2018届苏教版 专题讲座概率、统计在高考中的常见题型与求解策略 单元测试
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.简单随机抽样(1)定义:一般地,从个体为N 的总体中逐个不放回地取出n 个个体作为样本(n ∈N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法,称为简单随机抽样. (2)最常用的简单随机抽样方法有两种——抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. ①采用随机的方法将总体中的N 个个体编号;②将编号按间隔k 分段,当N n 是整数时,取k =N n ;当Nn 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n ,并将剩下的总体重新编号;③在第一段中用简单随机抽样确定起始的个体编号l ;④按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. 3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)简单随机抽样是一种不放回抽样.( √ )(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( × ) (3)抽签法中,先抽的人抽中的可能性大.( × )(4)系统抽样在第1段抽样时采用简单随机抽样.( √ )(5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( × )(6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( × )1.(教材改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为______________. 答案 25,56,19解析 因为125∶280∶95=25∶56∶19, 所以抽取人数分别为25,56,19.2.(2015·四川改编)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是__________. 答案 分层抽样法解析 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.3.(1)某学校为了了解2016年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法 问题与方法配对正确的是____________. 答案 (1)Ⅲ,(2)Ⅰ解析 通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法. 4.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为________. 答案 695解析 由题意可知,第一组随机抽取的编号l =15,分段间隔数k =N n =1 00050=20,则抽取的第35个编号为15+(35-1)×20=695.5.某学校高一,高二,高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生. 答案 15解析设应从高二年级抽取x名学生,则x∶50=3∶10,解得x=15.题型一简单随机抽样例1(1)以下抽样方法是简单随机抽样的有________.①在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖;②某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格;③某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见;④用抽签方法从10件产品中选取3件进行质量检验.(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.答案(1)④解析(1)①、②不是简单随机抽样,因为抽取的个体间的间隔是固定的;③不是简单随机抽样,因为总体的个体有明显的层次;④是简单随机抽样.(2)由题意知前5个个体的编号为08,02,14,07,01.思维升华应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.(1)下列抽样试验中,适合用抽签法的有________.①从某厂生产的5 000件产品中抽取600件进行质量检验;②从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;③从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;④从某厂生产的5 000件产品中抽取10件进行质量检验.(2)下列抽取样本的方式不属于简单随机抽样的有________________.①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.答案(1)②(2)①②③④解析(1)①、④中的总体个体数较多,不适宜抽签法,③中甲、乙两厂的产品质量有区别,也不适宜抽签法.②是简单随机抽样.(2)①不是简单随机抽样.②不是简单随机抽样.由于它是放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.题型二系统抽样例2(1)(2015·湖南改编)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.答案(1)4(2)12解析(1)由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.(2)由84042=20,即每20人抽取1人,所以抽取编号落在区间[481,720]的人数为720-48020=24020=12.引申探究1.本例(2)中条件不变,若第三组抽得的号码为44,则在第八组中抽得的号码是________.答案144解析 在第八组中抽得的号码为(8-3)×20+44=144.2.本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240人,又在[481,720]中抽取8人, 所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.(1)(2016·南京模拟)高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是________.(2)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 (1)18 (2)10解析 (1)分段间隔为524=13,故还有一个学生的编号为5+13=18.(2)由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69, (939)落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 题型三 分层抽样命题点1 求总体或样本容量例3 (1)(2016·苏北四市联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =________.(2)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 (1)90 (2)1 800解析 (1)依题意得33+5+7×n =18,解得n =90,即样本容量为90.(2)分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件. 命题点2 求某层入样的个体数例4 (2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为________.(2)(2015·福建)某校高一年级有名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________. 答案 (1)180 (2)25解析 (1)由题意抽样比为3201 600=15,∴该样本中的老年教师人数为900×15=180.(2)由题意知,男生共有500名,根据分层抽样的特点,在容量为45的样本中男生应抽取的人数为45×500900=25.思维升华 分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.(1)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.(2)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.答案 (1)200,20 (2)50解析 (1)该地区中小学生总人数为 3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20. (2)1 00080=x 4,x =50.五审图表找规律典例 (14分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取40(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? (3)若要抽20人调查对广州亚运会举办情况的了解,则应怎样抽样?抽取40人调查身体状况↓(观察图表中的人数分类统计情况) 样本人群应受年龄影响↓(表中老、中、青分类清楚,人数确定) 要以老、中、青分层,用分层抽样 ↓要开一个25人的座谈会 ↓(讨论单位发展与薪金调整)样本人群应受管理、技术开发、营销、生产方面的影响 ↓(表中管理、技术开发、营销、生产分类清楚,人数确定) 要以管理、技术开发、营销、生产人员分层,用分层抽样↓要抽20人调查对广州亚运会举办情况的了解↓(可认为亚运会是大众体育盛会,一个单位人员对情,况了解相当) 将单位人员看作一个整体 ↓(从表中数据看总人数为2 000) 人员较多,可采用系统抽样 规范解答解 (1)按老年、中年、青年分层,用分层抽样法抽取, [1分] 抽取比例为402 000=150.[3分] 故老年人、中年人、青年人各抽取4人、12人、24人.[5分] (2)按管理、技术开发、营销、生产分层,用分层抽样法抽取, [6分] 抽取比例为252 000=180,[8分]故管理、技术开发、营销、生产各部门抽取2人、4人、6人、13人. [10分] (3)用系统抽样,对全部2 000人随机编号,号码从0001~2000,每100号分为一组,从第一组中用简单随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.[14分]1.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为________. 答案 8解析 设样本容量为N ,则N ×3070=6,∴N =14,∴高二年级所抽学生人数为14×4070=8.2.(2017·扬州月考)打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体抽取一个13张的样本.这种抽样方法是______________. 答案 系统抽样解析 符合系统抽样的特点,故是系统抽样.3.(2016·南京、盐城联考)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________. 答案 17解析 由题意可得从高二年级学生中抽出的人数为20400×360=18,故从高三年级学生中抽取的人数为55-20-18=17.4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160进行编号,并按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若按等距的规则从第16组抽出的号码为126,则第1组中用抽签法确定的号码是________. 答案 6解析 第1组中用抽签法确定的号码是126-15×8=6.5.(2016·镇江模拟)将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______________. 答案 16,28,40,52解析 编号组数为5,间隔为605=12,因为在第一组抽得04号:又4+12=16,16+12=28,28+12=40,40+12=52, 所以其余4个号码为16,28,40,52.6.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为__________________. 答案 25,17,8解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1). 令3+12(k -1)≤300得k ≤1034,因此第Ⅰ营区被抽中的人数是25; 令300<3+12(k -1)≤495得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17. 7.(2016·山西大同一中月考)用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是__________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.8.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生. 答案 60解析 设应从一年级本科生中抽取x 名学生,则x 300=44+5+5+6,解得x =60.9.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意,可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.10.一个总体中有90个个体,随机编号0,1,2,…,89,以从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 依题意可知二年级的女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故用分层抽样法应在三年级抽取的学生人数为64×28=16.13.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n . 解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.*14.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x ,y 的值. 解 (1)用分层抽样的方法在35~50岁中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,∴3050=m5,解得m =3. 抽取的样本中有研究生2人,本科生3人,分别记作S 1,S 2;B 1,B 2,B 3.从中任取2人的所有等可能基本事件共有10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 1,B 3),(B 2,B 3),其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2), ∴从中任取2人,至少有1人学历为研究生的概率为710. (2)由题意,得10N =539,解得N =78,∴35~50岁中被抽取的人数为78-48-10=20, ∴4880+x =2050=1020+y, 解得x =40,y =5,即x ,y 的值分别为40,5.。
江苏专版2018高考数学大一轮复习第十二章算法统计概率68几何概型及互斥事件的概率课件文
实际问题转化为概型中的长度、角度、面积、体积等常见几何
概型问题,构造出随机事件A对应的几何图形,利用图形的测度 来求随机事件的概率.
变式
(1) (2016·山东卷)若在区间[-1,1]上随机地取一个
数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率 3 为________ . 4
【解析】(1) 如图所示,画出时间轴.
(例 1(1)) 小明到达的时间会随机的落在图中线段 AB 上, 而当他的 到达时间落在线段 AC 或 DB 时才能保证他等车的时间不超过 10+10 1 10 min.根据几何概型,所求的概率 P= = . 40 2
(2) (2016·广州一模)若在平面区域{(x,y)|0≤x≤1,1≤y≤2}内
【解析】事件 A+ B 表示出现的点数为 2,4,5,6,所以 P 4 2 = = . 6 3
4. ( 必修 3P120 复习题6 改编) 从一个装有 6个彩色球 (3 红、 2
黄、1 蓝 ) 的盒子中随机取出 2 个球,则这 2 个球颜色相同的概率 4 是________ . 15
【解析】记 3 个红球为红 1,红 2,红 3,2 个黄球为黄 1,黄 2,1 个蓝球为蓝 1,则从这 6 个彩色球中随机取出 2 个球的所有可能情 况为(红 1,红 2),(红 1,红 3),(红 红 2,黄 1),(红 2,黄 2),(红 2,蓝 1),(红 3,黄 1),(红 3,黄 2),(红 3,蓝 1),(黄 1,黄 2),(黄 1,蓝 1), (黄 2,蓝 1),共 15 个基本事件.记事件 A 表示取出两个红球,事 件 B 表示取出两个黄球,则事件 A 与事件 B 互斥,所以取出 2 个球 3 1 4 颜色相同的概率为 P(A+B)=P(A)+P(B)= + = . 15 15 15
2018届高考数学(理)热点题型:概率与统计((有答案))
2018届高考数学(理)热点题型:概率与统计((有答案))D23456=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和507元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解 (1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为X 20 60 P1212所以顾客所获的奖励额的数学期望为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1 20 60 100 P162316X 1的数学期望为E (X 1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.89解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P (A )=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511.②X 的所有可能取值为0,1,2,P (X =0)=C 24C 26=25,P (X =1)=C 12C 14C 26=815,P (X =2)=C 22C 26=115.所以X 的分布列为X 0 1 2 P25815115E (X )=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)10=P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48.热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷读书迷总计男15女45总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:非读书迷读书迷总计男401555女202545总计60 40 100K 2=100×(40×2560×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3). X 的分布列为X 0 1 2 3 P2712554125361258125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝⎛⎭⎪⎫1-25=1825.。
江苏专用2018版高考数学专题温习专题10计数原理概率与
(江苏专用)2018版高考数学专题温习 专题10 计数原理、概率与统计 第71练 随机事件的频率与概率练习 理12.(2016·山西四校联考)从1,2,3,4这四个数中一次随机取两个,则掏出的两个数之和为偶数的概率是________. 3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件.那么甲是乙的______________条件.(填“充分没必要要”“必要不充分”“充要”或“既不充分也没必要要”)4.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数. 在上述各对事件中,是对立事件的是________.5.(2016·无锡模拟)一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.6.(2016·泰州一模)甲乙两人下棋,若甲获胜的概率为15,甲乙下成和棋的概率为25,则乙不输棋的概率为________.7.(2016·苏、锡、常、镇一模)在一次满分为160分的数学考试中,某班40名学生的考试成绩散布如下:从该班学生中随机抽取一名学生,则该学生在这次考试中成绩很多于120分的概率为________.8.(2017·沈阳四校联考)任取一个三位正整数N,则对数log2N是一个正整数的概率是________.9.(2016·连云港模拟)在数字1,2,3,4四个数中,任取两个不同的数,其和大于积的概率是________.10.在正六边形的6个极点中随机选择4个极点,则组成的四边形是梯形的概率为________.11.在一场竞赛中,某篮球队的11名队员共有9名队员上场竞赛,其得分的茎叶图如图所示.从上述得分超过10分的队员中任取2名,则这2名队员的得分之和超过35分的概率为________.12.(2016·南通三模)从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,则log2x为整数的概率为________.13.将一枚骰子(一种六个面上别离标有1,2,3,4,5,6的正方体玩具)前后抛掷2次,向上的点数别离记为m,n,则点P(m,n)落在区域|x-2|+|y-2|≤2内的概率是________.14.(2016·镇江模拟)设m,n别离为持续两次抛掷骰子取得的点数,且向量a=(m,n),b=(1,-1),则向量a,b的夹角为锐角的概率是________.答案精析1. 3.必要不充分 4.③ 1415解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因此取得两个同色球的概率为P =715+115=815.(2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.解析 “乙不输棋”的对立事件为“甲获胜”,P (乙不输棋)=1-P (甲获胜)=45.7.解析 成绩很多于120分的学生有12人,因此抽取的这名学生在这次考试中的成绩很多于120分的概率为1240=解析 三位正整数共有900个,使log 2N 为正整数,N 为29,28,27共三个,概率为3900=1300.解析 从1,2,3,4中任取两数可能为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个可能的大体事件,其中和大于积的有(1,2),(1,3),(1,4),故概率为12.解析如图为正六边形ABCDEF ,从6个极点中随机选择4个极点,共有15种选法,其中组成的四边形是梯形的有ABEF 、BCDE 、ABCF 、CDEF 、ABCD 、ADEF ,共6种选法,故组成的四边形是梯形的概率为P =615=25.解析 从得分超过10分的队员中任取2名,一共有以下10种不同的取法:(12,14),(12,15),(12,20),(12,22),(14,15),(14,20),(14,22),(15,20),(15,22),(20,22),其中这2名队员的得分之和超过35分的取法有以下3种:(14,22),(15,22),(20,22),故所求概率P =310.解析 能使log 2x 为整数的x 有1,2,4,8,因此P =49.解析 由题意可得所有可能的大体事件共36个. 当m =1时,1≤n ≤3,故符合条件的大体事件有3个; 当m =2时,1≤n ≤4,故符合条件的大体事件有4个; 当m =3时,1≤n ≤3,故符合条件的大体事件有3个;当m =4时,n =2,故符合条件的大体事件有1个.故共有11个符合条件的大体事件,即所求概率为1136.解析 向量a ,b 的夹角为锐角,因此a ·b >0,因此m -n >0,即m >n . 因此P =5+4+3+2+16×6=1536=512.。
2018届高考数学二轮概率与统计文专题卷(江苏专用)
(三)概率与统计1.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6,现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率. 解 (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35. 2.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解 (1)由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P (A )=327=19. 因此,“抽取的卡片上的数字满足a +b =c ”的概率为19. (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89. 因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89. 3.(2016·课标全国乙)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解 (1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700.所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧ 3 800,x ≤19,500x -5 700,x >19,(x ∈N ).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000, 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.4.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4.所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=110.5.某中学从高三甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩如下:甲班:92,80,79,78,85,96,85乙班:81,91,91,76,81,92,83(1)若竞赛成绩在90分以上的视为“优秀生”,则从“优秀生”中任意选出2名,乙班恰好只有1名的概率是多少?(2)根据两组数据完成两班数学竞赛成绩的茎叶图,指出甲班学生成绩的众数,乙班学生成绩的中位数,并请你利用所学的平均数、方差的知识分析一下两个班学生的竞赛成绩情况.解(1)优秀生共5名,其中甲班2名,乙班3名,设甲班优秀生为A,B;乙班优秀生为a,b,c,从中任意选出2名,共有{A,a},{A,b},{A,c},{B,a},{B,b},{B,c},{A,B },{a ,b },{a ,c },{b ,c }10种,乙班恰好只有1名的有{A ,a },{A ,b },{A ,c },{B ,a },{B ,b },{B ,c }6种,所以概率为P =610=35.(2)茎叶图为甲班学生成绩的众数为85,乙班学生成绩的中位数为83. x 甲=78+79+80+85+85+92+967=85, x 乙=76+81+81+83+91+91+927=85, s 2甲=17×[(78-85)2+(79-85)2+(80-85)2+(85-85)2+(85-85)2+(92-85)2+(96-85)2]=40,s 2乙=17×[(76-85)2+(81-85)2+(81-85)2+(83-85)2+(91-85)2+(91-85)2+(92-85)2]=34,两班的平均成绩相同,实力相当,但是乙班的学生成绩相对比较集中,成绩差异较小,甲班的学生成绩较为分散,成绩差异较大.。
2018年高考数学三轮讲练测核心热点总动员江苏版 专题03 概率 含解析
2016年高考三轮复习系列:讲练测之核心热点【江苏版】热点三概率【名师精讲指南篇】【高考真题再现】例1 【2013江苏高考】现有某病毒记作其中正整数错误!未找到引用错误!未找到引用源。
源。
、错误!未找到引用源。
(错误!未找到引用源。
)可以任意选取,则错误!未找到引用源。
、错误!未找到引用源。
都取到奇数的概率为▲错误!未找到引用源。
∵错误!未找到引用源。
,错误!未找到引用源。
,且错误!未找到引用源。
、错误!未找到引用源。
,基本事件的总数是错误!未找到引用源。
种,错误!未找到引用源。
、错误!未找到引用源。
都取到奇数的事件有错误!未找到引用源。
种,由古典概型公式,错误!未找到.引用源。
、错误!未找到引用源。
都取到奇数的概率为错误!未找到引用源。
例2. 【2014江苏高考】从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .【答案】错误!未找到引用源。
例3 【2015江苏高考】袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.【答案】错误!未找到引用源。
【解析】从4只球中一次随机摸出2只,共有6种摸法,其中两只球颜色相同的只有1种,不同的共有5种,所以其概率为错误!未找到引用源。
【热点深度剖析】1.概率在13-15年均是以填空题的形式进行考查,题目多为中低档题,着重考查学生运算求解能力.概率一般与计数原理结合考查,也可单独设置题目.2.预计16年考查古典概型的可能性较大.【最新考纲解读】【重点知识整合】1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件错误!未找到引用源。
下,一定会发生的事件叫做相对于条件错误!未找到引用源。
的必然事件.(2)在条件错误!未找到引用源。
下,一定不会发生的事件叫做相对于条件错误!未找到引用源。
的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件错误!未找到引用源。
江苏版2018年高考数学一轮复习专题11.3概率分布与数学期望方差讲理20171219454
专题11.3 概率分布与数学期望、方差【最新考纲解读】【考点深度剖析】1. 江苏高考中,一般考古典概型、相互独立、二项概型基础上的随机变量的分布,期望与方差。
2. 随机变量的概率分布及期望,内容多,处理方式灵活,可以考查其中一块,可以内部综合,可以作为问题的背景与其他内容结合考,复习时要注重基础,以不变应万变.【课前检测训练】【判一判】判断下面结论是否正确(请在括号中打“√”或“×”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量.( )(2)离散型随机变量的分布列描述了由这个随机变量所刻画的随机现象.( )(3)某人射击时命中的概率为0.5,此人射击三次命中的次数X服从两点分布.( )(4)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.( )(5)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( )(6)离散型随机变量的各个可能值表示的事件是彼此互斥的.( ) (7)条件概率一定不等于它的非条件概率.( ) (8)相互独立事件就是互斥事件.( )(9)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(10)二项分布是一个概率分布,其公式相当于(a +b )n二项展开式的通项公式,其中a =p ,b =1-p .( )(11)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( )(12)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰好第3次测试获得通过的概率是P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49.( )(13)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(14)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(15)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )(16)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )(17)均值是算术平均数概念的推广,与概率无关.( )1. √2. √3. ×4. √5. ×6. √7. ×8. ×9. ×10. ×11. √12. ×13. √14. √15. √16. √17. × 【练一练】1.袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数 D .取到的球的个数 【答案】C2.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X ,那么随机变量X 可能取得的值有( )A .17个B .18个C .19个D .20个【答案】A【解析】X 可能取得的值有3,4,5,…,19共17个. 3.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)等于( ) A.16 B.13 C.12 D.23 【答案】D【解析】∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.4.随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,则n =________. 【答案】10【解析】P (X <4)=P (X =1)+P (X =2)+P (X =3)=1n +1n +1n =3n=0.3,得n =10.5.一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为______. 【答案】272206.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 【答案】B【解析】第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.7.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75 C .0.6 D .0.45 【答案】A【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.8.如图,用K ,A 1,A 2三类不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作.已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( )A .0.960B .0.864C .0.720D .0.576 【答案】B9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 【答案】35【解析】设该队员每次罚球的命中率为p ,则依题意有1-p 2=1625,即p 2=925.又0<p <1,故p=35. 10.国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 【答案】1211.某射手射击所得环数ξ的分布列如下:已知ξ的均值E (ξ)=8.9,则y 的值为( ) A .0.4 B .0.6 C .0.7 D .0.9 【答案】A【解析】由⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +8×0.1+9×0.3+10y =8.9,可得y =0.4.12.设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a,4 B .1+a,4+a C .1,4 D .1,4+a【答案】A 【解析】x 1+x 2+…+x 1010=1,y i =x i +a ,所以y 1,y 2,…,y 10的均值为1+a ,方差不变仍为4.故选A.13.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10)则D (X )等于( )A .5B .8C .10D .16 【答案】B【解析】∵E (X )=15(2+4+6+8+10)=6,∴D (X )=15[(-4)2+(-2)2+02+22+42]=8.14.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.【答案】25【解析】设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.15.抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________. 【答案】509【题根精选精析】考点1 离散型随机变量及其分布列【1-1】随机变量X 的概率分布规律为P (X =n )=(1)an n + (n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为 . 【答案】56【解析】因为随机变量X 的概率分布规律为()==n X p (1)an n + (n =1,2,3,4),所以()()()()==+=+=+=4321X p X p X p X p 45154=⇒=a a ,所以 ()()==+==⎪⎭⎫ ⎝⎛<<212521X p X p X p 65.【1-2】若随机变量X 的分布列如下表,且EX=6.3, 则表中a 的值为 .【答案】7【解析】由11.05.0=++b 得4.0=b ,()3.64.091.05.04=⨯+⨯+⨯=a X E ,解7=a 【1-3】口袋中有n(n ∈N *)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若P(X =2)=730,则n 的值为 . 【答案】7【1-4】在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:21006542098874286438210乙地甲地规定:当产品中的此种元素含量15≥毫克时为优质品.(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数); (Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()E ξ.【解析】 (I)甲厂抽取的样本中优等品有7件,优等品率为7.10乙厂抽取的样本中优等品有8件,优等品率为84.105= (II)ξ的取值为1,2,3. 12823101(1),15C C P C ξ⋅=== 21823107(2),15C C P C ξ⋅===157)3(3100238=⋅==C C C P ξ 所以ξ的分布列为故的数学期望为17712123.1515155Eξ=⨯+⨯+⨯=() 【1-5】甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X ,求X 的分布列和期望.X 的期望为()00.210.620.21E x =⨯+⨯+⨯=.【基础知识】1.离散型随机变量的分布列 (1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X ,Y ,ξ,η等表示. (2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. 若ξ是随机变量,a b ηξ=+,其中,a b 是常数,则η也是随机变量. 2.常见离散型随机变量的分布列 (1)两点分布:若随机变量X 服从两点分布,即其分布列为其中01p <<,则称离散型随机变量X 服从参数为p 的两点分布.其中()1p P X ==称为成功概率. (2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X k =}发生的概率为()k n k M N MnNC C P X k C --==,0,1,2,,k m =,其中{}min ,m M n =,且,,,,n N M N n M N N *≤≤∈,称分布列为超几何分布列.(3)设离散型随机变量可能取得值为1,2,…,i ,…n ,取每一个值i (,n )的概率为()i i PX x p ==,则称表为随机变量X 的概率分布列,简称X 的分布列.有时为了表达简单,也用等式()i i P X x p ==,1,2,,i n =表示X 的分布列.分布列的两个性质 ①0i p ≥,1,2,,i n =;②121n p p p +++=.【思想方法】1. 求分布列的三种方法(1)由统计数据得到离散型随机变量的分布列;(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.(2)由古典概型求出离散型随机变量的分布列;求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.而超几何分布就是此类问题中的一种.(3)由互斥事件的概率、相互独立事件同时发生的概率及n 次独立重复试验有k 次发生的概率求离散型随机变量的分布列. 2. 求离散型随机变量分布列的步骤(1)找出随机变量X 的所有可能取值x i (i =1,2, 3,…,n ); (2)求出各取值的概率P (X =x i )=p i ;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确. 3. 解答离散型随机变量的分布列及相关问题的一般思路 (1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值. (3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【温馨提醒】求离散型随机变量的分布列的关键是正确理解随机变量取每一个所表示的具体事件,然后综合应用各类求概率的公式,求出概率. 考点2 二项分布及应用【2-1】【盐城2015调研】袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是 . 【答案】12【2-2】已知在一次试验中,()0.7P A =,那么在4次独立重复试验中,事件A 恰好在前两次发生的概率是 . 【答案】0441.0【解析】因为()0.7P A =,所以在4次独立重复试验中,事件A 恰好在前两次发生的概率()()0441.03.07.022==P .【2-3】设服从二项分布(,)B n p 的随机变量X 的期望和方差分别是2.4和1.44,则二项分布的参数,n p 的值为 .【答案】6,0.4n p ==【解析】由二项分布的期望和方差得()⎩⎨⎧=-=44.114.2p np np ,解的⎩⎨⎧==64.0n p【2-4】【2015四川模拟】一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 【解析】试题分析:(1)由()(1)k k n kn nP k C p p -=-得,1331(200),(10),(20),(100)8888P X P X P X P X =-=======.所以X 的分布列为【2-5】【北京市西城区2015模拟】在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(1)根据频率分布表中的数据,写出a 、b 的值;(2)某人从灯泡样品中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按三..个等级分层抽样.......所得的结果相同,求n 的最小值; (3)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.所以X 的数学期望()279130123646464644E X =⨯+⨯+⨯+⨯=.(注:写出13,4X B ⎛⎫ ⎪⎝⎭,()3311144kkk P X k C -⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,0k =、1、2、3. 请酌情给分) 【基础知识】1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号()/p B A 来表示,其公式为()()()/p AB p B A P A =.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()/n AB p B A n A =. (2)条件概率具有的性质: ①()0/1p B A ≤≤;② 如果B 和C 是两互斥事件,则()()()///p B C A p B A p C A =+.2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则()()/p B A p B =,()()()()()/p AB p B A P A P A P B =⋅=⋅.(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若()()()p AB P A P B =⋅,则A 与B 相互独立. 3.独立重复试验与二项分布 (1)独立重复试验独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()()1n kk kn P X k C p p -==-(0,1,2,,k n =),此时称随机变量X 服从二项分布,记作(),XB n p ,并称p 为成功概率.【思想方法】1. 条件概率的求法(1)定义法:先求()P A 和()p AB ,再由()()()/p AB p B A P A =,求()/p B A ;(2)基本事件法:借古典概型概率公式,先求事件A 包含的基本事件数()n A ,再求事件AB 所包含的基本事件数()n AB ,得()()()/n AB p B A n A =.2. 求相互独立事件同时发生的概率的方法 (1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算.相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解. 3. 二项分布满足的条件(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生. (4)随机变量是这n 次独立重复试验中事件发生的次数. 4.二项展开式的通项与二项分布的概率公式的“巧合”一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0p A p =>.我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.在n 次独立重复试验中,每次试验事件A 发生的概率均为()01p p <<,即()p A p =,()1p A p q =-=.由于试验的独立性,n 次试验中,事件A 在某指定的k 次发生,而在其余n k -次不发生的概率为k n k p q -.而在n 次试验中,事件A 恰好发生()0k k n ≤≤次的概率为()kkn kn n P k C p q-=,0,1,2,,k n =.它恰好是()np q +的二项展开式中的第1k +项.5. 牢记且理解事件中常见词语的含义: (1) A 、B 中至少有一个发生的事件为A B ;(2) A 、B 都发生的事件为AB ; (3) A 、B 都不发生的事件为AB ; (4) A 、B 恰有一个发生的事件为AB AB ; (5) A 、B 至多一个发生的事件为ABABAB .【温馨提醒】这些都是二项分布问题,关键是正确求出随机变量的分布列,可直接使用公式求解. 因此牢记公式()k k n kn n P k C p q-=,0,1,2,,k n =,并深刻理解其含义.考点3 离散型随机变量的均值与方差【3-1】设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则,n p 的值为 . 【答案】n =8,p =0.2【解析】因为随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,所以()()()8,2.026.116.1==⇒⎩⎨⎧=-===n p p np X D np X E . 【3-2】设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和,则n 、p的值分别是 . 【答案】60,【解析】由二项分布X ~B (n ,p )的均值与方差可知E(X)=np=15,D(X)=np(1-p)=,解得n=60,p=,所以【3-3】变量X 的概率分布列如右表,其中,,a b c 成等差数列,若1()3E X =,则()D X =_________.【答案】95【3-4】【常州2015调研】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?【3-5】【无锡2015模拟】在2014年俄罗斯索契冬奥会某项目的选拔比赛中,A,B两个代表队进行对抗赛,每队三名队员,A队队员是A1,A2,A3,B队队员是B1,B2,B3,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式出场进行三场比赛,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为.(1)求A 队得分为1分的概率;(2)求的分布列;并用统计学的知识说明哪个队实力较强.【基础知识】 1.均值若离散型随机变量X 的分布列为称1122i i n n E X x p x p x p x p =+++++为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平..若Y aX b =+,其中,a b 为常数,则Y 也是随机变量,且()()E aX b aE X b +=+. 若X 服从两点分布,则()E X p =; 若(),XB n p ,则()E X np =.2.方差若离散型随机变量X 的分布列为则()i x E X -描述了i x (1,2,,i n =)相对于均值()E X 的偏离程度,而()()()21ni i i D X x E X p ==-∑为这些偏离程度的加权平均,刻画了随机变量X 与其均值()E X 的平均偏离程度.称()D X 为随机变量X X 的标准差.若Y aX b =+,其中,a b 为常数,则Y 也是随机变量,且()()2D aX b a D X +=. 若X 服从两点分布,则()()1D X p p =-. 若(),XB n p ,则()()1D X np p =-.【思想方法】1. 求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解; (2)已知随机变量ξ的均值、方差,求ξ的线性函数a b ηξ=+的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.2. 求离散型随机变量均值的步骤(1)理解随机变量X 的意义,写出X 可能取得的全部值; (2)求X 的每个值的概率; (3)写出X 的分布列; (4)由均值定义求出()E X . 3. 六条性质(1) ()E C C = (C 为常数)(2) ()()E aX b aE X b +=+ (,a b 为常数) (3) ()()()1212E X X E X E X +=+(4)如果12,X X 相互独立,则()()()1212E X X E X E X ⋅=⋅ (5) ()()()()22D XE XE X =-(6) ()()2D aX b a D X +=4. 均值与方差性质的应用若X 是随机变量,则()f X η=一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算. 【温馨提醒】求离散型随机变量的期望和方差的应用问题,首先应仔细地分析题意,当概率分布不是一些熟知的类型时,应全面地剖析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,从而求出各随机变量相应的概率. 【易错问题大揭秘】1.随机变量取值不全致误典例 (12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个.第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取得球的标号之和为ξ.求随机变量ξ的可能取值及其分布列.易错分析 由于随机变量取值情况较多,极易发生对随机变量取值考虑不全而导致解题错误.温馨提醒 (1)解决此类问题的关键是弄清随机变量的取值,正确应用概率公式.(2)此类问题还极易发生如下错误:虽然弄清随机变量的所有取值,但对某个取值考虑不全面. (3)避免以上错误发生的有效方法是验证随机变量的概率和是否为1.2.独立事件概率求解中的易误点典例 (12分)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.易错分析 解本题第(2)问易因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 35(23)3×(13)2=80243这一错误结果.规范解答温馨提醒(1)正确区分相互独立事件与n次独立重复试验是解决这类问题的关键.独立重复试验是在同一条件下,事件重复发生或不发生.(2)独立重复试验中的概率公式P(X=k)=C k n p k(1-p)n-k表示的是n次独立重复试验中事件A发生k次的概率,p与1-p的位置不能互换,否则该式子表示的意义就发生了改变,变为事件A 有k次不发生的概率了.[失误与防范]1掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.3.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意“恰好”与“至多(少)”的关系,灵活运用对立事件.4.在没有准确判断分布列模型之前不能随便套用公式.5.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.。
2018年高考数学三轮考点总动员江苏版 专题1.7 概率与统计、推理与证明、算法 含解析
第一篇教材考点再排查专题7 概率与统计、推理与证明、算法1.古典概型计算三注意:第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.求解几何概型的概率问题,一定要正确确定试验的全部结果构成的区域,从而正确选择合理的测度,进而利用概率公式求解.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型.3.求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;(2)间接法:先求此事件的对立事件的概率,再用公式错误!未找到引用源。
,即运用逆向思维(正难则反),特别是“至多”、“至少”型题目,用间接法就显得比较简便.4.(理科)相互独立事件与n次独立重复试验(1)若A1,A2,…,A n是相互独立事件,则P(A1·A2·…·A n)=P(A1)·P(A2)·…·P(A n).(2)如果在一次试验中事件A发生的概率为p,事件A不发生的概率为1-p,那么在n次独立重复试验中事件A发生k次的概率为:P n(k)=C k n p k(1-p)n-k.5.(理科)离散型随机变量的分布列、期望与方差的基本公式:①E(ξ)=x1p1+x2p2+…+x n p n +…;②D(ξ)=(x1-E(ξ))2p1+(x2-E(ξ))2p2+…+(x n-E(ξ))2p n+…;③E(aξ+b)=aE(ξ)+b,D(aξ+b)=a2D(ξ);④二项分布:ξ~B(n,p),则P(ξ=k)=C k n p k(1-p)n-k,E(ξ)=np,D(ξ)=np(1-p).6. 正确把握三种抽样方法的适用范围及特点,能根据具体情况正确选择抽样方法:当总体中的个体个数较少时,通常采用简单随机抽样,一般可用从总体中逐个抽取的;当总体中的个体个数较多且均衡时,通常采用系统抽样,将总体平均分成几部分,按一定的规则分别在各部分中抽取;当总体是由差异明显的几部分组成时,则采用分层抽样,将总体按差异分成几层,按分层个体数之比抽取.7.频率分布直方图:画一个只有横、纵轴正方向的直角坐标系,把横轴分成若干段,每一段对应一个组的组距,然后以此段为底作一矩形,它的高等于该组的错误!未找到引用源。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第十二章概率、随机变量及其分布12.5 含答案 精品
1.条件概率及其性质(1)对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).(2)条件概率具有的性质①0≤P(B|A)≤1;②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件(1)设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)若A与B相互独立,则P(B|A)=P(B),P(AB)=P(A)P(B|A)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × )(3)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(4)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )1.袋中有3红5黑8个大小、形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为________. 答案 27解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(教材改编)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是______. 答案 49解析 所求概率P =C 13·(13)1·(1-13)3-1=49. 3.(2015·课标全国Ⅰ改编)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为________. 答案 0.648解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.4.(2016·镇江模拟)口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球,1,第n 次摸取白球, 如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为________________.(用式子作答)答案 C 27×⎝⎛⎭⎫232×⎝⎛⎭⎫135解析 由S 7=3知,在前7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为23,摸取白球的概率为13,则S 7=3的概率为C 27×⎝⎛⎭⎫232×⎝⎛⎭⎫135. 5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”,故所求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )=________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.答案 (1)14 (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110, P (B |A )=P (AB )P (A )=14. (2)AB 表示事件“豆子落在△OEH 内”, P (B |A )=P (AB )P (A )=△OEH 的面积正方形EFGH 的面积=14. 引申探究1.若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25, P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P (AB )P (A )=P (B )P (A )=34.2.在本例(2)的条件下,求P (A |B ). 解 由题意知,∠EOH =90°,故P (B )=14,又∵P (AB )=△OEH 的面积圆O 的面积=12×1×1π×12=1, ∴P (A |B )=P (AB )P (B )=12π14=2π.思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A ). (2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).(2016·无锡模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为________. 答案 79解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的概率分布;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T 的概率分布为(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的概率分布相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.思维升华 求相互独立事件同时发生的概率的方法 (1)首先判断几个事件的发生是否相互独立. (2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解;②正面计算较繁或难以入手时,可从其对立事件入手计算.(2016·宿迁模拟)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:现有甲、乙两位乘客,他们乘坐的里程都不超过22千米.已知甲、乙乘车不超过6千米的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的概率分布.解 (1)由题意可知,甲、乙乘车超过12千米且不超过22千米的概率分别为14,13,则甲、乙两人所付乘车费用相同的概率 P 1=14×13+12×13+14×13=13,所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.(2)由题意可知,ξ=6,7,8,9,10, 则P (ξ=6)=14×13=112,P (ξ=7)=14×13+12×13=14,P (ξ=8)=14×13+14×13+12×13=13,P (ξ=9)=12×13+14×13=14,P (ξ=10)=14×13=112.所以ξ的概率分布为题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的概率分布.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827,P (C )=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. (2)X 的可能取值为0,1,2,3, 则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427, P (X =3)=⎝⎛⎭⎫133+C 23⎝⎛⎭⎫132×23×13=19. 故X 的概率分布为命题点2 根据独立重复试验求二项分布例4 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的概率分布为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2016·沈阳模拟)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖. (1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的概率分布.解 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响, ∴P (A )=C 23(13)2(23)1+C 33(13)3=727. (2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3. P (X =0)=(13)3=127,P (X =1)=C 13(23)1(13)2=29, P (X =2)=C 23(23)2(13)1=49, P (X =3)=(23)3=827.因此X 的概率分布为16.独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________.(2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A 、B 是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB )=37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×(23)3×(13)2=80243. 答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A 、B 是互斥事件,∴P (A ∪B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则 P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )=________. 答案 12解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·常州模拟)如果X ~B (15,14),则使P (X =k )取最大值的k 值为________.答案 3或4解析 ∵P (X =3)=C 315(14)3(34)12, P (X =4)=C 415(14)4(34)11, P (X =5)=C 515(14)5(34)10, 从而易知P (X =3)=P (X =4)>P (X =5).3.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率________. ①事件A ,B 同时发生; ②事件A ,B 至少有一个发生; ③事件A ,B 至多有一个发生; ④事件A ,B 都不发生. 答案 ③解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为________. 答案 34解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14. 故目标被击中的概率P =1-P (A B C )=34.5.(2017·南通质检)设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是________. 答案3132解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.6.(2016·无锡模拟)一个病人服用某种新药后被治愈的概率为0.9,服用这种新药的有甲、乙、丙3位病人,且各人之间互不影响,有下列结论: ①3位病人都被治愈的概率为0.93; ②3人中的甲被治愈的概率为0.9;③3人中恰有2人被治愈的概率是2×0.92×0.1; ④3人中恰好有2人未被治愈的概率是3×0.9×0.12; ⑤3人中恰好有2人被治愈,且甲被治愈的概率是0.92×0.1. 其中正确结论的序号是________. 答案 ①②④7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59, 解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 8.如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.答案 18解析 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件A B C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (A B C )=P (A )P (B )P (C )=12×12×12=18. 9.(2016·无锡模拟)高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙二人相邻的概率是________. 答案 14解析 设“甲、乙二人相邻”为事件A ,“甲、丙二人相邻”为事件B ,则所求概率为P (B |A ),由于P (B |A )=P (AB )P (A ),而P (A )=2A 44A 55=25,AB 表示事件“甲与乙、丙都相邻”,故P (AB )=2A 33A 55=110,于是P (B |A )=11025=14.10.(2016·苏州质检)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 答案 37解析 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37.11.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的概率分布.解 依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4). 则P (A k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k.(1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎫133×23+C 44⎝⎛⎭⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的概率分布是12.在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X表示在这块地上种植1季此作物的利润,求X的概率分布;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6 元/kg”,由题设知P(A)=0.5,P(B)=0.4,因为利润=产量×市场价格-成本.所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,故X的概率分布为(2)设C i表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×(1-0.8)=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.*13.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率.解(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)记事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A B∪A B,A,B独立.根据投篮统计数据,P(A)=0.6,P(B)=0.4.P(C)=P(A B)+P(A B)=0.6×0.6+0.4×0.4=0.52.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为0.52.。
2018年高考数学理科江苏专版二轮专题复习与策略课件:第1部分 专题6 第20讲 概率、统计 精品
1 2
[同时抛掷三枚质地均匀、大小相同的硬币一次,共产生8种可能不同的结
果.则至少有两枚硬币正面向上,共有(正,正,反),(正,正,正),(正,反,
正),(反,正,正)4种不同的结果,故所求事件的概率P=48=12.]
3.将一颗骰子连续抛掷2次,向上的点数分别为m,n,则点P(m,n)在直线y
=12x下方的概率为________.
【导学号:19592059】
1 6
[将一颗骰子连续抛掷2次,共有(1,1),(1,2),(1,
3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种不同的结果,其中在
直线y=12x下方的有:(3,1),(4,1)(5,1),(5,2),(6,1),(6,2)共6种不同的结果,故所
5 (1)6
1 (2)3
[(1)将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设
事件A=“出现向上的点数之和小于10”,其对立事件 A =“出现向上的点数之
和大于或等于10”, A 包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),
2.数据10,6,8,5,6的方差s2=________.
16 5
[ x =10+6+58+5+6=7.
【导学号:19592060】
∴s2=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]
=156.]
3.(2016·盐城三模)已知一组数据x1,x2,x3,x4,x5的方差是2,则数据 2x1,2x2,2x3,2x4,2x5的标准差为________.
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.离散型随机变量随着试验结果变化而变化的变量叫做随机变量,常用字母X ,Y ,ξ,η,…表示,所有取值可以一一列出的随机变量,叫做离散型随机变量. 2.离散型随机变量的概率分布及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的概率分布表. (2)离散型随机变量的概率分布的性质 ①p i ≥0,i =1,2,…,n ; ②p 1+p 2+…+p i +…+p n =1. 3.常见离散型随机变量的概率分布 (1)两点分布如果随机变量X 的概率分布表为其中0<p <1,则称离散型随机变量服从两点分布. (2)超几何分布一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =r )=C r M C n -r N -MC n N(r =0,1,2,…,l ).即其中l =min(M ,n )如果一个随机变量X 的概率分布具有上表的形式,则称随机变量X 服从超几何分布. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)抛掷均匀硬币一次,出现正面的次数是随机变量.( √ )(2)离散型随机变量的概率分布描述了由这个随机变量所刻画的随机现象.( √ ) (3)某人射击时命中的概率为0.5,此人射击三次命中的次数X 服从两点分布.( × ) (4)从4名男演员和3名女演员中选出4名演员,其中女演员的人数X 服从超几何分布.( √ ) (5)离散型随机变量的概率分布中,随机变量取各个值的概率之和可以小于1.( × ) (6)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )1.(2016·苏州模拟)袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是________. ①至少取到1个白球; ②至多取到1个白球; ③取到白球的个数; ④取到的球的个数. 答案 ③解析 ①②表述的都是随机事件,④是确定的值2,并不随机;③是随机变量,可能取值为0,1,2.2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)=________. 答案 13解析 设X 的概率分布为即“X =0”表示试验失败,“X =1”表示试验成功,由p +2p =1,得p =13.3.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X ,那么随机变量X 可能取得的值有________个. 答案 17解析 X 可能取得的值有3,4,5,…,19,共17个.4.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布为答案 0.1 0.6 0.3解析 ∵X 的所有可能取值为0,1,2, ∴P (X =0)=C 22C 25=0.1,P (X =1)=C 13·C 12C 25=610=0.6,P (X =2)=C 23C 25=0.3.∴X 的概率分布为5.(教材改编)一盒中有123个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为______. 答案27220解析 由题意知取出的3个球必为2个旧球、1个新球,故P (X =4)=C 23C 19C 312=27220.题型一 离散型随机变量的概率分布的性质例1 (1)设X 是一个离散型随机变量,其概率分布为则q =____________. 答案 32-336解析 ∵13+2-3q +q 2=1,∴q 2-3q +43=0,解得q =32±336.又由题意知0<q 2<23,∴q =32-336. (2)设离散型随机变量X 的概率分布为求2X+1的概率分布.解由概率分布的性质知0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为从而2X+1的概率分布为引申探究1.在本例(2)的条件下,求随机变量η=|X-1|的概率分布.解由(2)知m=0.3,列表∴P(η=1)=P(X=0)+P(XP(η=0)=P(X=1)=0.1,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的概率分布为2.若本例(2)解依题意知η的值为0,1,4,9,16.P(η=0)=P(X2=0)=P(X=0)=0.2,P(η=1)=P(X2=1)=P(X=1)=0.1,p(η=4)=P(X2=4)=P(X=2)=0.1,P(η=9)=P(X2=9)=P(X=3)=0.3,P(η=16)=P(X2=16)=P(X=4)=0.3,故η=X2的概率分布为思维升华(1)概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据概率分布,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.设随机变量X 的概率分布为P (X =k5)=ak (k =1,2,3,4,5).(1)求a ; (2)求P (X ≥35);(3)求P (110<X ≤710).解 (1)由概率分布的性质,得P (X =15)+P (X =25)+P (X =35)+P (X =45)+P (X =1)=a +2a +3a+4a +5a =1,所以a =115.(2)P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=3×115+4×115+5×115=45.(3)P (110<X ≤710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=615=25.题型二 离散型随机变量概率分布的求法 命题点1 与排列、组合有关的概率分布的求法例2 (2015·重庆改编)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的概率分布.解 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14. (2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的概率分布为命题点2 例3 (2015·安徽改编)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的概率分布.解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300) =1-110-310=35.故X 的概率分布为命题点3 与独立事件(例4 (2016·南京模拟)甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的概率分布.解 (1)用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”.则P (A k )=23,P (B k )=13,k =1,2,3,4,5.P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4) =⎝⎛⎭⎫232+13×⎝⎛⎭⎫232+23×13×⎝⎛⎭⎫232=5681. (2)X 的可能取值为2,3,4,5. P (X =2)=P (A 1A 2)+P (B 1B 2) =P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的概率分布为思维升华 (1)理解X 的意义,写出X 可能取的全部值;(2)求X 取每个值的概率;(3)写出X 的概率分布. 求离散型随机变量的概率分布的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(2016·湖北部分重点中学第一次联考)连续抛掷同一颗均匀的骰子,令第i 次得到的点数为a i ,若存在正整数k ,使a 1+a 2+…+a k =6,则称k 为你的幸运数字. (1)求你的幸运数字为3的概率;(2)若k =1,则你的得分为6分;若k =2,则你的得分为4分;若k =3,则你的得分为2分;若抛掷三次还没找到你的幸运数字,则记0分,求得分ξ的概率分布.解 (1)设“连续抛掷3次骰子,和为6”为事件A ,则它包含事件A 1,A 2,A 3,其中A 1:三次恰好均为2;A 2:三次中恰好1,2,3各一次;A 3:三次中有两次均为1,一次为4. A 1,A 2,A 3为互斥事件,则P (A )=P (A 1)+P (A 2)+P (A 3)=C 33(16)3+C 13·16·C 12·16·C 11·16+C 23(16)2·16=5108. (2)由已知得ξ的可能取值为6,4,2,0,P (ξ=6)=16,P (ξ=4)=(16)2+2×C 12×16×16=536,P (ξ=2)=5108,P (ξ=0)=1-16-536-5108=3554.故ξ的概率分布为题型三 超几何分布例5 (2016·连云港模拟)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2016年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的概率分布.解 (1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A , 则P (A )=C 13·C 27C 310=2140.(2)依据条件,ξ服从超几何分布,其中N =10,M =3,n =3,且随机变量ξ的可能取值为0,1,2,3.P (ξ=k )=C k 3·C 3-k 7C 310(k =0,1,2,3).∴P (ξ=0)=C 03C 37C 310=724,P (ξ=1)=C 13C 27C 310=2140,P (ξ=2)=C 23C 17C 310=740,P (ξ=3)=C 33C 07C 310=1120.故ξ的概率分布为思维升华 (1)超几何分布的两个特点 ①超几何分布是不放回抽样问题; ②随机变量为抽到的某类个体的个数. (2)超几何分布的应用条件 ①两类不同的物品(或人、事); ②已知各类对象的个数; ③从中抽取若干个个体.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动.(每位同学被选到的可能性相同) (1)求选出的3名同学来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的概率分布.解 (1)设“选出的3名同学来自互不相同学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 故选出的3名同学来自互不相同学院的概率为4960.(2)随机变量X 的所有可能取值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3).∴P (X =0)=C 04·C 36C 310=16,P (X =1)=C 14·C 26C 310=12,P (X =2)=C 24·C 16C 310=310,P (X =3)=C 34·C 06C 310=130.故随机变量X 的概率分布是15.离散型随机变量的概率分布典例 某射手有5发子弹,射击一次命中概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的概率分布. 错解展示现场纠错解P(ξ=1)=0.9,P(ξ=2)=0.1×0.9=0.09,P(ξ=3)=0.1×0.1×0.9=0.009,P(ξ=4)=0.13×0.9=0.000 9,P(ξ=5)=0.14=0.000 1.∴ξ的概率分布为纠错心得(1)随机变量的概率分布,要弄清变量的取值,还要清楚变量的每个取值对应的事件及其概率.(2)验证随机变量的概率和是否为1.1.(2016·扬州模拟)某射手射击所得环数X的概率分布为答案0.79解析根据X的概率分布知,所求概率为0.28+0.29+0.22=0.79.2.设X是一个离散型随机变量,其概率分布为则q =________. 答案 1-22解析 由题意知⎩⎪⎨⎪⎧1-2q ≥0,12+(1-2q )+q 2=1, 即⎩⎪⎨⎪⎧q ≤12,2q 2-4q +1=0,解得q =1-22.3.(2016·泰州模拟)已知随机变量X 的概率分布为P (X =i )=i 2a (i =1,2,3,4),则P (2<X ≤4)=________. 答案710解析 由概率分布的性质知, 12a +22a +32a +42a =1, 则a =5,∴P (2<X ≤4)=P (X =3)+P (X =4)=310+410=710.4.设随机变量ξ的概率分布为P (ξ=i )=a (13)i ,i =1,2,3,则实数a 的值为________.答案2713解析 ∵随机变量ξ的概率分布为P (ξ=i )=a (13)i ,i =1,2,3,∴a [13+(13)2+(13)3]=1,解得a =2713.5.从装有3个白球,4个红球的箱子中,随机取出3个球,则恰好是2个白球,1个红球的概率是________. 答案1235解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P =C 23C 14C 37=1235.6.(2016·盐城模拟)一实验箱中装有标号为1,2,3,3,4的5只白鼠,若从中任取1只,记取到的白鼠的标号为Y ,则随机变量Y 的概率分布是________. 答案解析 ∵5只白鼠任取一只,每只白鼠被取到的概率为15,∴P (Y =1)=15,P (Y =2)=15,P (Y =3)=25,P (Y =4)=15.∴随机变量Y 的概率分布为7.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________. 答案 -1,0,1,2,3解析 X =-1,甲抢到一题但答错了,而乙抢到了两个题都答错了,X =0,甲没抢到题,乙抢到题答错至少2个题或甲抢到2题,但答时一对一错,而乙答错一个题,X =1,甲抢到1题且答对,乙抢到2题且至少答错1题或甲抢到3题,且1错2对, X =2,甲抢到2题均答对, X =3,甲抢到3题均答对. 8.随机变量X 的概率分布如下:其中a ,b ,c 成等差数列,则P (|的取值范围是________. 答案 23 [-13,13]解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据概率分布的性质,得0≤13-d ≤23,0≤13+d ≤23,∴-13≤d ≤13.9.设离散型随机变量X 的概率分布为若随机变量Y =|X -2|,则P (Y =2)=________. 答案 0.5解析 由概率分布的性质,知0.2+0.1+0.1+0.3+m =1,∴m =0.3. 由Y =2,即|X -2|=2,得X =4或X =0, ∴P (Y =2)=P (X =4或X =0) =P (X =4)+P (X =0) =0.3+0.2=0.5.10.(2016·南通模拟)口袋中有5只球,编号为1,2,3,4,5,从中任取3只球,以X 表示取出的球的最大号码,则X 的概率分布为______________. 答案解析 X 的取值为3,4,5.又P (X =3)=1C 35=0.1,P (X =4)=C 23C 35=0.3,P (X =5)=C 24C 35=0.6.所以X 的概率分布为11.(2015·山东改编)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数” ; (2)若甲参加活动,求甲得分X 的概率分布.解 (1)个位数是5的“三位递增数”有125,135,145,235,245,345. (2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.所以X 的概率分布为12.(2016·遂宁期末)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的概率分布.(注:若三个数字a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数) 解 (1)由古典概型的概率计算公式得P =C 34+C 33C 39=584. (2)由题意知X 的所有可能取值为1,2,3,则P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112.所以X 的概率分布为*13.某高校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2名校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为ξ,求ξ的概率分布. 解 (1)设选出2人为“最佳组合”记为事件A ,则事件A 发生的概率P (A )=C 1n -6C 16C 2n=12(n -6)n (n -1).依题意12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,∴9≤n ≤16,故n 的最大值为16.(2)由题意,得ξ的可能取值为0,1,2,且ξ服从超几何分布,则P (ξ =k )=C k 6C 2-k 6C 212(k =0,1,2),∴P (ξ=0)=P (ξ=2)=C 06C 26C 212=522,P (ξ=1)=C 16C 16C 212=611.故ξ的概率分布为。
2018版高考数学江苏专用理科专题复习专题10 计数原理、概率与统计 第73练 含解析 精品
摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为________.2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为________.3.(2016·淮安质检)打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是________.4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为________.5.2017年国庆节放假,甲去北京旅游的概率为13,乙,丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为________.6.(2017·合肥质检)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为________.7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)________.8.(2015·课标全国Ⅰ改编)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为________.9.据统计,黄种人人群中各种血型的人所占的比例见下表:AB型血的人可以接受任何一种血型的血,其他不同血型的人不能互相输血.某人是B型血,若他因病痛要输血,在黄种人人群中找一个人,其血可以输给此人的概率为________.10.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为________.11.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为________.12.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是________.13.事件A,B,C相互独立,如果P(AB)=16,P(B C)=18,P(AB C)=18,则P(B)=________,P(A B)=________.14.某种节能灯使用了800h,还能继续使用的概率是0.8,使用了1000h,还能继续使用的概率是0.5,则已经使用了800h的节能灯,还能继续使用到1000h的概率是________.答案精析1.0.32 2.34 3.1425 4.135.3 5解析用A,B,C分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P(A B C)=P(A)·P(B)·P(C)=23×34×45=25,故至少有一人去北京旅游的概率为1-25=35.6.0.75解析设事件A i(i=1,2)表示“做对第i道题”,A1,A2相互独立,由已知得P(A1)=0.8,P(A1A2)=0.6,P(A2|A1)=0.60.8=0.75.7.1 90解析设体型合格为事件A,视力合格为事件B,其他几项合格为事件C,依题意P(A)=13,P(B)=16,P(C)=15.∴所求概率为P(ABC)=P(A)·P(B)·P(C)=13×16×15=190.8.0.648解析该同学通过测试的概率P=C23×0.62×0.4+0.63=0.432+0.216=0.648.9.0.64解析对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是互斥的,由已知得P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.∵B,O型血可以输给B型血的人,∴“可以输血给此人”为事件B′+D′,根据互斥事件的概率加法公式,有P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64,∴在黄种人人群中找一个人,其血可以输给此人的概率为0.64.10.3 4解析 记事件A 为“第一次摸到黑球”,事件B 为“第二次摸到白球”,则事件AB 为“第一次摸到黑球、第二次摸到白球”,依题意知P (A )=25,P (AB )=25×34=310,∴在第一次摸到黑球的条件下,第二次摸到白球的概率为P (B |A )=P (AB )P (A )=34.11.34解析 甲队若要获得冠军,有两种情况,可以直接胜一局,获得冠军,概率为12,也可以乙队先胜一局,甲队再胜一局,概率为12×12=14,故由互斥事件的概率公式,得甲队获得冠军的概率为14+12=34. 12.25解析 由题意知,两个人都不去此地的概率是⎝ ⎛⎭⎪⎫1-14×⎝ ⎛⎭⎪⎫1-15=35,∴至少有一个人去此地的概率是1-35=25. 13.12 13解析 由⎩⎪⎨⎪⎧P (AB )=P (A )·P (B )=16,P (B C )=P (B )·P (C )=18,P (AB C )=P (A )·P (B )·P (C )=18,得P (A )=13,P (B )=12,∴P (A B )=P (A )·P (B )=23×12=13. 14.58解析 设“节能灯使用了800h 还能继续使用”为事件A ,“使用了1000h 还能继续使用”为事件B .由题意知P (A )=0.8,P (B )=0.5.∵B A ,∴A ∩B =B ,于是P (B |A )=P (A ∩B )P (A )=P (B )P (A )=0.50.8=58.。
精选江苏专用2018版高考数学专题复习专题10概率与统计第65练抽样方法练习文
(江苏专用)2018版高考数学专题复习专题10 概率与统计第65练抽样方法练习文1.(2016·长春三模)某学校为了了解高中一年级、二年级、三年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是______________法.2.(2016·苏州模拟)某工厂生产某种产品5 000件,它们来自甲、乙、丙3条不同的生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,若从甲、乙、丙三条生产线抽取的件数之比为1∶2∶2,则乙生产线生产了________件.3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬菜类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________.4.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.5.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为______.6.某单位有职工52人,现将所有职工按1,2,3,…,52随机编号,若采用系统抽样的方法抽取一个容量为4的样本,已知6号、32号、45号职工在样本中,则样本中还有一个职工的编号是________.7.(2016·苏北四市质检)某林场有树苗3 000棵,其中松树苗400棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则该样本中松树苗的棵数为________.8.(2016·海口调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为________.9.(2016·盐城模拟)某报社做了一次关于“什么是新时代的雷锋精神?”的调查,在A,B,C,D四个单位回收的问卷数依次成等差数列,共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B单位抽30份,则在D单位抽取的问卷是________份.10.(2016·苏州模拟)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为________.11.某中学高三(1)班有学生55人,现按座位号的编号采用系统抽样的方法选取5名同学参加一项活动,已知座位号为5号,16号,27号,49号的同学均被选出,则被选出的5名同学中还有一名的座位号是________.12.(2016·潍坊模拟)某校对高三年级1 600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知样本中女生比男生少10人,则该校高三年级的女生人数是________.13.(2016·盐城模拟)利用简单随机抽样的方法,从样本的n(n>13)个数据中抽取13个,依次抽取,若第二次抽取后,余下的每个数据被抽取的概率为136,则在整个抽取过程中,每个数据被抽取的概率为________.14.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样法,则40岁的以下的年龄段应抽取________人.答案精析1.分层抽样 2.2 000 3.6 4.605.100解析 由题意可得70n -70=3 5001 500, 解得n =100.6.19解析 将52名职工按编号进行分组,每组分得的人数为524=13.易知缺失的职工编号在第二段.又起始编号为6,故所求职工编号为6+13=19.7.20解析 由分层抽样的方法知样本中松树苗的棵数应为150×4003 000=20. 8.21解析 由已知得间隔数k =244=6,则抽取的最大编号为3+(4-1)×6=21. 9.60解析 设A ,B ,C ,D 四个单位回收问卷份数分别为a -3d ,a -d ,a +d ,a +3d ,在D 单位抽取的问卷是x 份.所以a -3d +a -d +a +d +a +3d =4a =1 000,所以a =250,根据分层抽样的抽样比相等,得1 000150=250-d 30=250+3d x, 解得x =60.所以在D 单位抽取的问卷份数为60.10.808解析 1296=12+21+25+43N ⇒ N =808.11.38解析 因为16-5=27-16=11,49-27=22,由系统抽样法易知另一名同学的座位号为38. 12.760解析 设样本中女生有x 人,则男生有(x +10)人,所以x +x +10=200,得x =95,设该校高三年级的女生有y 人,则根据分层抽样的定义可知y 1 600=95200,解得y =760. 13.13398解析 由题意知11n -2=136,解得n =398, 所以在整个抽取过程中,每个数据被抽取的概率为13398. 14.37 20解析 由系统抽样法知,第1组抽出的号码为2,则第8组抽出的号码为2+5×7=37;若用分层抽样法抽取,则40岁以下的年龄段应抽取12×40=20(人).。
高考总复习课程--2018年高考数学(理)第二轮复习(江苏版) 讲义 第18讲 概率与统计
第18讲 概率与统计新题赏析题一:某旅游爱好者计划从3个亚洲国家A 1, A 2, A 3和3个欧洲国家B 1, B 2, B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.题二:海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg ),其频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:附:22()()()()()n ad bc K a b c d a c b d -=++++题三:某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?第1讲概率与统计新题赏析题一:1(1)52(2)9题二:(1)0.4092;(2)列联表如图所示:有99%的把握认为箱产量与养殖方法有关.题三:(1)X的分布列为:520元.。
(江苏版)2018年高考数学一轮复习 专题11.3 概率分布与数学期望_方差(讲)理
专题11.3 概率分布与数学期望、方差【最新考纲解读】【考点深度剖析】1. 江苏高考中,一般考古典概型、相互独立、二项概型基础上的随机变量的分布,期望与方差。
2. 随机变量的概率分布及期望,内容多,处理方式灵活,可以考查其中一块,可以内部综合,可以作为问题的背景与其他内容结合考,复习时要注重基础,以不变应万变.【课前检测训练】【判一判】判断下面结论是否正确(请在括号中打“√”或“×”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量.( )(2)离散型随机变量的分布列描述了由这个随机变量所刻画的随机现象.( )(3)某人射击时命中的概率为0.5,此人射击三次命中的次数X服从两点分布.( )(4)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.( )(5)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( )(6)离散型随机变量的各个可能值表示的事件是彼此互斥的.( ) (7)条件概率一定不等于它的非条件概率.( ) (8)相互独立事件就是互斥事件.( )(9)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(10)二项分布是一个概率分布,其公式相当于(a +b )n二项展开式的通项公式,其中a =p ,b =1-p .( ) (11)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( ) (12)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰好第3次测试获得通过的概率是P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49.( )(13)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(14)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(15)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )(16)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )(17)均值是算术平均数概念的推广,与概率无关.( )1. √2. √3. ×4. √5. ×6. √7. ×8. ×9. ×10. ×11. √12. ×13. √14. √15. √16. √17. × 【练一练】1.袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数 D .取到的球的个数 【答案】C2.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X ,那么随机变量X 可能取得的值有( )A .17个B .18个C .19个D .20个 【答案】A【解析】X 可能取得的值有3,4,5,…,19共17个.3.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)等于( ) A.16 B.13 C.12 D.23 【答案】D【解析】∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.4.随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,则n =________. 【答案】10【解析】P (X <4)=P (X =1)+P (X =2)+P (X =3)=1n +1n +1n =3n=0.3,得n =10.5.一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为______. 【答案】272206.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 【答案】B【解析】第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.7.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75 C .0.6 D .0.45 【答案】A【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.8.如图,用K ,A 1,A 2三类不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作.已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( )A .0.960B .0.864C .0.720D .0.576 【答案】B9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 【答案】35【解析】设该队员每次罚球的命中率为p ,则依题意有1-p 2=1625,即p 2=925.又0<p <1,故p =35.10.国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 【答案】1211.某射手射击所得环数ξ的分布列如下:已知ξ的均值E (ξ)=8.9,则y 的值为( ) A .0.4 B .0.6 C .0.7 D .0.9 【答案】A【解析】由⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +8×0.1+9×0.3+10y =8.9,可得y =0.4.12.设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a,4 B .1+a,4+a C .1,4 D .1,4+a【答案】A 【解析】x 1+x 2+…+x 1010=1,y i =x i +a ,所以y 1,y 2,…,y 10的均值为1+a ,方差不变仍为4.故选A.13.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10)则D (X )等于( )A .5B .8C .10D .16 【答案】B【解析】∵E (X )=15(2+4+6+8+10)=6,∴D (X )=15[(-4)2+(-2)2+02+22+42]=8.14.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.【答案】25【解析】设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.15.抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________. 【答案】509【题根精选精析】考点1 离散型随机变量及其分布列【1-1】随机变量X 的概率分布规律为P (X =n )=(1)an n + (n =1,2,3,4),其中a 是常数,则P (12<X<52)的值为 . 【答案】56【解析】因为随机变量X 的概率分布规律为()==n X p (1)an n + (n =1,2,3,4),所以()()()()==+=+=+=4321X p X p X p X p 45154=⇒=a a ,所以 ()()==+==⎪⎭⎫ ⎝⎛<<212521X p X p X p 65.【1-2】若随机变量X 的分布列如下表,且EX=6.3, 则表中a 的值为 .【答案】7【解析】由11.05.0=++b 得4.0=b ,()3.64.091.05.04=⨯+⨯+⨯=a X E ,解7=a【1-3】口袋中有n(n ∈N *)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若P(X =2)=730,则n 的值为 .【答案】7【1-4】在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:规定:当产品中的此种元素含量15≥毫克时为优质品.(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);(Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()E ξ.【解析】 (I)甲厂抽取的样本中优等品有7件,优等品率为7.10乙厂抽取的样本中优等品有8件,优等品率为84.105= (II)ξ的取值为1,2,3. 12823101(1),15C C P C ξ⋅=== 21823107(2),15C C P C ξ⋅===157)3(3100238=⋅==C C C P ξ 所以ξ的分布列为故的数学期望为123.1515155E ξ=⨯+⨯+⨯=() 【1-5】甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X ,求X 的分布列和期望.X 的期望为()00.210.620.21E x =⨯+⨯+⨯=.【基础知识】1.离散型随机变量的分布列 (1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X ,Y ,ξ,η等表示. (2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. 若ξ是随机变量,a b ηξ=+,其中,a b 是常数,则η也是随机变量. 2.常见离散型随机变量的分布列 (1)两点分布:若随机变量X 服从两点分布,即其分布列为其中01p <<,则称离散型随机变量X 服从参数为p 的两点分布.其中()1p P X ==称为成功概率. (2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X k =}发生的概率为()k n k M N MnNC C P X k C --==,0,1,2,,k m =,其中{}min ,m M n =,且,,,,n N M N n M N N *≤≤∈,称分布列为超几何分布列.(3)设离散型随机变量可能取得值为1,2,…,i ,…n ,取每一个值i (1,2,,i n =)的概率为()i iP X x p ==,则称表为随机变量X 的概率分布列,简称X 的分布列.有时为了表达简单,也用等式()i i P X x p ==,1,2,,i n=表示X 的分布列. 分布列的两个性质 ①0i p ≥,1,2,,i n =;②121n p p p +++=.【思想方法】1. 求分布列的三种方法(1)由统计数据得到离散型随机变量的分布列;(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.(2)由古典概型求出离散型随机变量的分布列;求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.而超几何分布就是此类问题中的一种. (3)由互斥事件的概率、相互独立事件同时发生的概率及n 次独立重复试验有k 次发生的概率求离散型随机变量的分布列.2. 求离散型随机变量分布列的步骤(1)找出随机变量X 的所有可能取值x i (i =1,2, 3,…,n ); (2)求出各取值的概率P (X =x i )=p i ;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确. 3. 解答离散型随机变量的分布列及相关问题的一般思路 (1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值. (3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【温馨提醒】求离散型随机变量的分布列的关键是正确理解随机变量取每一个所表示的具体事件,然后综合应用各类求概率的公式,求出概率. 考点2 二项分布及应用【2-1】【盐城2015调研】袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是 . 【答案】12【2-2】已知在一次试验中,()0.7P A =,那么在4次独立重复试验中,事件A 恰好在前两次发生的概率是 . 【答案】0441.0【解析】因为()0.7P A =,所以在4次独立重复试验中,事件A 恰好在前两次发生的概率()()0441.03.07.022==P .【2-3】设服从二项分布(,)B n p 的随机变量X 的期望和方差分别是2.4和1.44,则二项分布的参数,n p 的值为 .【答案】6,0.4n p ==【解析】由二项分布的期望和方差得()⎩⎨⎧=-=44.114.2p np np ,解的⎩⎨⎧==64.0n p【2-4】【2015四川模拟】一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【解析】试题分析:(1)由()(1)k k n kn n P k C p p -=-得,1331(200),(10),(20),(100)8888P X P X P X P X =-=======.所以X 的分布列为【2-5】【北京市西城区2015模拟】在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(1)根据频率分布表中的数据,写出a 、b 的值; (2)某人从灯泡样品中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按三个等级分层抽........样.所得的结果相同,求n 的最小值; (3)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.所以X 的数学期望()279130123646464644E X =⨯+⨯+⨯+⨯=.(注:写出13,4X B ⎛⎫ ⎪⎝⎭,()3311144kkk P X k C -⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭,0k =、1、2、3. 请酌情给分)【基础知识】 1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号()/p B A 来表示,其公式为()()()/p AB p B A P A =.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()/n AB p B A n A =. (2)条件概率具有的性质: ①()0/1p B A ≤≤;② 如果B 和C 是两互斥事件,则()()()///p BC A p B A p C A =+.2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则()()/p B A p B =,()()()()()/p AB p B A P A P A P B =⋅=⋅.(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若()()()p AB P A P B =⋅,则A 与B 相互独立. 3.独立重复试验与二项分布 (1)独立重复试验独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()()1n kkkn P X k C p p -==- (0,1,2,,k n =),此时称随机变量X 服从二项分布,记作(),X B n p ,并称p 为成功概率.【思想方法】 1. 条件概率的求法(1)定义法:先求()P A 和()p AB ,再由()()()/p AB p B A P A =,求()/p B A ;(2)基本事件法:借古典概型概率公式,先求事件A 包含的基本事件数()n A ,再求事件AB 所包含的基本事件数()n AB ,得()()()/n AB p B A n A =. 2. 求相互独立事件同时发生的概率的方法 (1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算.相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.3. 二项分布满足的条件(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n 次独立重复试验中事件发生的次数. 4.二项展开式的通项与二项分布的概率公式的“巧合”一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0p A p =>.我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.在n 次独立重复试验中,每次试验事件A 发生的概率均为()01p p <<,即()p A p =,()1p A p q =-=.由于试验的独立性,n 次试验中,事件A 在某指定的k 次发生,而在其余n k -次不发生的概率为kn kp q-.而在n 次试验中,事件A 恰好发生()0k k n ≤≤次的概率为()k k n k n n P k C p q-=,0,1,2,,k n =.它恰好是()np q +的二项展开式中的第1k +项.5. 牢记且理解事件中常见词语的含义: (1) A 、B 中至少有一个发生的事件为A B ;(2) A 、B 都发生的事件为AB ; (3) A 、B 都不发生的事件为AB ; (4) A 、B 恰有一个发生的事件为AB AB ; (5) A 、B 至多一个发生的事件为ABABAB .【温馨提醒】这些都是二项分布问题,关键是正确求出随机变量的分布列,可直接使用公式求解. 因此牢记公式()kkn kn n P k C p q-=,0,1,2,,k n =,并深刻理解其含义.考点3 离散型随机变量的均值与方差【3-1】设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则,n p 的值为 . 【答案】n =8,p =0.2【解析】因为随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,所以()()()8,2.026.116.1==⇒⎩⎨⎧=-===n p p np X D np X E . 【3-2】设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和,则n 、p 的值分别是 .【答案】60,【解析】由二项分布X ~B (n ,p )的均值与方差可知E(X)=np=15,D(X)=np(1-p)=,解得n=60,p=,所以 【3-3】变量X 的概率分布列如右表,其中,,a b c 成等差数列,若1()3E X =,则()D X =_________.5【答案】9【3-4】【常州2015调研】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?【3-5】【无锡2015模拟】在2014年俄罗斯索契冬奥会某项目的选拔比赛中,A,B两个代表队进行对抗赛,每队三名队员,A队队员是A1,A2,A3,B队队员是B1,B2,B3,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式出场进行三场比赛,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为.(1)求A队得分为1分的概率;(2)求的分布列;并用统计学的知识说明哪个队实力较强.【基础知识】 1.均值若离散型随机变量X 的分布列为称1122i i n n E X x p x p x p x p =+++++为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平..若Y aX b =+,其中,a b 为常数,则Y 也是随机变量,且()()E aX b aE X b +=+. 若X 服从两点分布,则()E X p =; 若(),XB n p ,则()E X np =.2.方差若离散型随机变量X 的分布列为则()()2i x E X -描述了i x (1,2,,i n =)相对于均值()E X 的偏离程度,而()()()21ni ii D X x E X p ==-∑为这些偏离程度的加权平均,刻画了随机变量X 与其均值()E X 的平均偏离程度.称()D X 为随机变量X X 的标准差.若Y aX b =+,其中,a b 为常数,则Y 也是随机变量,且()()2D aX b a D X +=. 若X 服从两点分布,则()()1D X p p =-. 若(),XB n p ,则()()1D X np p =-.【思想方法】1. 求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数a b ηξ=+的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.2. 求离散型随机变量均值的步骤(1)理解随机变量X 的意义,写出X 可能取得的全部值; (2)求X 的每个值的概率; (3)写出X 的分布列; (4)由均值定义求出()E X . 3. 六条性质(1) ()E C C = (C 为常数)(2) ()()E aX b aE X b +=+ (,a b 为常数) (3) ()()()1212E X X E X E X +=+(4)如果12,X X 相互独立,则()()()1212E X X E X E X ⋅=⋅ (5) ()()()()22D XE XE X =-(6) ()()2D aX b a D X +=4. 均值与方差性质的应用若X 是随机变量,则()f X η=一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算.【温馨提醒】求离散型随机变量的期望和方差的应用问题,首先应仔细地分析题意,当概率分布不是一些熟知的类型时,应全面地剖析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,从而求出各随机变量相应的概率. 【易错问题大揭秘】1.随机变量取值不全致误典例 (12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个.第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取得球的标号之和为ξ.求随机变量ξ的可能取值及其分布列.易错分析 由于随机变量取值情况较多,极易发生对随机变量取值考虑不全而导致解题错误.温馨提醒 (1)解决此类问题的关键是弄清随机变量的取值,正确应用概率公式.(2)此类问题还极易发生如下错误:虽然弄清随机变量的所有取值,但对某个取值考虑不全面. (3)避免以上错误发生的有效方法是验证随机变量的概率和是否为1.2.独立事件概率求解中的易误点典例 (12分)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.易错分析 解本题第(2)问易因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 35(23)3×(13)2=80243这一错误结果.规范解答温馨提醒(1)正确区分相互独立事件与n次独立重复试验是解决这类问题的关键.独立重复试验是在同一条件下,事件重复发生或不发生.(2)独立重复试验中的概率公式P(X=k)=C k n p k(1-p)n-k表示的是n次独立重复试验中事件A发生k次的概率,p与1-p的位置不能互换,否则该式子表示的意义就发生了改变,变为事件A有k次不发生的概率了. [失误与防范]1掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.3.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意“恰好”与“至多(少)”的关系,灵活运用对立事件.4.在没有准确判断分布列模型之前不能随便套用公式.5.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲座6 概率、统计在高考中的常见题型与求解策略
1.(2016·东北三省四校联考)已知点P ,Q 为圆C :x 2
+y 2
=25上的任意两点,且|PQ|<6,若PQ 中点组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为( ) A.35 B.925 C.1625 D.25
解析:选B .PQ 中点组成的区域为M ,如图阴影部分所示,那么在C 内部任取一点落在M 内
的概率为25π-16π25π=9
25
,故选B .
2.如果X ~B(20,p),当p =1
2
且P(X =k)取得最大值时,k 的值为( )
A .8
B .9
C .10
D .11
解析:选C .当p =12时,P(X =k)=C k 20⎝ ⎛⎭⎪⎫12k ·⎝ ⎛⎭
⎪⎫1220-k
=C k
20·⎝ ⎛⎭
⎪⎫1220,显然当k =10时,P(X =k)取得最大值.
3.(2016·邯郸调研)一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字 2.将这个小正方体抛掷2次,则向上的数之积的数学期望是________.
解析:设向上的数之积为X ,则随机变量X 的取值为0,1,2,4,P(X =0)=34,P(X =1)=1
9
,
P(X =2)=19,P(X =4)=136,因此EX =4
9.
答案:49
4.已知离散型随机变量X =________,b =________.
解析:由题意得,a +b +c +12
=1,①
因为EX =0,所以-1×a+0×b+1×c+2×1
12
=0,
即-a +c +1
6
=0.②
因为DX =(-1-0)2×a +(0-0)2×b +(1-0)2×c +(2-0)2
×112=1,即a +c =23
.③
联立①②③解得a =512,b =1
4
.
答案:512 1
4
5.(2016·辽宁省五校联考)在某次考试中,从甲、乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格. (1)用样本估计总体,请根据茎叶图对甲、乙两个班级的成绩进行比较;
(2)从甲班10名学生和乙班10名学生中各抽取一人,求有人及格的条件下乙班同学不及格的概率;
(3)从甲班10人中抽取一人,乙班10人中抽取2人,3人中及格人数记为X ,求X 的分布列和数学期望.
解: (1)从茎叶图可以得到:甲班平均分为89分;乙班平均分为89分. 甲班的方差大于乙班的方差.
所以甲、乙两班平均分相同,但是乙班比甲班成绩更集中更稳定.
(2)事件“从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格”记为A ; 事件“从甲班10名学生和乙班10名学生中各抽取一人,乙班同学不及格”记为B ,
则P(B|A)=P (A·B)
P (A )
=410×510410×510+610×510+410×510=2
7. (3)X 的取值为0,1,2,3, X 的分布列为
期望EX =7
5
.
6.(2016·成都调研)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文诵读比赛决赛.决赛通过随机抽签方式决定出场顺序.求:
(1)甲、乙两班恰好在前两位出场的概率;
(2)决赛中甲、乙两班之间的班级数记为X ,求X 的分布列和数学期望. 解:(1)设“甲、乙两班恰好在前两位出场”为事件A ,
则P(A)=A 22×A 4
4
A 66=115
.
所以甲、乙两班恰好在前两位出场的概率为1
15
.
(2)随机变量X 的可能取值为0,1,2,3,4.
P(X =0)=A 22×A 55
A 66=13,P(X =1)=4×A 22×A 4
4A 66=415,
P(X =2)=A 24×A 22×A 33A 66=15,P(X =3)=A 34×A 22×A 22A 6
6=215,P(X =4)=A 44×A 22
A 66=115
.
所以随机变量X
因此,EX =0×13+1×15+2×5+3×15+4×15=3
.
1.(2016·郴州一模)某次数学测验共有10道选择题,每道题均有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分.某考生每道题都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道题能排除两个错误选项,另2道只能排除一个错误选项,于是该考生做这4道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响. (1)求该考生本次测验选择题得50分的概率;
(2)求该考生本次测验选择题所得分数的分布列和数学期望.
解:(1)设选对一道“能排除2个选项的题目”为事件A ,选对一道“能排除1个选项的题
目”为事件B ,则P(A)=12,P(B)=1
3
.该考生选择题得50分的概率为P (A)·P(A)·P(B)·P(B)
=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=136
. (2)该考生所得分数X =30,35,40,45,50,
P(X =30)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-132=19
, P(X =35)=C 12⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭
⎪⎫122·C 1
2·13×23=13,
P(X =40)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫232+C 12×⎝ ⎛⎭⎪⎫122×C 12×13×23+⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=1336
,
P(X =45)=C 12⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭
⎪⎫122×C 1
2×13×23=16,
P(X =50)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=136
. 该考生所得分数X
所以EX =30×19+35×3+40×36+45×6+50×36=3
.
2.(2016·洛阳统考)在某学校的一次选拔性考试中,随机抽取了100名考生的成绩(单位:
(2)已知这次考试共有2 000名考生参加,如果近似地认为这次成绩z 服从正态分布N(μ,σ2)(其中μ近似为样本平均数x ,σ2近似为样本方差s 2
),且规定82.7分是复试线,那么
在这2 000名考生中,能进入复试的有多少人?(附:161≈12.7,若z ~N(μ,σ2
),则P(μ-σ<z <μ+σ)=0.682 6,P(μ-2σ<z <μ+2σ)=0.954 4,结果取整数部分) (3)已知样本中成绩在[90,100]中的6名考生中,有4名男生,2名女生,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望E ξ.
解:(1)样本平均数x -和样本方差s 2
分别为 x -
=45×0.05+55×0.18+65×0.28+75×0.26+85×0.17+95×0.06=70, s 2=(-25)2×0.05+(-15)2×0.18+ (-5)2×0.28+52×0.26+152×0.17+252
×0.06=161.
(2)由(1)知,z ~N(70,161),从而P(z >82.7)=1-0.682 6
2
=0.158 7,
所以能进入复试的人数为2 000×0.158 7≈317. (3)显然ξ的取值为1,2,3,
P(ξ=1)=C 14·C 22C 36=15,P(ξ=2)=C 24·C 12C 36=35,P(ξ=3)=C 34·C 0
2
C 36=15
,
ξ的分布列为
所以E ξ=1×15+2×35+3×5
=2.。