工程力学__第3章力系的平衡习题解
《工程力学:第三章-力系的平衡条件和平衡方程》解析
工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第3章 静力学平衡问题
FP
FP
FA
FB
习题 3-13 图
解:分析轴承受力为一组平行力系,由平衡方程:
习题 3-13 解图
∑ M B (F ) = 0 : − FP ×1380 − FA ×1020 + (G + Pδ ) × 640 = 0
解得, FA = 6.23kN (↑)
∑ Fy = 0 : FP + FA − (G + Pδ ) = 0
∑ M B (F ) = 0 : FT 50 − FW (300 cos 60D + 200) = 0
FT = 100(300 cos 60D + 200) / 50 = 700N
FT
FT
习题 3-17 图
Fw
习题 3-17 解图
∑ Fx = 0 : FT sin 30D − FB cosθ = 0 ∑ Fy = 0 : FT cos 30D − FB sinθ − FW = 0
α
FQ Cx FN
习题 3-11b 解图
取节点C为研究对象,见习题3-11b解图,
∑ Fy = 0 : F'BC cosα = FN
∴ FN
=
FP cosα 2 sin α
=
FP 2 tan α
=
3 × 15 2×2
= 11.25kN
3-12 蒸汽机的活塞面积为0.1m2,连杆AB长2m,曲柄BC长0.4m。在图示位置时, 活塞两侧的压力分别为p0=6.0×105Pa, p1=1.0×105Pa, ∠ABC=90D 。试求连杆AB作用于曲柄 上 的 推 力 和 十 字 头 A对 导 轨 的压力(各部件之间均为光滑接触)。
习题 3-14 解图
工程力学-平面任意力系平衡方程
4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程
工程力学第三章-力系的平衡
将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
《工程力学(工程静力学与材料力学)(第3版)》习题解答:第3章 力系的平衡
工程力学(工程静力学与材料力学)习题与解答第3章 力系的平衡3-1 试求图示两外伸梁的约束反力FRA 、FRB ,其中(a )M = 60kN ·m ,FP = 20 kN ;(b )FP = 10 kN ,FP1 = 20 kN ,q = 20kN/m ,d = 0.8m 。
知识点:固定铰支座、辊轴支座、平面力系、平衡方程 难易程度:一般 解答:图(a-1) 0=∑x F ,FAx = 00=∑A M ,05.34R P =⨯+⨯--B F F M 05.342060R =⨯+⨯--B F FRB = 40 kN (↑)=∑y F ,0P R =-+F F F B Ay20-=Ay F kN (↓)图(b-1),M = FPd 0=∑A M ,03221P R P =⋅-⋅++⋅d F d F d F dqd B即 032211P R P =-++F F F qd B 02032108.02021R =⨯-++⨯⨯B FFRB = 21 kN (↑)=∑y F ,FRA = 15 kN (↑)3-2 直角折杆所受载荷,约束及尺寸均如图示。
试求A 处全部约束力。
A MB Ay F B R F CAx F PF(a) M A B B R F A R F P 1F C qdBD(b)(a )(b ) 习题3-1图FMB习题3-3图sF W A F ABF BF AN F(a)知识点:固定端约束、平面力系、平衡方程 难易程度:一般 解答: 图(a ): 0=∑x F ,0=Ax F=∑y F ,=Ay F (↑)0=∑A M ,0=-+Fd M M AM Fd M A -=3-3 图示拖车重W = 20kN ,汽车对它的牵引力FS = 10 kN 。
试求拖车匀速直线行驶时,车轮A 、B 对地面的正压力。
知识点:固定端约束、平面力系、平衡方程 难易程度:一般解答: 图(a ):0)(=∑F A M 08.214.1NB S =⨯+⨯-⨯-F F W6.13NB =F kN=∑y F ,4.6NA =F kN3-4 图示起重机ABC 具有铅垂转动轴AB ,起重机重W = 3.5kN ,重心在D 。
工程力学顾晓勤编著习题解答第三章
第三章 平衡方程的应用习题解析3—1静定多跨梁的荷载及尺寸如图3-1所示,长度单位为m ,求支座反力和中间铰处的压力。
图3-1 题3—1图解:a)按照约束的性质画静定多跨梁BC 段受力图(见图3-2),对于BC 梁由平衡条件得到如下方程:图3-2062021660cos ,0)(201=⨯⨯-⨯=∑=NC ni i B F F M ,kN 120=NC F060sin ,001=-=∑=NC Bx ni ix F F F , kN 9.10360sin 0==NC Bx F F060cos kN 620,001=+⨯-=∑=NC By ni iy F F F , kN F By 60=故支座反力C 反力kN 120=NC F ,方向垂直与支撑面;中间铰处B 的压力kN 9.103=Bx F 、kN 60=By F 。
如果同学有兴趣,可以进一步计算固定端A 约束反力,按照约束的性质画AB 段受力图(见图3-3),由作用反作用定律得'Bx F Bx F =kN 9.103=、'By F By F =kN 60=。
对于BC 梁由平衡条件得到如下方程:图3-3'1,0Bx Ax ni ix F F F ==∑=kN 9.103=01=∑=ni iy F , 'By Ay F F =kN 60=0340,0)('1=⨯-⋅-=∑=By A ni i A F m kN M F M ,A M m kN ⋅=220b) 按照约束的性质画静定多跨梁ABC 段、CD 段受力图(见图3-4),对于BC 梁由平衡条件得到如下方程:图3-40m kN 22.521m kN 54,0)(21=⋅⨯⨯-⋅-⨯=∑=ND ni i C F F M , m kN 5.2⋅=ND F0,01==∑=Cx ni ix F F0kN 25.2,01=+⨯-=∑=ND Cy ni iy F F F , kN 5.2=Cy F由作用反作用定律得'Cx F Cx F ==0、'Cy F Cy F =kN 5.2=。
工程力学第3章
1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
工程力学03章静力学平衡问题
FP
l
l
FP
l
l
M
q
M
q
2l l
2l l
A
FAx A MA
解:1.选择研究对象。
FAy
2 受力分析,画出受力图如图所示。
8
2l l
FP
l
l
M
FAx
A MA
FAy
3. 建立平衡方程求解未知力 应用平衡方程
Fx = 0, FAx ql 0
q Fy = 0, FAy FP 0
MA= 0,
B
C
M1
A 60o
M2
60o D
20
解: 取杆AB为研究对象画受力图。
杆AB只受力偶的作用而平衡且C处为光滑面约束,则A 处约束反力的方位可定。
B
B FA = FC = F,
M1
A 60o
C
C AC = a
FC
Mi = 0
M2 M1
60o D A
FA
a F - M1 = 0
M1 = a F (1)
的各坐标轴上投影的代数和及所有力对
各轴之矩的代数和均等于零
Fx 0 Fy 0 Fz 0
M M
x y
(F ) (F )
0 0
M
z
(F
)
0
26
§3-3 简单的刚体系统平衡问题
一、刚体系统静定与静不定的概念
1、静定问题:一个静力平衡问题,如果系统中未知量 的数目正好等于独立的平衡方程数,单用平衡方程就 能解出全部未知量。
y
4. 联立求解,得
FAB 54.5KN FBC 74.5KN
工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α 2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
工程力学习题册第三章 答案
第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。
2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。
3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。
4、平面一般力系向已知中心点简化后得到一力和一力偶距。
5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。
6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。
三个独立的方程,可以求解三个未知量。
7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。
8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。
9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。
10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。
它是平面一般力系的特殊情况。
11.平面平行力系有两个独立方程,可以解出两个未知量。
12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。
(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。
(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。
(√)(2)该力在坐标轴上的投影一定为负值。
工程力学3-力系的平衡条件和平衡方程
根据力的平衡条件,可以列出平衡方程。对于一个物体,在X轴和Y轴上的力可以表示为F1、F2、F3、F4等,根 据平衡条件,可以列出两个平衡方程:F1X+F2X+F3X+F4X=0和F1Y+F2Y+F3Y+F4Y=0。
平衡方程的分类
平面力系的平衡方程
对于平面力系,可以列出三个平衡方程,分别表示X轴、Y轴 和Z轴上的力的平衡。
• 总结词:平面力系的平衡方程是用来求解未知力的数学工具,一般形式为 ∑X=0和∑Y=0。
• 详细描述:平面力系的平衡方程是根据平衡条件建立的数学方程,一般形式为 ∑X=0和∑Y=0,其中X和Y表示力在两个相互垂直的方向上的投影。通过解平衡 方程,可以求出未知力的值。
空间力系的平衡条件和平衡方程
• 总结词:空间力系中,力的合成与分解遵循平行六面体法则,平衡条件是力系 中所有力在三个相互垂直的方向上的投影之和为零。
• 详细描述:在空间力系中,力的合成与分解遵循平行六面体法则,即一个力可 以分解为三个相互垂直的分力。平衡条件是指力系中所有力在三个相互垂直的 方向上的投影之和为零,即合力矩为零。满足平衡条件的力系不会产生相对运 动或相对运动趋势。
• 总结词:空间力系的平衡方程是用来求解未知力的数学工具,一般形式为 ∑X=0、∑Y=0和∑Z=0。
跨学科融合
力系的平衡条件和平衡方程将与其它学科进行更紧密的融合,如计算机科学、人工智能 等,为解决复杂问题提供更高效的方法。
实际应用
力系的平衡条件和平衡方程在实际应用中将更加注重与工程实践的结合,提高解决实际 问题的效率。
力系平衡条件和平衡方程的实际应用
工程设计
在工程设计中,力系的平衡条件和平衡方程被广泛应用于结构分析 和优化设计,以确保结构的稳定性和安全性。
工程力学(静力学与材料力学)习题及答案 -力系的平衡
工程力学(静力学与材料力学)习题第3章力系的平衡3-1 试求图示两外伸梁的约束反力F R A、F R B,其中(a)M = 60kN·m,F P = 20 kN;(b)F P = 10 kN,F P1 = 20 kN,q = 20kN/m,d = 0.8m。
(a)(b)习题3-1图3-2 直角折杆所受载荷,约束及尺寸均如图示。
试求A处全部约束力。
习题3-2图3-3 图示拖车重W = 20kN,汽车对它的牵引力F S = 10 kN。
试求拖车匀速直线行驶时,车轮A、B 对地面的正压力。
习题3-3图3-4 图示起重机ABC具有铅垂转动轴AB,起重机重W = 3.5kN,重心在D。
在C处吊有重W1 = 10kN 的物体。
试求滑动轴承A和止推轴承B的约束力。
习题3-4图习题3-5图 习题3-6图习题3-8图 习题3-7图 3-5 图示钥匙的截面为直角三角形,其直角边AB = d 1,BC = d 2。
设在钥匙上作用一个力偶矩为M 的力偶。
试求其顶点A 、B 、C 对锁孔边上的压力。
不计摩擦,且钥匙与锁孔之间的隙缝很小。
3-6 图示一便桥自由放置在支座C 和D 上,支座间的距离CD = 2d = 6m 。
桥面重321kN/m 。
试求当汽车从桥上面驶过而不致使桥面翻转时桥的悬臂部分的最大长度l 。
设汽车的前后轮的负重分别为20kN 和40kN ,两轮间的距离为3m 。
3-7 直解三角形平板OBC 的载荷,约束及尺寸(OB = d 1,OC = d 2)如图所示。
试求A 、O 处约束力。
3-8 起重机装有轮子,可沿轨道A 、B 移动。
起重机桁架下弦DE 的中点C 上挂有滑轮(图未画出),用来提起挂在索链CG 上的重物。
从材料架上提起的物料重W = 50 kN ,当此重物离开材料架时,索链与铅垂线成 = 20°角。
为了避免重物摆动,又用水平绳索GH 拉住重物。
设索链张力的水平分力仅由右轨道B 承受,试求当重物离开材料架时轨道A 、B 的受力。
工程力学课后部分习题讲解
第一章静力学根底P20-P23 习题:1-1、:F1=2000N,F2=150N, F3=200N, F4=100N,各力的方向如图1-1所示。
试求各力在x、y轴上的投影。
解题提示:计算方法:F x= + F cosαF= + F sinαy注意:力的投影为代数量;式中:F x、F y的“+〞的选取由力F的指向来确定;α为力F与x轴所夹的锐角。
图1-11-2、铆接薄钢板在孔A、B、C、D处受四个力作用,孔间尺寸如图1-2所示。
:F=50N,F2=100N, F3=150N, F4=220N,求此汇交力系的合力。
1解题提示:——计算方法。
一、解析法F=F1x+F2x+……+F n x=∑F xR xF=F1y+F2y+……+F ny=∑F yR yF= √ F R x2+ F R y2Rtanα=∣F R y/ F R x∣二、几何法按力多边形法那么作力多边形,从图1-2图中量得F R的大小和方向。
1-4、求图1-4所示各种情况下力F对点O的力矩。
图1-4解题提示:——计算方法。
①按力矩的定义计算M O〔F〕= + Fd②按合力矩定理计算M O〔F〕= M O〔F x〕+M O〔F y〕1-5、求图1-5所示两种情况下G与F对转心A之矩。
解题提示:此题按合力矩定理计算各力矩较方便、简捷。
以图1-5a为例:力F、G至A点的距离不易确定,如按力矩的定义计算力矩图1-5既繁琐,又容易出错。
假设将力F、G分别沿矩形两边长方向分解,那么各分力的力臂不需计算、一目了然,只需计算各分力的大小,即可按合力矩定理计算出各力的力矩。
M〔F〕= -F cosαb- F sinαaAM〔G〕= -G cosαa/2 - G sinαb/2A1-6、如图1-6所示,矩形钢板的边长为a=4m,b=2m,作用力偶M〔F,F′〕。
当F=F′=200N时,才能使钢板转动。
试考虑选择加力的位置与方向才能使所费力为最小而到达使钢板转一角度的目的,并求出此最小力的值。
清华出版社工程力学答案-第3章 力系的平衡条件与平衡方程
ln
=
l n
3-11 厂房构架为三铰拱架,由两片拱架在 C 处铰接而成。桥式吊车沿着垂直于纸面
方向的轨道行驶,吊车梁的重量 W1=20 kN,其重心在梁的中点。梁上的小车和起吊重物的
重量 W2=60 kN。两个拱架的重量均为 W3=60 kN,二者的重心分别在 D、E 二点,正好与
吊车梁的轨道在同一铅垂线上。风的合力为 10 kN,方向水平。试求:当小车位于离左边轨
ΣFy = 0, FAy = FB′y = qd (↑); (c) 题解:
图(c1):
ΣFx = 0, FBx = 0
ΣMB
=
0,
−
qd
⋅
d 2
+ FRC
⋅ 2d
= 0 , FRC
=
qd 4
(↑)
ΣFy = 0, FBy + FRC − qd = 0 ,
FBy
=
3 4
qd
(↑)
图(c2):
ΣFx = 0,FAx = 0
ΣFy
=
0,
FAy
=
qd
+
FB′y
=
7 4
qd
(↑)
ΣMA
=
0, M A
−
FB′y
⋅ 2d
− qd
⋅
3d 2
=0
(d) 题解:
∴ MA = 3qd 2(逆时针);
图(d1):
ΣMB
=
0, FRC
=
M 2d
(↑)
ΣFy
=
0,
FBy
=
M 2d
(↓)
8
(c)
A
q
B
工程力学__第3章力系的平衡习题解
sin ( ) 3 cos )
即 3 sin cos sin cos cos sin
习题 3-4 图
即 2 tan tan
1
O
2
注:在学完本书第 3 章后,可用下法求解: Fx 0 , FRAG sin 0
Fy 0 , FRBG cos 0
M A (F ) 0
,G
l s3in(
)
FRB
l
解:(a),CD 为二力杆; 图(c)— 力偶系
ΣMi = 0
FRA FRC M 2 M
2
d
d
2
习题 3-11 图
— 11 —
(b)AB 为二力杆
图(d):ΣMi = 0, FRC FD M ,
d
FRA FD M d
FD
D
A
45
D BM
M
FRA
FRC
C
FRC
FRA
A
FD' B
D
(d)
(e)
(c)
F
q
5 (6 2l) 340l 0
3
l = 1m 即 lmax = 1m
C 6 l (a)
D FR D
l
3-18 木支架结构的尺寸如图所示,各杆在 A、D、E、
F 处均以螺栓连接,C、D 处用铰链与地面连接,在水平杆 AB
的 B 端挂一重物,其重 W = 5kN。若不计各杆的重,试求 C、
G、A、E 各点的约束力。
3-10 试求图示结构中杆 1、2、3 所受的力。 解:杆 3 为二力杆 图(a):
ΣMi = 0
F3 dM 0 M
F3 d
F = F3 (压) 图(b):
第03章工程力学 习题答案
三、平面任意力系简明回答下列问题;试用力系向已知点简化的方法说明图所示的力F 和力偶(F 1,F 2)对于轮的作用有何不同?在轮轴支撑A 和B 处的约束反力有何不同?设F 1=F 2=F /2,轮的半径为r 。
[答]:考虑约束,则力和力偶对轮的作用相同;而A 处的约束反力大小等于F ,B 处的约束反力大小等于0。
怎样判定静定和静不定问题?图中所示的六种情况那些是静定问题,那些是静不定问题?为什么? 静定问题: (c)、(e)静不定问题:(a)、(b)、(d)、(f)(d)(e) (f)P图示平面力系,其中P 1=150N ,P 2=200N ,P 3=300N ,。
力偶的臂等于8cm ,力偶的力F =200N 。
试将平面力系向O 点简化,并求力系合力的大小及其与原点O 的距离d 。
[解] X X X XR X 6.4373005220010115022321-=⨯-⨯-⨯-=++==∑Y Y Y YR Y .1613005120010315022321-=⨯+⨯-⨯-=++==∑合力R 大小为:N R R R Y X 5.466)6.161()6.437(2222=-+-=+=方向: ︒===3.2037.0arctg R R arctgXY α合力偶矩大小为:Nm F MMOO44.2108.02002.0513001.022150)(=⨯-⨯⨯+⨯⨯==∑与原点距离为: cm RM d O 96.45==A 点之矩。
[解](a) 对A 点之矩为: (b) 对A 点之矩为:(c) 对A 点之矩为:22121qaa qa MA-=⨯-= 2313221qLLqL MA-=⨯-= 2211221)2(61)(3121Lq q Lq q L q MA+-=---=(a)求下列各梁和刚架的支座反力,长度单位为m 。
[解](a)AB 梁受力如图(a)所示: 045cos 2:0=︒⨯+=∑AXX=︒⨯-+=045sin 2:0BA N Y Y=⨯︒⨯-⨯+-=0645sin 245.1:0B AN M联立方程组可解得: ;KN 50.2;KN 09.1;KN 41.1=-=-=B A AN Y X(b) AB 梁受力如图(b)所示: ∑==0:0AXX∑=⨯⨯--+=031212:0B A N Y Y ∑=⨯⨯⨯-⨯+⨯=013121212:0B AN M解得:;K N 25.0;K N 75.3;K N 0-===B A AN Y X(C)AC 梁受力如图(c)所示: ∑==0:0AXX∑=-⨯-=0534:0A Y Y∑=⨯⨯-⨯-=05.13435:0AAMM由上述方程可解得:;KNm 33;KN 17;KN 0===AA AMY XG =1.8KN ,其它重量不计,求铰链A 的约束反力和杆BC 所受的力。
工程力学(天津大学)第3章答案
习 题3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。
求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。
解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()N F F F y x 5.4666.1616.437222R 2R R=-+-='+'='设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctanarctanRR '︒=--=''=x y F F θ因为0R <'x F ,0R <'y F ,所以主矢F 'R在第三象限。
mN 44.2108.02002.0513001.02115008.02.0511.021)(31⋅=⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F(a)(b) (c)将力系向O 点简化的结果如图(b )。
(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。
为了计算的方便,取坝的长度(垂直于图面)l =1m 。
已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。
解:(1)求坝体的重力W 1,W 2和水压力P 的大小kNN dy y dy y q P mN y dyy dy y q 5.9922105.9922245108.9)45(108.9)()45(108.9)45(8.91011)(3234534533=⨯=⨯⨯=⋅-⨯=⋅=-⨯=-⨯⨯⨯⨯⨯=⎰⎰(2)将坝体的重力W 1,W 2和水压力P 向O 点简化,则kN 5.9922R==∑='P F F x xkN 3057621168940821R-=--=--=∑='W W F F y y()kN 7.32145305765.9922222R 2R R=-+='+'='y x F F FkN N W kN N W 2116810211688.9104.2136)545(2194081094088.9104.218)545(332331=⨯=⨯⨯⨯⨯⨯+==⨯=⨯⨯⨯⨯⨯+=(a) (b)(c)设主矢与x 轴所夹锐角为θ,则有︒=-=''=ο02.725.992230576arctanarctanRR x y F F θ因为0R >'x F ,0R <'y F ,所以主矢F 'R在第四象限,如图(b )。
工程力学3—力系的平衡条件和平衡方程
∑ Fx = 0 B ∑ M A ( F ) = 0 A x ∑ M ( F ) = 0 B 其中A、B两点的连线AB不能垂直于投影轴x。
′ FR
由后面两式知:力系不可能简化为一力偶,只能简化 为过A、B两点的一合力或处于平衡。再加第一条件, 若AB连线不垂直于x 轴 (或y 轴),则力系必平衡。
∴N B =
60 =300N 0.2
[例4] 图示结构,已知M=800N.m,求A、C两点的约束反力。 例 图示结构,已知Байду номын сангаас, 、 两点的约束反力。 两点的约束反力
M AC = R C ⋅ d = 0.255 R C ( N .m )
∑M
i
=0
M AC − M = 0
RC = 3137 N
3 平面任意力系的平衡条件和平衡方程
M =m1 +m2 +m3 +m4 =4×(−15)=−60N⋅m
由力偶只能与力偶平衡的性质, 由力偶只能与力偶平衡的性质, 与力N 组成一力偶。 力NA与力 B组成一力偶。 根据平面力偶系平衡方程有: 根据平面力偶系平衡方程有
NB ×0.2 − m1 − m2 − m3 − m4 = 0
∴N A = N B =300 N
1,3,4;
有效的方程组合是:1,2,3;1,2,4;1,2,5;1,4,5; 2,4,5 ;2,3,5; 3,4,5
第3章 力系的平衡条件与平衡方程 章
1 平面汇交力系的平衡条件与平衡方程 2 平面力偶系的平衡条件与平衡方程 3 平面任意力系的平衡条件与平衡方程 4 简单的刚体系统平衡问题 5 考虑摩擦时的平衡问题 6 结论与讨论
1 平面汇交力系平衡的几何条件
平面汇交力系平衡的必要与充分条件是: 该力系的合力等于零。用矢量式表示为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
FC 512N FD 887 N
FB 618N
FC
FD
60
1 35
1 20
A
y
st FB 618 0.412m k 1500
FB
mg
x
(a)
3-7 图示均质光滑圆球的重为 W,半径为 r,绳子 AB 的长度为 2r,绳子的 B 端固定
在相互垂直的两铅垂墙壁的交线上。试求绳子 AB 的拉力 F T 和墙壁对球的约束力 FR。 解:球心 C,受力图(a)
sin ( ) 3 cos )
即 3 sin cos sin cos cos sin
习题 3-4 图
即 2 tan tan
1
O
2
注:在学完本书第 3 章后,可用下法求解: Fx 0 , FRAG sin 0
Fy 0 , FRBG cos 0
M A (F ) 0
,G
l s3in(
)
FRB
l
FRB。
解:图(a ):ΣMi = 0,FBy = FAy = 0
(1)
图(b):ΣMi = 0, FBx
M , FRB M (←)
d
d
由对称性 知
FR A M (→)
d
C
FC C
习题 3-13 图
M
F Ax A FAy
M
B FBx
FBy
(a)
3-14 试求图示两外伸梁的约束反力 FRA、FRB, 其中(a)M = 60kN·m,FP = 20 kN;(b)FP = 10 kN, FP1 = 20 kN,q = 20kN/ m,d = 0.8m。
解:(a),CD 为二力杆; 图(c)— 力偶系
ΣMi = 0
FRA FRC M 2 M
2
d
d
2
习题 3-11 图
— 11 —
(b)AB 为二力杆
图(d):ΣMi = 0, FRC FD M ,
d
FRA FD M d
FD
D
A
45
D BM
M
FRA
FRC
C
FRC
FRA
A
FD' B
D
(d)
(e)
(c)
习题 3-1 图
F
3 A 45
F3 F3
F
D
A
1
F1
(a-1)
F2
(a-2)
F1 F3
(b-1)
F3
F3
D
F2
(b-2)
F3
3-2 图示为一绳索拔桩装置。绳索的 E、C 两点拴在架子上,点 B 与拴在桩 A 上的绳 索 AB 连接,在点 D 加一铅垂向下的力 F,AB 可视为铅垂,DB 可视为水平。已知 = 0.1rad, 力 F = 800N。试求绳 AB 中产生的拔桩力(当 很小时,tan ≈ )。
3 q4d
图(c-2):
ΣFx = 0,FAx = 0
ΣFy = 0, FAy qd FBy
sin
0
解(1)、(2)、(3)联立,得
1 2
(1) (2) (3)
A
l
3
G
2l
3
FRA
B G
FRB
(a)
3-5 图示用柔绳机连的两个小球 A、B 放置在光滑 圆柱面上,圆柱面(轴线垂直于纸平面)半径 OA = 0.1m, 球 A 重 1N,球 B 重 2N,绳长 0.2m。试求小球在平衡位 置时半径 OA 和 OB 分别与铅垂线 OC 之间的夹角1 和 2 ,
时,车轮 A、B 对地面的正压力。 解:图(a ):M A (F ) 0
W 1.4FS 1 FNB 2.8 0
Fs W
FNB 13.6 kN Fy 0 , FNA 6.4 kN
习题 3-16 图
FA
A FB
B
FNA
FNB
(a)
3-17 图示一便桥自由放置在支座 C 和 D 上,支座间的距离 C D = 2d = 6m。桥面重
工程力学(1)习题全解
第 3 章 力系的平衡
3-1 两种正方形结构所受力 F 均已知。试分别求其中杆 1、2、3 所受的力。 解:图(a ): 2F3 cos 45F 0
F3 2 F (拉) 2
F1 = F3(拉)
F22F3 cos 45 0
F2 = F(受压) 图(b): F3 F3 0
F1 = 0 F2 = F(受拉)
3-12 试求机构在图示位置保持平衡时主动力系的关系。
解:AB 为二 力杆, 图 (a):ΣFx = 0, FAB cos F
(1)
图(b):ΣMi = 0,
FAB d cos M
(2)
由(1)、(2),得 M = Fd
F AB
A
F
' AB
习题 3-12 图
B
FN (a)
F FO
M
O
(b)
3-13 在图示三铰拱结构的两半拱上,各作用等值反向的两力偶 M。试求约束力 FRA、
解:图(a -1):
ΣFx = 0,FBx = 0 ΣMB = 0,FRC = 0 ΣFy = 0,FBy = 0 图(a-2): ΣFx = 0,FAx = 0 ΣFy = 0,FAy = 2qd ΣMA = 0, M A2qd d 0 ,MA = 2qd 2; 图(b-1):
ΣFx = 0,FBx = 0 ΣMB = 0, FRC 2dq 2d d 0 ,FRC = qd ;
3-10 试求图示结构中杆 1、2、3 所受的力。 解:杆 3 为二力杆 图(a):
ΣMi = 0
F3 dM 0 M
F3 d
F = F3 (压) 图(b):
ΣFx = 0 F2 = 0 ΣFy = 0 F1 F M (拉)
d
d
1d 2
3
A
F3
F
(a)
习题 3-10 图
F1
F2
M
A
FA (b)
3-11 试求图示两种结构的约束 力 FRA、FRC。
M
A FA
(a)
习题 3-8 图
FB D
FB B
B
FB
D
B FB
45
M
F BD
FD
M
A
FA
M
A
FA
FD
A
FA
(d)
(b)
— 10 —
(c)
解:图(a ):
FA FB
M 2l
图(b):
FA FB
M l
由图(c) 改画成 图(d ), 则
FA FBD M l
∴ FB FBD M
l
2M FD 2 FBD
解:图(a -1) Fx 0 ,FAx = 0 M A 0 ,MFP 4 FRB 3.5 0
6020 4 FRB 3.5 0
FRB = 40 kN(↑) Fy 0 , FAy FRBFP 0
FAy20 kN(↓) 图(b-1),M = FPd
— 12 —
M
FBx
(b)
(a)
(b) 习题 3-14 图
l
3-9 齿轮箱两个外伸轴上作用的力偶如图所示。为保持齿轮箱平衡,试求螺栓 A、B 处所提供 的约束 力的铅 垂分力 。
习题 3-9 图
FAy
FBy
(a)
解:ΣMi = 0,500 125 FAy 0.5 0 FAy = 750N(↓), FBy = 750N(↑) (本题中 FAx ,FBx 等值反向,对力偶系合成结果无贡献。)
F
q
5 (6 2l) 340l 0
3
l = 1m 即 lmax = 1m
C 6 l (a)
D FR D
l
3-18 木支架结构的尺寸如图所示,各杆在 A、D、E、
F 处均以螺栓连接,C、D 处用铰链与地面连接,在水平杆 AB
的 B 端挂一重物,其重 W = 5kN。若不计各杆的重,试求 C、
G、A、E 各点的约束力。
FED D
FDB FDB
FCB
B
习题 3-2 图
F
(a)
FAB
(b)
解:Fy 0 , FED sin F Fx 0 , FED cos FDB
F FED
sin
F
FD B
10F
tan
由图(a)计算结果,可推出图(b)中:FAB = 10FDB = 100F = 80 kN。
3-3 图示起重机由固定塔 AC 与活动桁架 BC 组成。桁架 BC 用铰链连接于点 C,并 由钢索 AB 维持其平衡。重 W = 40kN 的物体悬挂在钢索上,钢索绕过点 B 的滑轮,并沿直 线 BC 引向铰盘。长度 AC = BC,不计桁架重量和滑轮摩擦。试用角 =∠ACB 的函数来表 示钢索 AB 的张力 FAB 以及桁架上沿直线 BC 的压力 FBC 。
sin 2 , cos 7
3
3
Fz 0 FT cos W
W FT cos 1.13W Fy 0
FR - FT sin cos 45 0
FR 0.377W
z
B
FT
FR
FR '
C
WO
x
rr
y
C'
(a)
习题 3-7 图
3-8 折杆 AB 的三种支承方式如图所示,设有一力偶矩数值为 M 的力偶作用在曲杆 AB 上。试求支承处的约束力。
FAB
y
2
习题 3-3 图
FBC
x
—8—
W
W
(a)
解:图(a):Fx 0 , FA B cos