section of this document.CAUTION:If you update the firmware on your Schneider Electric equipment, ALL the settings must be reverified. The programmed settings shown in the following tables must be applied based on desired Warranty/Cycle life. We recommend an 80% depth of discharge for our Lithium Iron Phosphate (LiFePO4 or LFP) batteries and a 50% depth of discharge for our PLC battery.Notes on the SW●As of this writing the SW 4048’s minimum high battery voltage disconnect (Hi Batt Cut Out) is 58V,slightly higher than the high voltage disconnect we recommend for 48V systems.●As of this writing, the Schneider Conext Gateway,InsightHome/Facility and InsightCloudapplication provide easier and greater control over the SW than is available through the ConextSystem Control Panel (SCP) or the Conext Combox. The Combox is being discontinued and there are no firmware updates planned for it and the SCP.The SCP provides minimal control over your system.●The maximum battery capacity for the SW is 1000Ah.●When using the SCP, the SW Advanced Settings are accessed by…○Selecting the SW on the Select Device menu○Press and release the Enter and Up Arrow and Down Arrow simultaneously. It may takea few tries to do this.○After performing this keypress,Advanced Settings appears at the top of the XW Pro Setup menu.○If you press and release Enter & Up Arrow & Down Arrow simultaneously again then Basic Settings will appear at the bottom of the Setup Menu●Put the SW into Standby Mode before changing any basic or advanced settings.○Critical loads will lose power and disconnect from the grid or generator when the SW is put into standby mode. To avoid this, place your system into Bypass before putting the SW intoStandby mode.●Put the SW into Operating Mode after changing the settings to save the changes.○If you put your system into Bypass, please remember to take it out of Bypass.1800 & 3600 HLX/CHLX Basic SettingsSetting Name1800 Setting3600 Setting24V48V24V48VBattery Type This will be overridden in Advanced SettingsBattery Capacity150Ah per Parallel String300Ah per Parallel StringMax Charge Rate Set to a percentageof 90A (the 4024max) so that whenadded to the solarcharge controlleramps, the sum is100A (per HLX inparallel)Set to a percentageof 45A (the 4048max) so that whenadded to the solarcharge controlleramps, the sum is100A (per HLX inparallel)Set to a percentageof 90A (the 4024max) so that whenadded to the solarcharge controlleramps, the sum is100A (per HLX inparallel)Set to a percentageof 45A (the 4048max) so that whenadded to the solarcharge controlleramps, the sum is100A (per HLX inparallel)Charge Cycle 2 Stage No FloatRecharge Volts (80% DoD)25.5V51V25.5V51V Low Battery Cutout24V48V24V48VAdvanced SettingsSetting Name1800 Setting3600 Setting24V48V24V48VInverter/Low Batt Cut Out24V48.0V24V48V Inverter/LBCO Delay 5 secondsInverter/LBCO Hysteresis0.5VInverter/High Batt Cut Out28.8V57.6V28.8V57.6V Charger/Batt Capacity150Ah per battery in parallel300Ah per battery in parallelCharger/Max Chg Rate Set to a percentageof 90A (the 4024max) so that whenadded to the solarcharge controlleramps, the sum is100A (per parallelstring)Set to a percentageof 45A (the 4048max) so that whenadded to the solarcharge controlleramps, the sum is100A (per parallelstring)Set to a percentageof 90A (the 4024max) so that whenadded to the solarcharge controlleramps, the sum is100A (per parallelstring)Set to a percentageof 45A (the 4048max) so that whenadded to the solarcharge controlleramps, the sum is100A(per parallelstring)Charger/Charge Cycle2-StageCharger/Default Batt Temp Warm (the default)Charger/Recharge Volts (80%DoD)25.5V51.0V25.5V51.0V Charger/Absorb Time 2 minutes or lessCharger/Batt Type CustomCharger/Custom/Eqlz Support DisabledCharger/Custom/Eqlz Voltage N/ACharger/Custom/Bulk Voltage28.2V56.4V28.2V56.4V Charger/Custom/Bulk Termination27.8V (.4V below Bulk)55.6V (.8V below Bulk)27.8V55.6V Charger/Custom/Absorb Voltage28.2V56.4V28.2V56.4V Charger/Custom/Float Voltage N/ACharger/Custom/Batt Temp Comp0 mV/°CHAB 7.5kWhPlease note: the KiloVault HAB 7.5kWh battery can only be used in 48V systems, so all settings are for the Conext 4048.Basic SettingsSetting Name Setting ValueBattery Type AGM (This will be overridden in Advanced Settings)Battery Capacity150Ah per HAB in parallelMaximum Charge Rate Set to a percentage of 45A (the 4048 max) so that when added to the solar charge controller amperage, the sum is 120A (per HAB in parallel)Charge Cycle2-StageRecharge Volts51.4VLow Battery Cut Out48.2VAdvanced SettingsSetting Name Setting Value Inverter/Low Batt Cut Out48VInverter/LBCO Delay 3 secondsInverter/LBCO Hysteresis2VInverter/High Batt Cut Out57VCharger/Battery Type CustomCharger/Batt Capacity150Ah per HAB in parallelCharger/Max Charge Rate Set to a percentage of 45A (the 4048 max) so that when added to the solar charge controller amperage, the sum is120A (per HAB in parallel)Charger/Charge Cycle 2 Stage No FloatCharger/Default Batt Temp WarmCharger/Recharge Volts for 80% DoD51.4VCharger/Absorb Time 2 minutes or lessCharger/Custom/Eqlz Support DisabledCharger/Custom/Eqlz Voltage N/ACharger/Custom/Bulk Voltage56.2VCharger/Custom/Bulk Termination Voltage55.4V (required to be at least 0.8V below Bulk) Charger/Custom/Absorb Voltage56.2VCharger/Custom/Float Voltage N/ACharger/Custom/Batt Temp Comp0 mV / °C2100 PLCBasic SettingsSetting Name24V48V Battery Type AGM (will be overridden in Advanced Settings) Battery Capacity180Ah per 2100 PLC in ParallelMax Charge Rate Set to a percentage of 90A (the 4024max) so that when added to the solarcharge controller amperage, the sum is100A (per PLC in parallel)Set to a percentage of 45A (the 4048 max) so that when added to the solar charge controller amperage, the sum is 100A (per PLC in parallel)Charge Cycle 3 Stage without a solar charge controller2 stage with a solar charge controllerRecharge Volts for 50% DoD24.6V49.2V Low Battery Cutout24V48VAdvanced SettingsSetting Name24V48V Inverter/Low Batt Cut Out24V48.0VInverter/LBCO Delay10 secondsInverter/LBCO Hysteresis2VInverter/High Batt Cut Out30V60VCharger/Batt Type CustomCharger/Batt Capacity180Ah per 2100 PLC in ParallelCharger/Max Chg Rate Set to a percentage of 90A (the 4024max) so that when added to the solarcharge controller amperage, the sum is100A (per PLC in parallel)Set to a percentage of 45A (the 4048max) so that when added to the solarcharge controller amperage, the sum is100A (per PLC in parallel)Charger/Charge Cycle 3 Stage without a solar charge controller 2 stage with a solar charge controllerCharger/Default Batt Temp Warm (the default)Charger/Recharge Volts (for 50% DoD)24.6V49.2VCharger/Absorb Time8 HoursCharger/Custom/Eqlz Support EnabledCharger/Custom/Eqlz Voltage28.4V (14.2V * 2)56.4V (14.1V * 4)Charger/Custom/Bulk Voltage28.4V (14.2V * 2)56.4V (14.1V * 4)Charger/Custom/Bulk Termination Voltage28V (required to be at least .4V below Bulk)55.6V (required to be at least .8V below Bulk) Charger/Custom/Absorb Voltage28.4V (14.2V * 2)56.4V (14.1V * 4)Charger/Custom/Float Voltage27.2V (13.6V*2)54.4V (13.6V * 4)Charger/Custom/Batt Temp Comp-3mV /°CResourcesSCP SW Menu MapInsightCloud SW MenusThese screenshots are from demonstration sites using random data on InsightCloud -https://To see this data for yourself and to practice using InsightCloud, point your web browser tohttps://, create an account,and create a new site using;●URN: urn:dev:opm:000054-Combox-587AC6N1CSWCL1●SERIAL NUMBER: SESA405035This Schneider demo site simulates a SW installation with a Schneider Conext MPPT 60 charge controller, a Conext battery monitor and a Conext Automatic Generator Start.Input any site name you wish, any date you want for the commissioning date and estimate the site, battery bank and inverter sizes using your preferred method. For this example, it was named Schneider Insight 2 Demo Site 1.From the InsightCloud home page click the demo site you set up above.On the Site Overview page, click “Configuration” to select the demo site you set up earlier.In the Device List, Click “Inverter Charger” to reveal the SW inverter. Click on one of them to load the settings control panel. To see all of the settings categories, click the “Collapse all” button. The settings mentioned above are all available here.LinksSW Installation Guide:●https:///SwInstallationGuideSW Owner’s Guide:●https:///SwOwnersGuideKiloVault HLX/CHLX Manual:●https:///static/datafiles/Others/KiloVault_HLX_Series_Manual_V2.1.2_April022021.pdf KiloVault HAB Manual:●https:///static/datafiles/Others/KLV%20HAB%20Installation%20and%20User%20Manual%20Rev%202.06.pdfKiloVault PLC Manual:●https:///static/datafiles/Others/KiloVault%202100%20PLC%20Installation%20and%20User%20Manual%20Rev%201.04.pdfRevised: 2021-05。
DNV-OS-C401(2010) 中文版(DNT部分)

2013年4月SECTION 3 NON-DESTRUCTIVE TESTING第三章无损检测1.General 通则1.1 Scope 范围1.1.1 This section gives requirements for non-destructive testing.本章节给出了无损探伤的要求。
2. Non-Destructive Testing (NDT) 无损探伤测试(NDT)2.1General 通则2.1.1Prior to commencement of fabrication the contractor shall submit a plan for NDT, NDT proce dures and documents for NDT inspectors’ certification for acceptance by the purchaser. The progr amme shall contain information and documents for planning, controlling and reporting在装配前,卖方必须向买方递交NDT 图,NDT 工艺文件以及NDT人员资格证,并经卖方接受。
这个程序必须包括计划、控制和报告DNT 的信息和文件。
2.1.2 The inspection categories shall be defined in accordance with DNV-OS-C101 Sec.4 or DNV-O S-C201 Sec.4 and shall be specified in relevant design drawings.检测类别应根据DNV-OS-C101第四节或DNV-OS-C201第四节来划分,并指定相关图纸。
2.1.3Welds shall be subject to NDT in progress with fabrication. The results of these activities shal l be consecutively reported to the purchaser.在制造过程中,焊缝质量主要依据无损探伤试验,试验结果应不断报告给买方。
Schneider Electric XUSL4E14F031N 产品数据手册说明书

T h e i n f o r m a t i o n p r o v i d e d i n t h i s d o c u m e n t a t i o n c o n t a i n s g e n e r a l d e s c r i p t i o n s a n d /o r t e c h n i c a l c h a r a c t e r i s t i c s o f t h e p e r f o r m a n c e o f t h e p r o d u c t s c o n t a i n e d h e r e i n .T h i s d o c u m e n t a t i o n i s n o t i n t e n d e d a s a s u b s t i t u t e f o r a n d i s n o t t o b e u s e d f o r d e t e r m i n i n g s u i t a b i l i t y o r r e l i a b i l i t y o f t h e s e p r o d u c t s f o r s p e c i f i c u s e r a p p l i c a t i o n s .I t i s t h e d u t y o f a n y s u c h u s e r o r i n t e g r a t o r t o p e r f o r m t h e a p p r o p r i a t e a n d c o m p l e t e r i s k a n a l y s i s , e v a l u a t i o n a n d t e s t i n g o f t h e p r o d u c t s w i t h r e s p e c t t o t h e r e l e v a n t s p e c i f i c a p p l i c a t i o n o r u s e t h e r e o f .N e i t h e r S c h n e i d e r E l e c t r i c I n d u s t r i e s S A S n o r a n y o f i t s a f f i l i a t e s o r s u b s i d i a r i e s s h a l l b e r e s p o n s i b l e o r l i a b l e f o r m i s u s e o f t h e i n f o r m a t i o n c o n t a i n e d h e r e i n .Product data sheetCharacteristicsXUSL4E14F031NXUSL type 4 - Finger protection - Std sensingrange - Hp = 310 mm, R=14mmProduct availability: Non-Stock - Not normally stocked in distribution facilityMainRange of product Preventa Safety detection Product or component typeSafety light curtain type 4Device short name XUSL4EOutput type2 safety outputs OSSD solid-state PNP arc suppres-sion)Product specific applica-tionFor finger protection [R] Resolution 0.55 in (14 mm)[Sn] nominal sensing distance3.28…19.69 Ft (1…6 m) by cabling 0.00…9.84 ft (0…3 m) by cabling [Hp] Height protected 12.20 in (310 mm)Number of beams 30Type of start / restart Manual Automatic External Device Moni-toring (EDM)Selected by wiringComplementaryDetection system Transmitter-receiver system Response time 5.5 msKit compositionAdjustable mounting bracket(s)1 receiver(s)1 transmitter(s)1 user guide with certificate of conformity on CD-ROM [EAA] effective aperture angle 2.5 ° at 3 mEmissionIR LED 0.000037402 in (950 nm)[Us] rated supply voltage 24 V DC +/- 20 %SupplyPower supply IEC 61496-1Power supply IEC 60204-1[Ie] rated operational current 2 ACurrent consumption42 mA no-load transmitter 83 mA no-load receiver 42 mA transmitter900 mA with maximum load receiver Output current limits 0.4 A safety outputs OSSD Output voltage 24 V Output circuit type DC Maximum voltage drop <0.5 VLocal signalling 1 multi-colour LED transmitter 2 dual colour LEDs receiverElectrical connection 1 male connector M12 5 pins transmitter 1 male connector M12 8 pins receiverFunction availableTestMuting through external safety module XPSLCMUT1160LED display of operating modes and faults Marking CEMaterialAluminium casingPolycarbonate front panel Polypropylene end caps Housing colourRed RAL 3000Fixing mode By fixing bracketsNet weight 1.54 lb(US) (0.7 kg)Offer type Standard distanceEnvironmentDirectives89/336/EEC - electromagnetic compatibility2002/95/EC - RoHS directive98/37/EEC - machinery89/655/EEC - work equipment2002/96/EC - WEEE directiveProduct certifications CULusCETÜVSafety level (correctly wired)Type 4 IEC 61496-1SIL 3 IEC 61508SILCL 3 IEC 62061Category 4 EN/ISO 13849-1PL = e EN/ISO 13849-1Optical characteristic Resistance to light disturbance EN/IEC 61496-2Mission time20 year(s)Safety reliability data PFHd = 1.27E-8 1/h IEC 61508Ambient air temperature for operation-10…55 °C (14…131 °F)-4…131 °F (-20…55 °C)Ambient air temperature for storage-31…158 °F (-35…70 °C)-25…70 °C (-13…158 °F)Relative humidity0…95 % without condensationIP degree of protection IP65IP67Shock resistance10 gn 16 ms IEC 61496-1Vibration resistance0.35 +/- 0.05 mm 10…55 Hz)IEC 61496-1Ordering and shipping detailsCategory22455 - LIGHT CURTAINS - XUSLDiscount Schedule DS2GTIN00785901735632Package weight(Lbs) 1.58 kg (3.49 lb(US))Returnability YesCountry of origin ITOffer SustainabilitySustainable offer status Green Premium productREACh Regulation REACh DeclarationEU RoHS Directive Pro-active compliance (Product out of EU RoHS legal scope)EU RoHS Decla-rationToxic heavy metal free YesMercury free YesRoHS exemption information YesEnvironmental Disclosure Product Environmental ProfileCircularity Profile End Of Life InformationContractual warrantyWarranty18 monthsDimensions Drawings DimensionsBrackets DimensionsMounting and Clearance Mounting and Clearance(1)Insert(2)Bracket(3)Washer(4)Spring washer(5)NutConnections and SchemaWiring DiagramsTransmitter Connections(1)+24 Vdc(2)Configuration_0(3)0 Vdc(4)Configuration_1(5)FEReceiver Connections(1)OSSD1(2)+ 24 V(3)OSSD2(4)Configuration_A(5)K1_K2 Feeback/Restart(6)Configuration_B(7)0 Vdc(8)FEReceiver Configurations and Operating ModesAutomatic Start/RestartWithout External Device Monitoring (EDM) feedback loopWith External Device Monitoring (EDM) feedback loopManual Start/RestartWithout External Device Monitoring (EDM) feedback loop(1)RestartWith External Device Monitoring (EDM) feedback loop(1)RestartConnecting to a Safety Interface1 :Click on Download & Documents2 :Click on Application solutionsTo have all connection schematics concerning our safety module, select "download and document" and download the file "Safety lightcurtains association with safety interfaces"。
RJMU401国密安全芯片数据手册说明书

⏹封装功能 大容量增强型,基于ARM 安全智能卡内核的国密安全芯片内嵌SM1、SM2、SM3、SM4国密加密算法RJMU401数据手册⏹内核:高性能32位ARM SC100 CPU — 双总线架构,DMA 加速,快速中断响应— 支持ARM 和Thumb 指令集— 三级流水线— 采用软内核技术,防止外部对其进行扫描 — 采用小端存储格式— 主频为32MHz ,可进行3、4分频,系统默认工作频率8M ⏹存储器— 8KB ROM— 18K RAM— 128~550KB 的FLASH 存储器⏹时钟、复位和电源管理— 1.6V~5.5V 供电— CPU 时钟可由软件配置为内部时钟— 内置32 MHz 高速RC 振荡器,支持3/4分频 — 内置多功能时钟发生电路— 内置32 KHz 低功耗RC 振荡器 ⏹多达6个定时器— 3个16位通用定时器、— 1个ETU 定时器— 1个Wake-up 定时器— 1个32位看门狗定时器⏹多种密码算法— 对称算法:DES 、T-DES 、AES 、SM1、SM4— 非对称算法:RSA 、SM2— 摘要算法:SM3、SHA-256⏹安全特性— 存储保护单元(MPU )— 频率检测功能— 存储总线检测功能,防FIA 攻击 — 抗EMA/DEMA 攻击 — 硬件CRC16/32电路校验 — 硬件真随机发生器 — 防篡改检测电路 ⏹外围接口— 1路智能卡接口,符合ISO7816标准,支持T=0/T=1协议— 1路SWP 接口,速率高达1.2Mbps — 1路SPI 主从接口— 1路UART 接口— 高达15路GPIO ,支持多种中断方式,多达12路GPIO 可复用 ⏹应用市场— 城市一卡通PBOC 终端、一卡通、银行POS 机、移动无线支付等金融支付— SIM 卡、JA VA 卡、ESIM 卡等领域 — 嵌入式软件安全保护— 手机、通信模块、路由器、对讲机等数据加密 — 监控设备、自动化控制 VSOP8LSSOP20L1.1概述 (3)1.2系统架构 (4)2、性能参数 (6)2.1处理器系统 (6)2.2存储单元 (6)2.3中断控制器 (7)2.4时钟与定时器 (7)2.5安全性及物理防护 (8)2.6对外接口 (10)2.7算法性能 (11)2.8模块功耗性能 (12)2.9其他模块 (14)2.10模拟模块 (14)3、引脚定义 (15)3.1引脚定义图:SSOP_20L (15)3.2引脚定义图:VSOP_8L (16)4、接口电气特性 (17)4.1测试条件 (17)4.1.1 最小和最大数值 (17)4.1.2 典型数值 (17)4.27816接口电气特性 (17)4.2.1绝对最大额定值 (18)4.3SPI接口电气参数 (18)4.3.1绝对最大额定值 (19)5、电源模块设计及工作条件 (21)5.1电源电路模块设计 (21)5.2推荐工作参数 (22)6 、SPI功能描述 (23)6.1概述 (23)6.2时钟信号的相位和极性 (23)7、应用电路图 (25)7.1RJMU401FHO与STM32F103的7816参考电路 (25)7.2RJMU401FHO的SPI参考电路 (25)7.3RJMU401EHV与STM32F103的7816参考电路 (26)8、电气特性 (27)9、芯片封装信息 (28)10、订货信息 (30)附录一:简称及缩略语 (32)1、简介1.1 概述RJMU401安全芯片是一个基于32位RISC处理器的SOC芯片,具备高处理能力、高安全性、低功耗、低成本等特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dual OutputSingle OutputBlock DiagramMinmax's MSAU400 2W DC/DC's are in "gull-wing" SMT package, weigh a mere 2.2 grams and meet 245]/10sec in solder-reflow for lead free process.The series consists of 13 models with input voltages of 5V,12V and 24VDC which offers standard output voltages of 5V, 12V, {5V,{12V and {15VDC for the choice. Their impressive guaranteed efficiencies enable all models to deliver their fully rated output power from -40] to +85] without heat sinking or forced-air cooling.The MSAU400 series are excellent selections for a variety of applications including data communication equipments, distributed power systems, telecommunication equipments and industrial robot systems.The MSAU400 units are available in tape and reel package.y Internal SMD Constructiony UL 94V-0 Package Material y Lead Frame Technology y Temperature Performance -40] to +85]y Output 5, 12, {5, {12 and {15VDCy Input 5, 12 and 24VDCy Low Costy MTBF > 2,000,000 Hours y 1000VDC Isolationy Efficiency up to 82%Key Features2W, Miniature SMD, Single & Dual Output DC/DC ConvertersMSAU400 SeriesREV:0 2005/04MINMAX1825100{1{66{15MSAU429815102{1.5{83{12MSAU428815101316512MSAU423788151068400524(21.6 ~ 26.4)MSAU421825201{1{66{15MSAU419825202{1.5{83{12MSAU418825201316512MSAU413788302138400512(10.8 ~ 13.2)MSAU411797501{1{66{15MSAU409797504{1.5{83{12MSAU4087710519{4{200{5MSAU4068111488316512MSAU403771160519840055(4.5 ~ 5.5)MSAU401% (Typ.)% (Max.)mA (Typ.)mA (Typ.)mA mA VDC VDC@Max. Load @No Load @Max. Load Min.Max.EfficiencyLoad RegulationInput CurrentOutput CurrentOutput VoltageInput VoltageModel NumberModel Selection GuideFree-Air ConvectionCooling%95---Humidity ]+125-40Storage Temperature ]+90-40CaseOperating Temperature ]+85-40Ambient Operating Temperature Unit Max.Min.Conditions ParameterEnvironmental SpecificationsExceeding the absolute maximum ratings of the unit could cause damage.These are not continuous operating ratings.mW650---Internal Power Dissipation]300---Lead Temperature (1.5mm from case for 10 Sec.)VDC 30-0.724VDC Input ModelsVDC 18-0.712VDC Input ModelsVDC 9-0.75VDC Input ModelsInput Surge Voltage( 1000 mS )Unit Max.Min.ParameterNotes :1. Specifications typical at Ta=+25], resistive load,nominal input voltage, rated output current unless otherwise noted.2. Ripple & Noise measurement bandwidth is 0-20MHz.3. These power converters require a minimum output loading to maintain specified regulation.4. Operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.5. All DC/DC converters should be externally fused on the front end for protection.6. Other input and output voltage may be available,please contact factory.7. Specifications subject to change without notice.Absolute Maximum RatingsInternal CapacitorInput FilterA 0.3------All ModelsReverse Polarity Input Current 26.42421.624V Input Models13.21210.812V Input Models VDC 5.554.55V Input Models Input Voltage RangeUnitMax.Typ.Min.Model ParameterInput SpecificationsMSAU400 Series2MINMAX REV:0 2005/04K Hours------2000MIL-HDBK-217F @ 25], Ground BenignMTBFKHz 12010070Switching Frequency pF 10060---100KHz,1VIsolation Capacitance G[------10500VDC Isolation Resistance VDC ------1100Flash Tested for 1 SecondIsolation Voltage Test VDC ------100060 SecondsIsolation Voltage Unit Max.Typ.Min.Conditions ParameterGeneral Specifications0.5 Second Max.Output Short Circuit%/]{0.02{0.01---Temperature Coefficient %------120Over LoadmV rms 5------Ripple & Noise (20MHz)mV P-P 150------Over Line, Load & Temp.Ripple & Noise (20MHz)mV P-P 7550---Ripple & Noise (20MHz)%See Model Selection GuideIo=20% to 100%Load Regulation %{1.5{1.2---For Vin Change of 1%Line Regulation %{1.0{0.1---Dual Output, Balanced LoadsOutput Voltage Balance %{4.0{1.5---Output Voltage Accuracy Unit Max.Typ.Min.ConditionsParameterOutput Specifications# For each outputuF4.74.7101047Maximum Capacitive Load Unit {15V #{12V #{5V #12V 5V Models by Vout Capacitive Load200mA Slow - Blow Type500mA Slow - Blow Type1000mA Slow - Blow Type24V Input Models 12V Input Models 5V Input Models Input Fuse Selection GuideDerating CurveMSAU400 SeriesREV:0 2005/04MINMAX3Test ConfigurationsInput Reflected-Ripple Current Test SetupInput reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0[ at 100 KHz) to simulate source impedance.Capacitor Cin, offsets possible battery impedance.Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.Peak-to-Peak Output Noise Measurement TestUse a Cout 0.33uF ceramic capacitor.Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.Maximum Capacitive LoadThe MSAU400 series has limitation of maximum connected capacitance at the output.The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time.The maximum capacitance can be found in the data sheet.Input Source ImpedanceThe power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.Capacitor mounted close to the power module helps ensure stability of the unit, it is comended to use a goodquality low Equivalent Series Resistance (ESR < 1.0[ at 100KHz) capacitor of a 2.2uF for the 5V input devices, a 1.0uF for the 12V input devices and a 0.47uF for the 24V devices.Output Ripple ReductionA good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance.To reduce output ripple, it is recommended to use 1.5uF capacitors at the output.Thermal ConsiderationsMany conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C.The derating curves are determined from measurementsobtained in an experimental apparatus.MSAU400 Series4MINMAX REV:0 2005/04Single OutputConnecting Pin PatternsTop View ( 2.54 mm / 0.1 inch grids )Mechanical Dimensions{0.002{0.05Pin X.XXX{0.005X.XX{0.13X.XX{0.01X.X{0.25Inches Millimeters Tolerance MSAU400 SeriesREV:0 2005/04MINMAX5The MSAU400 converter is encapsulated in a low thermal resistance molding compound that has excellent resistance/electrical characteristics over a wide temperature range or in high humidity environments.The encapsulant and unit case are both rated to UL 94V-0 flammability specifications.Leads are tin plated for improved solderability.NA:Not Available for Electrical ConnectionUL94V-0:Flammability2.2g :Weight (Dual Output)NANo Pin101.5g :Weight (Single Output)No Pin NA 8Molding :Case Material +Vout No Pin 7-Vout +Vout 5Common -Vout 415.3*9.3*8.9 mm0.60*0.36*0.35 inches :Case Size (Dual Output)+Vin +Vin 2-Vin -Vin 112.8*9.3*8.9 mm0.50*0.36*0.35 inches :Case Size(Single Output)Dual OutputSingle OutputPin Physical CharacteristicsPin ConnectionsMSAU400 Series6MINMAX REV:0 2005/04。